جستجو در تک بوک با گوگل!

تابعيت پايگاه تك بوك از قوانين جمهوري اسلامي ايران

تکنیک های تقویت ریاضی

909

بازدید

تکنیک های تقویت ریاضی ۲٫۶۹/۵ (۵۳٫۸۵%) ۱۳ امتیازs
تکنیک های تقویت ریاضی

تکنیک های تقویت ریاضی

به جای حفظ کردن،‌ ریاضی را بفهمید

اغلب افراد به جای دقت در درک و فهم راه حل مسائل ریاضی،‌ سعی می‌کنند این راه حل‌ها را حفظ کنند.



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

علم احتمالات

3,429

بازدید

علم احتمالات ۳٫۸۶/۵ (۷۷٫۱۴%) ۷ امتیازs

علم احتمالات

پیدایش رسمی احتمال از قرن هفدهم به عنوان روشی برای محاسبه شانس در بازی های شانسی بوده است. اگرچه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازی های شانسی و حتی در تقسیم کار بین راهبان در مراسم مذهبی وجود داشته است و به علاوه شواهدی از به کارگیری این ایده ها در مسایل حقوق، بیمه، پزشکی و نجوم نیز یافت می شود. اما بسیار عجیب است که حتی یونانیان اثری از خود در رابطه با استفاده از تقارنی که در هندسه به کار می برده اند در زمینه احتمال یا اصولی که حاکم بر مسایل شانس باشد بجا نگذاشته اند.



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

سوالات سرشماری عمومی

1,697

بازدید

از این اطلاع برای مطالعه درباره ی ساختار خانوار  (هسته ای، گسترده، تک والد / والده و ….) که عامل مهمی در مطالعات جمعیتی است، استفاده می شود.

 

 آیا مادر فرد، عضو همین خانوار است؟ (شماره ی ردیف مادر) …..



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

درباره ی رشته ی ریاضیات

362

بازدید



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

مختصری درباره هندسه

2,652

بازدید

مختصری درباره هندسه ۵٫۰۰/۵ (۱۰۰٫۰۰%) ۳ امتیازs
هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آن‌ها است. این دانش همراه با حساب یکی از دو شاخه‌ قدیمی ریاضیات است.
واژه هندسه عربی شده واژه «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie می‌گویند که هردو از γεωμετρία (گیومتریا) در زبان یونانی آمده که به معنای اندازه‌گیری زمین است.
تاریخچه هندسه
احتمالا بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. در مصر هر سال رودخانه نیل طغیان می‌کرد و نواحی اطراف رودخانه را سیل فرا می‌گرفت. این رویداد تمام علایم مرزی میان املاک را از بین می‌‌برد و لازم می‌‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی کند. مصریان روش علامت‌گذاری زمین‌ها با تیرک و طناب‌ را ابداع کردند. آنها تیرکی را در نقطه‌ای مناسب در زمین فرو می‌‌کردند و تیرک دیگری در جایی دیگر نصب می‌شد و دو تیرک با طنابی که مرز را مشخص می‌‌ساخت به یکدیگر متصل می‌شدند. با دو تیرک دیگر زمین محصور شده و محلی برای کشت یا ساختمان سازی مشخص می‌شد.
در آغاز هندسه برپایه دانسته‌های تجربی پراکنده‌ای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم می‌شد. بعضی از این دانسته‌ها بسیار پیشرفته بودند مثلا هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث می‌شناختند.
یونانیان دانسته‌های هندسی را مدون کردند و بر پایه‌ای استدلالی قراردادند. برای آنان هندسه مهم‌ترین دانش‌ها بود و موضوع آن را مفاهیم مجردی می‌دانستند که اشکال مادی فقط تقریبی از آن مفاهیم مجرد بود. در سال ۶۰۰ قبل از میلاد مسیح، یک آموزگار اهل ایونیا (که در روزگار ما بخشی از ترکیه به‌شمار می‌رود) به نام طالس، چند گزاره یا قضیه هندسی را به صورت استدلالی ثابت کرد. او آغازگر هندسه ترسیمی بود. فیثاغورث که او نیز اهل ایونیا و احتمالا از شاگردان طالس بود توانست قضیه‌ای را که به‌نام او مشهور است اثبات کند. البته او واضع این قضیه نبود.
اما دانشمندی به نام اقلیدس که در اسکندریه زندگی می‌‌کرد، هندسه را به صورت یک علم بیان نمود. وی حدود سال ۳۰۰ پیش از میلاد مسیح، تمام نتایج هندسی را که تا آن زمان شناخته بود، گرد آورد و آنها را به طور منظم، در یک مجموعه ۱۳ جلدی قرار داد. این کتابها که اصول هندسه نام داشتند، به مدت ۲ هزار سال در سراسر دنیا برای مطالعه هندسه به کار می‌‌رفتند.
براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان می‌‌گذشت، شاخه‌های دیگری از هندسه توسط ریاضیدانان مختلف، توسعه می‌‌یافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسه تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می‌‌کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند. قبل از اقلیدس، فیثاغورث (۵۷۲-۵۰۰ ق.م) و زنون (۴۹۰ ق.م.) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را به ۶۰ قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست می‌‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در سده پنجم میلادی آپاستامبا، در سده ششم، آریابهاتا، در سده هفتم، براهماگوپتا و در سده نهم، بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
تقسیم بندی هندسه
هنـدسه مقـدماتی به دو قسمت تقسیـم می‌گردد:
* هنـدسه مسطحه
* هندسه فضایی.
* هندسه خطی.
در هندسه مسطح، اشکالی مورد مطالعه قرار می‌‌گیرند که فقط دو بعد دارند، هندسه فضایی، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب‌ها ،استوانه ها، مخروط ها، کره‌ها و غیره است
دایره
مقدمه
اشکال هندسی در زندگی همیشه دارای کاربردهای فراوان بوده و برای فعالیتهای انسان الهام بخش و سمبل نیز شده است. دایره یکی از این اشکال است. ابتدایی‌ترین کاربرد دایره ، چرخ و چرخ‌دنده‌ها هستند که از قدیم‌الایام بکار رفته و می‌روند. همچنین ابزار آلات زینتی چون تاج ، گردبند ، خلخال و حلقه‌ها ، کاربردی به اندازه تاریخ بشری دارند. نمونه مثال زدنی حلقه ازدواج است که بین زوجین مبادله می‌شود و این برگرفته از حلقه‌ای است که در دست اهورامزدا در پیکره‌ها و مجسمه‌ها دیده می‌شود.
با توجه به قرینه مذهبی قداست و پاکی ازدواج در ایران باستان را نشان می‌دهد که اکنون فرهنگی جهانی گشته است. دایره در فرهنگها ، انجمنها ، شهرسازی ، اندیشه‌های هنری و ریشه‌دار بخصوص در ابزار آلات نجومی جایگاه نمادین و کاربردی دارد. در فرهنگ و ادیان قدیم ازجمله بودا ، نماد آسمان ، جهان پاک ، افلاک گردنده و غیر دنیاست در حالی که در مقابل دنیا چهار گوشه و مربع است که به وضوح در بیان اشعار و ادبیات ایرانی بویژه غزلیات عرفانی مشاهده می‌شود.
دایره در هنرهای اسلامی ایران
در هنرهای اسلامی ایرانی دایره‌ها ، به شکل شمس و حلقه نورانی در اطراف سرایمه و بزرگان دین دیده می‌شود. همچنین با توجه به کراهت صورتگری و مجسمه سازی در اسلام و ظریف اندیشی شیعه ، هنرهای اسلامی به شکلهای اسلیمی ، گل و بوته ، نقشهایی ختایی سوق داده شد. اشکال و خطوط و ترکیب رنگ در مینیاتورها ، تذهیبها و فرشها با زینت و ترکیب و نقش نگار پخته‌تری تکامل یافتند.
دایره به شکل شمسه‌های زیبایی تزیین داده شد و شمسه‌ها به صورت منفرد یا در سایر هنرها کاربرد یافت. در خطوط گل و بوته و اشکال اسلیمی و ترکیب رنگ دایره به عنوان پایه‌ای‌ترین ، اصلی‌ترین و اساسی‌ترین شکل بکار گرفته می‌شود. و سیر کلی به سوی مرکز برای وصل فنا نقطه‌ای (سیاه) است. که اختیار را از چشمان بیننده گرفته و با سیر در تابلو به مرکز هدایت می‌کند.
دایره و نقطه سیاه و قرمز
در میان قبایل بدوی و بسیاری از انجمنها و دسته‌های سری قدیم ، سمبل مفاهیمی چون ابدیت ، جاودانگی و مرگ بوده است و دایره سیاره و دوایر متحدالمرکز در تمرینات اساسی ماینه‌تیستها ، هیپنوتیستها و درمانگران حرفه‌ای می‌باشد. دایره و نقطه سرخ که اغلب نشان آفتاب می‌باشد در پرچم و سمبل ملل شرق آسیا نیز مشاهده می‌شود.
هفت شهر
بطلیموس در دو قرن پیش از میلاد بر اساس تفاوت حرارت ، سرزمینهای شناخته شده آن روزگار را به هفت اقلیم تقسیم کرده است از آنجا که تقسیم بندی بطلیموس بر اساس دایره‌های مداری است اقلیمهای هفت گانه را اقلیمهای هندسی نیز نامیده‌اند. به نظر صاحبنظران ، اصطلاح هفت شهر ، هفت اقلیم و هفت وادی که در ادبیات و حکمت ایرانی وارد شده است الهامی از نظریات بطلیموسی را در خود دارد. اجرام آسمانی به دو دسته ثوابت و اجرام متحرک و متغیر تقسیم بندی شد و اجرام متغیر شناخته شده آن روز ، خورشید ، زمین ، بهرام ، تیر ، عطارد ، مشتری و زحل هر کدام در مداری و آسمانی تصور شدند. آسمان اول ، آسمان دوم … تا هفت آسمان.
دایره و نجوم
کره زمین برای شناسایی بهتر به دایره‌های افقی به نام مدار از صفر استوا تا ۹۰ درجه قطبین و دایره‌های عمودی به نام نصف‌النهار تقسیم بندی می‌شود. در علوم قدیم دایره بیشترین کاربرد و برترین جایگاه را در علم نجوم دارد. اولین مدلهای منظومه‌ای بر اساس گردش زهره در فرهنگ اینکاها ، گردش خورشید و کاینات دور کلیسا و زمین ، تا گردش زمین و سیارات دور خورشید در نجوم اسلامی و قوانین حاکم بر حرکت آنها بر روی مسیرهای دایروی بودند. مدلهای اتمی بعد از نظریه جوزف تامسون نیز هسته متمرکز در مرکز (بار مثبت) و الکترونهای متحرک در مدارهای دایروی بود. که به دلیل شباهت به مدل منظومه‌ای مشهور گشت.
بعدها تیکوبراهه ، کپلر ، کپرنیک روی این نظریه‌ها کار کردند. در سال ۱۶۱۹ کپلر سه قانون حرکت سیارات را با استفاده از مشاهدات تیکوبراهه بیان کرد. قوانین کپلر پایه و اساس قوانین نیوتن و مکانیک کلاسیک و مکانیک سماوی شد. در این نظریه مسیر دایره به مسیر بیضوی که خورشید در یک کانون بیضی قرار دارد تغییر یافت. با مطرح شدن فیزیک نوین و فیزیک کوانتومی ، اصل عدم قطعیت و سایر پیشرفتهای تکنولوژیکی مدل منظومه‌ای هسته نیز به مدل ابر الکترونی تبدیل گشت.


نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

دانستنیهای شیرین ریاضی

2,731

بازدید

دانستنیهای شیرین ریاضی ۱٫۸۷/۵ (۳۷٫۴۵%) ۴۷ امتیازs
در طی بیش از دو هزار سال، قدری آشنایی با ریاضیات، از معلومات ضروری هر شخص با فرهنگی به شمار می آمده است. امروز موقعیت سنتی ریاضیات نیز در این امر مسئول اند تدریس ریاضی گاهی به سطح آموزشی بی محتوا برای حل مسأله تنزل کرده است. آموزشی که ممکن است توانایی شخص را در عملیات صوری افزایش دهد ولی او را به فهم واقعی ریاضیات یااستقلال فکری بیشتر رهنمون نمی سازد. تحقیقات ریاضی گرایشی افراطی به تخصصی شدن و تجرید یافته است.
کاربردهای ریاضیات و روابط آن با رشته های دیگر مورد غفلت قرار گرفته اند. اما این شرایط به هیچ وجه توجیه کننده سیاست کاهش بودجه برای ریاضیات نیست. بر عکس، کسانی که از ارزش رشته های نظری آگاه اند باید متقابلاً واکنش نشان دهنده و خواهند دارد. معلمان، محصلان و مردم تحصیلکرده  خواستار اصلاحات سازنده در این زمینه هستند نه تسلیم با کمترین مقاومت. 
هدف فهم واقعی ریاضیات به عنوان اندک موارد یکپارچه و پایه ای برای اندیشه و علمی است. انتشار کتابهای عالی در زمبنه زندگینامه و تاریخ و برخی نوشته های مهیج عامه فهم علاقه خفته مردم را بیدار ساخته اند. اما دانش را نمی توان فقط از راه غیر مستقیم به دست آورد. ریاضیات را نیم توان از طریق نوشته های سرگرم کننده و آسان به مردم فهماند. همان طور که اموختن موسیقی به کسانی که هرگز به طور عمیق به موسیقی گوش نکرده اند از طریق بهترین شرح و توصیفهای ژورنالیستی میسر نیست.
تماس عملی با محتوای ریاضیات زنده ضروری است. با این حال، از ریزه کاریهای فنی و مسیرهای فرعی باید اجتناب کرد. در عرصه ریاضیات باید همان قدر که از اتکا به مطالب پیش پا افتاده احتراز  می شود از جرم اندیشی خطرناکی که روشن سازی انگیزه یا هدف را مردود می شمارد و مانعی نا معقول در برابر تلاش صادقانه برای فهم موضوع است پرهیز گردد.
می توان از مبادی اولیه شروع به حرکت کرد و در مسیری مستقیم به سوی مواضعی مرتفع پیش رفت که درآنجا بتوان بر جوهره و نیروهای محرکه ریاضیات نوین اشراف یافت.
ریاضیات به ذهن نظم می بخشد و آدمی را به تفکر منطقی عادت می دهد و بی جهت نیست که می گویند: ریاضیات ورزش ذهن است. ریاضیات روش درست فکر کردن و استدلال است و علم ریاضیات بطور عمده متکی بر استدلال و استنتاج منطقی است. ریاضیات منحصر به شمردن و حساب کردن یا رسم  اشکال نیست. بلکه تمام مسائل روزمره که به کمک عبارتها و جمله ها بیان شده اند، الگویی از ریاضی در خود نهفته دارند بنابراین انسان امروزی در دنیای عددها زندگی می کنند. برای دادوستد، تجارتها، اندازه گیری و … از ریاضیات استفاده می کنند.
و خلاصه همه مردم در مشاغل گوناگون به نحوی از ریاضیات بهره می گیرند. ریاضیات در کشور ما سابقه طولانی دارد.
ریاضیدانان ایرانی با نام و با ارمی همچون: خیام، خوارزمی،  طوسی و بدزجانی، در انواع مختلف ریاضی از جمله: حساب – هندسه- جبر و مثلثات  و نجوم و آثار تحقیقات ابداعی را از خود به جای گذاشته اند.

برگی از خاطرات محقق و ریاضیدان جانباز جمشید واحدی:
فرزندان، بر خلاف تصور کسانی که ریشه ریاضی را از ریاضت به معنی سختی کشیدن می دانند بدانید که ریاضی ازریشه «روض» به وعنای ورزش ذهنی و نوعی لذت بردن است.
هنگامی که به دلیل قطع دست چپم در بیمارستان بستری بودم یکی از دوستانم به عیادتم امد و پرسید: آیا خداوند قادر است موجودی را خلق کند  که نتواند ان را از بین ببرد؟  به او یک دفتر ۱۰۰ برگ و یک نقاله دادم و از او خواستم تافردای آن روز برایم یک «مثلث قائم الزاویه متساوی اللاضلاع » رسم کند. ایشان فردای آن روز  نزدم آمد و گفت غیر ممکن است چنین مثلثی بتوان رسم کرد زیرا اگر زاویه ۹۰ درجه داشته باشد دیگر سه ضلع آن مساوی نخواهد بود و اگر سه ضلع آن مساوی باشد هر کدام از زوایا ۶۰ درجه خواهد شد و جمع این دو یعنی هم مثلث قائم الزاویه باشد و هم متساوی الاضلاع محال است.
به او گفتم: آیا شما چیزی غیر از این از من سوال کردید ، در سوال شما توانستن و نتوانستن هر دو با هم هستند و این جمع ضدین محال است. سپس  به ایشان گفتم در کف دست راست ما عدد ۱۸ و در دست چپ ما عدد ۸۱ تغریباً به وضوح آشکار است و اختلاف آنها ۶۳=۱۸-۸۱  خواهد بود که سن وفات حضرت رسول (ص) می باشد و هم می دانیم که پیامبر در ۴۰ سالگی به پیامبری مبعوث شد وقرآن طی ۲۳ سال بر ایشان نازل گردید. حال به سوره توحید توجه کن. همه حرکتهای حروف در بالا قرار دارند  ولی در کلمه (یلِد)در حرف (ل) حرکت در پایین قرار دارد. تعداد حروف سمت چپ حرف(ل) ۲۳ عدد و تعداد حروف سمت راست ان نیز ۲۳ عدد می باشد.
درقرآن آنجا که خداوند درباره افراق سخن می فرماید از کلمات ( کل فی فلک) استفاده شده است. که اگر حرف آنها را روی محیط یک دایره قرار دهیم از دو طرف ( کل فی فلک) خوانده می شود. آیا زیبا تر این می توان به مدار و دوران اشاره کرد و میبینید حتی خداوند هم ریاضیات را دوست دارد. ان را در کلامش به کار برده است.

دانستنیهای شیرین ریاضی:
آن وقتها من هم مثل بعضی ها از ریاضی متنفر بودم و ریاضی دانها را آدمهایی گوشه نشین و تنهایی می دانستم که چون حوصله فعالیت ندارند با عینک ته استکانیشان دائم سرشان در کتاب است تا با اعداد و ارقامی بی جان قانونی کشف کنند و قضیه ای بسازند.تا یک گرفتاری به گرفتاریهای ما دانش اموزان که مجبوریم قضیه های ساخته و پرداخته ایشان را حفظ کنیم اضافه کنند شاید ریشه این تنفر به سالهای قبل از دبستان برمی گشته که برادر بزرگم از سر لطف جمع و تفریق اعداد را به من یاد داد و من سالهای اول دبستان مجبور بودم در کلاسهای خشک و بی روح و خسته کننده ریاضی که هیچ چیز به جز جمع و تفریق دران مطرح نمی شد بنشینم بدون انکه مطلب جدیدی یاد بگیرم.
آنچه از آن سالها در خاطر دارم کلاسهای تاریک بود که نمی دانم چون درس ریاضی در ساعت اول تشکیل می شد هوا کاملاً روشن نشده بود یا هوا مثل دل من ابری بود. شاید هم هیچ کدام نبود . بله این تنفر من بود که همیشه کلاسهای ریاضی را تاریک می کرد. انگار هیچ کس ابتکاری، سوال نوی و حرف تازه ای نداشت.
اصلاً انگار ریاضیات جمع بود و تفریق. پرتقال فروش بود که گاهی جایش را با فروشنده کتاب و دفتر و مداد عوض می کرد.



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

کاربرد علم آمار

9,158

بازدید

کاربرد علم آمار ۴٫۶۷/۵ (۹۳٫۳۳%) ۳ امتیازs
آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده‌های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.
تاریخچه
سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.
جامعه و نمونه
جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY …. در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.
مثال
اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.
طرح آزمایش
در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:
•    مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.
•    بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.

باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.
انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.
انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.
از این گفته ها میتوان به اهمیت تحصیل در رشته آمار و نیاز جامعه به فارغ التحصیلان این رشته پی برد.
گستره علم آمار
آمار مجموعه‌ای از مفاهیم و روشهاست که در هر زمینه پژوهشی ، برای گرد آوری و تعبیر اطلاعات مربوط به آن و انجام نتیجه گوییها در شرایطی که عدم حتمیت و تغییر وجود دارد، بکار می‌رود.

دید کلی
بیشتر مردم با کلمه آمار ، به مفهومی که برای ثبت و نمایش اطلاعات عددی بکار می‌رود، آشنا هستند: تعداد بیکاران ، قیمت روزانه بعضی از سهام در بازار بورس ، کارمزد تحمل کالا بوسیله کشتی در ۱۵ سال گذشته مثالهایی از این مفهوم‌اند. ولی این مفهوم با موضوع منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتا با وضعیتهای سروکار دارد که در آنها وقوع یک پیشامد بطور حتمی قابل پیش بینی نیست. استنتاجهای آماری غالبا غیر حتمی‌اند زیرا مبتنی بر اطلاعات ناکاملی هستند. معادل کلمه آمار در زبان انگلیسی statistics است که از لحاظ تاریخی از کلمه لاتین status مشتق شده است.
نقش آمار در زندگی روزمره
پی بردن به واقعیات امور از طریق گردآوری و تعبیر داده‌ها ، منحصر به پژوهشگران حرفه‌ای نیست. این امر در زندگی روزمره همه مردم که می‌کوشند آگاهانه ، ناآگاهانه مسائلی را درباره جامعه ، شرایط زندگی ، محیط زندگی خود و کل دنیا درک کنند، معمول است. برای کسب اطلاع از وضع بیکاری ، آلودگی ناشی از ضایعات صنعتی ، اثر یک مسکن در رفع بیماری و سایر مسائل مورد علاقه در زندگی روزمره ، اطلاعات و ارقام را جمع آوری و آنها را تفسیر می‌نماییم یا کوشش می‌کنیم که تفسیرهای دیگران را بفهیم. بنابراین ، هر روز از طریق تجزیه و تحلیل ضمنی اطلاعات مبتنی بر واقعیات ، عمل کسب آگاهی انجام می‌گیرد.
نقش آمار در پژوشهای علمی
موضوع آمار عبارت است از هنر علم جمع آوری ، تعبیر و تجزیه و تحلیل داده‌ها و استخراج تعمیمهای منطقی در مورد پدیده‌های تحت بررسی. با توجه به مراحل اساسی یک تحقیق علمی که عبارتند از: مشخص کردن هدف ، جمع آوری اطلاعات ، تجزیه و تحلیل داده‌ها و بیان یافته‌های آشکار است که آمار بطور وسیعی در قلمرو تمام تحقیقات علمی بکار می‌رود. بویژه ، در مرحله جمع آوری اطلاعات ، آمار راهنمای محقق در انتخاب روشها و وسایل مناسب برای جمع‌آوری داده‌های اطلاعاتی است. در مراحل بعد از گرد آوری داده‌ها ، نیاز بیشتری به روشهای آماری وجود دارد.
انواع آمار
آمار توصیفی
آن دسته از روشهای آماری که با تخلیص و توصیف ویژگیهای برجسته داده‌ها سروکار دارند، در مبحث آمار توصیفی قرار می‌گیرند. برخلاف گذشته ، امروزه آمار توصیفی فقط قسمت کوچکی از حوزه فعالیتهایی است که تحت پوشش موضوع آمار قرار می‌گیرند.
آمار استنباطی
در زمان حاضر ، قسمت عمده موضوع آمار عبارت است از کسب اطلاعات با انجام محاسباتی روی داده‌ها و ارزیابی معلومات تازه‌ای که از این اطلاعات بدست می‌آید. این قسمت از قلمرو آمار استنباطی و روشهای مربوط به آن را استنباط آماری می‌نامند. استفاده از این روشها پایه‌ای برای استدلال بدست می‌دهد تا بتوانیم واقعیات مشاهده شده را بطور منطقی تعبیر نماییم، تعیین کنیم که این واقعیات تا چه حدی مدل مفروضی را تایید ، یا آن را نقض می‌کنند و پیشنهادهایی برای اصلاح نظریه موجود ، و یا شاید طرح‌ریزی تحقیقات دیگری ارائه دهیم.
جامعه و نمونه
جامعه آماری
عبارت است از مجموعه کامل اندازه‌های ممکن یا اطلاعات ثبت شده از یک صفت کیفی ، در مورد گردآوردن کامل واحدها ، که می‌خواهیم استنباطهایی راجع به آن انجام دهیم. جامعه ، آماج تحقیق است، و منظور از عمل گردآوری داده‌ها استخراج نتایج درباره جامعه می‌باشد.
نمونه
نمونه‌ای از یک جامعه آماری ، مجموعه اندازه‌هایی است که عملا در جریان یک تحقیق گردآوری می‌شود.
تفاوت جامعه و نمونه
برخلاف معنای معمولی کلمه جامعه ، این اصطلاح در آمار به معنای مجموعه‌ای از موجودات زنده نیست. جامعه آماری گردآورده‌ای از اعداد است که اعداد مزبور عبارت‌اند از اندازه‌های مربوط به یک صفت مشخصه برای تمام واحدهایی که آماج تحقیقی را تشکیل می‌دهند. این صفت ممکن است به جامعه انسانی مربوط باشد یا نباشد. نمونه نیز جزئی از این جامعه نامتناهی است. در حالی که جامعه آماری (حتی اگر وجود خارجی نداشته باشد) به عنوان مجموعه ثابتی از اعداد در نظر گرفته می شود.
هدفهای اصلی آمار
•    انجام استنباط درباره جامعه ، از طریق تجزیه و تحلیل اطلاعات موجود در داده‌های نمونه‌ای.
•    سنجش میزان عدم حتمیتی که در این استنباطها وجود دارد. عملی که برای رسیدن به هدفهای فوق اهمیت دارد. عبارت است از طرح ریزی فرایند و دامنه نمونه گیری بطوری که مشاهدات مبنایی برای استخراج استنباطهای معتبر تشکیل می‌دهند.
ارتباط متقابل آمار با سایر علوم
وظیفه اولیه آمار که صرفا از جمع آوری و نمایش داده‌ها بود، کاملا تغییر کرده است و نقش جدید آن ، فراهم آوردن ابزارهایی تحلیلی است که با استفاده از آنها بتوان داده‌ها را بطور موثر جمع آوری کرد و از آنها معانی لازم را بیرون کشیده و تفسیر نمود با استفاده از مفاهیم و روشهای آماری می‌توان از روی نمونه ، نتیجه‌گیریهای معتبری در مورد جامعه بدست آورد و علم آمار در تمام آن دسته از فعالیتهای بشری که در آنها اثبات ادعاها و طبقه بندی اطلاعات مبتنی بر شواهد تجربی است، حضور دارد.
کاربرد آمار
کاربرد روشهای آماری در قلمروهای گوناگون از علوم انسانی ، علوم مهندسی ، رشته‌های علمی جدیدی پدید آورده است که در ارتباط متقابل با آمار هستند. نظیر آمار زیستی ، روان‌سنجی ، آمار مهندسی ، آمار بازرگانی ، اقتصاد سنجی و جمعیت شناسی. به علاوه علم آمار در رشته‌های بسیار دیگری که هنوز از ترکیب آنها با آمار شاخه‌هایی با اسامی خاص پدید نیامده، از قبیل علوم سیاسی ، هواشناسی و محیط شناسی نقش عمده‌ای ایفا می‌کند

توزیعهای آماری

برای تعیین توزیعهای آماری لازم است دو نوع فضای احتمال تعریف شود:
۱- فضای نمونه‌ای را که تعداد عنالصر آن متناهی یا بطور شمارش پذیر نامتناهی باشد، فضای نمونه گسسته گوییم.

۲- وقتی فضای نمونه شامل تمام اعداد متعلق به یک فاصله باشد، آن را فضای نمونه پیوسته گوییم.

انواع توزیعهای احتمال
۱-    توزیع احتمال یک متغیر تصادفی گسته ، یا بطور خلاصه ، توزیع یک متغر تصادفی عبارت است از فهرست مقادیر Xi از متغیر تصادفی X همراه با احتمال منسوب به هر یک از این مقادیر ، (f(xi) = P(X=Xi. اغلب می توان به جای استفاده از یک فهرست مفصل، از یک فرمول استفاده کرد.
۲- تابع چگالی احتمال (f(x ، توزیع احتمال یک متغیر تصادفی پیوسته را توصیف می‌کند و دارای خواص زیر است.
الف) مساحت کل زیر منحنی چگالی برابر با یک است.
ب) مساحت زیر منحنی چگالی بین b,a مساوی است با (P(a≤x≤b
ج) (f)x مثبت یا صفر است.
انواع توزیعهای احتمال گسسته
امتحان برنولی (موفقیت شکست)
در اینجا تکرارهای متوالی یک آزمایش یا مشاهده را مورد بررسی قرار می‌دهیم و هر تکرار را یک امتحان می‌نامیم.
به علاوه فرض می‌کنیم که برای هر امتحان فقط دو برآمد ممکن وجود دارد. که یکی از آنها را موفقیت و دیگری را شکست می‌نامند بر این تاکید شده باشد که آنها تنها برآمدهای ممکن‌اند.
ویژگیهای امتحان برنولی
الف) هر امتحان به یکی از دو برآمد ممکن می‌انجامد که در اصطلاح فنی موقعیت و شکسیت نامیده می‌شوند.
ب) برای تمام امتحانها ، احتمال موفقیت p ، یکی است. بنابراین احتمال شکست برای هر امتحان q=1-p است که آن را با q نشان می‌دهید، بطوری که p+q=1
ج) امتحانها مستقل از یکدیگرند. احتمال موفقیت در یک احتمال با داشتن هر مقدار اطلاعات از برآمدهای سایر احتمالها ، تغییر نمی‌کند.
د) احتمالهای برنولی به صورت P(X=x) = pxq1-x تعریف می شود. دارای میانگین p (احتمال موفقیت) و واریانس pq (احتمال موفقیت در احتمال شکست) می‌باشد.
توزیع دو جمله‌ای
در حالتی که n امتحان مرکدر برنولی (n عدد ثابت) انجام می‌شوند و احتمال موفقیت در هر امتحان p است. توزیع دو جمله‌ای عبارت است از تعداد موفقیتهای در n امتحان.
توزیع دو جمله‌ای را به صورت
px(1-p)1-x (ترکیب x شیء از n شیء) = (P(X=x) = b(x;n;p برای تمایز n,…,2,1,0 تعریف می‌شود. اصطلاح توزیع دو جمله‌ای از قضیه مهمی در جبر به نام قضیه بسط دو جمله‌ای ، که مربوط است به فرمول بسط a+b) n) گرفته شده است توزیع دو جمله‌ای دارای میانگین np (تعداد موفقیتهای در n امتحان) و واریانس npq)تعداد موفقیتها در n امتحان ضرب در احتمال شکستها) می‌باشد.



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

آشنایی با ماتریسها

3,586

بازدید

آشنایی با ماتریسها ۵٫۰۰/۵ (۱۰۰٫۰۰%) ۱ امتیاز
مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله ی کار را گرفتند تا به امروز رسید که بدون اغراق می توان گفت در هر علمی به گونه ای با ماتریس ها سروکار دارند. یکی از نقش های اصلی ماتریس ها آن است که آنها ابزار اساسی محاسبات عملی ریاضیات امروز هستند، درست همان نقشی که سابقاً اعداد بر عهده داشتند. از این نظر می توان گفت نقش امروز ماتریس ها همانند نقش دیروز اعداد است. البته، ماتریس ها به معنایی اعداد و بردارها را در بر دارند، بنابراین می توان آنها را تعمیمی از اعداد و بردارها در نظر گرفت. در ریاضیات کاربردی ماتریس ها از ابزار روز مره هستند، زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با دستگاه معادلات خطی است که در نتیجه ماتریس ها وارد کار می شوند. اما، مشکلی اصلی در ریاضیات کابردی این است که ماتریس های ایجاد شده، بسیار بزرگ هستند و مسئله اصلی در آنجا کار کردن با ماتریس های بزرگ است. از جنبه نظری، فیزیک امروزی که فیزیک کوانتوم است، بدون ماتریس ها نمی توانست به وجود آید. هایزنبرگ – اولین کسی که در فیزیک مفاهیم ماتریس ها را به کار برد- اعلام کرد «تنها ابزار ریاضی که من در مکانیک کوانتوم به آن احتیاج دارم ماتریس است.» بسیاری از جبرها مانند جبر اعداد مختلط و جبر بردارها را با ماتریس ها بسیار ساده می توان بیان کرد. بنابراین با مطالعه ماتریسها، در واقع یکی از مفیدترین و در عین حال جالبترین مباحث ریاضی مورد بررسی قرار می گیرد.
تعریف ماتریس: اگر بخواهیم مانند کیلی، ماتریس را تعریف کنیم، باید گفت هر جدول مستطیلی که دارای تعداد سطر و ستون است و در هر خانه آن یک عدد وجود دارد یک ماتریس است. به عبارت دیگر هر آرایشی از اعداد مانند مثالهای زیر را ماتریس می گویند.
اگر ماتـریس       را A بنامیـم، در این صورت ماتـریس ] ۱۵و۱۰ و ۱-[ را سطـر اول و ] ۱۹و۷ و۵[ را سطر دوم و  ،      ،      را به ترتیب ستون اول، ستون دوم، ستون سوم A گویند. ماتریس A را که دارای دو سطر و ستون است یک ماتریس دو در سه (۲و۳) می گویند. اصطلاحاً می گوییم A از مرتبه ۲ در ۳ است. (نوشته می شود ۳×2). بنابراین ماتریس ] ۷و۵ و۱۲[ B= یک ماتریس ۴×1 و ماتریس C یک ماتریس ۳×3 است.
به اعداد یا اشیاء واقع در جدول ماتریس درایه های آن ماتریس می گویند. درایه های هر ماتریس در جا ومکان مشخصی قرار دارند. مثلاً در ماتریس     درایه ۳ در سطر اول و ستون اول است. همچنین درایه سطر دوم، ستون سوم عدد ۶ است. به طور کلی اگر درایه های سطر I ام ستون jام را با aij نشان دهیم؛ داریم
… و ۵=۱۲a    2=22a        3=11a
به طور کلی یک ماتریس دلخواه ۳×2 را بصورت زیر نمایش می دهیم:
اغلب برای سهولت، به جای نمایش ماتریس به صورت فوق، آن را با نماد ۳*۲[aij]نشان می دهند که در آن aij را درایه یا عنصر عمومی ماتریس ۳*۲[aij] گویند. به طور کلی برای ساختن انواعی از ماتریس های دیگر می توانیم به جای آن که درایه های ماتریس را از اعداد حقیقی انتخاب کنیم، درایه ها را از اعداد مختلط عناصر یک میدان، توابع و یاحتی ماتریس ها انتخاب کنیم.
در حالت کلی یک ماتریس m*n بصورت A=[aij]m*n عبارت است از:

ماتریس های مربع: اگر در یک ماتریس تعداد سطرها و ستون ها مساوی باشد، آن را ماتریس مربع گویند. در این حالت اگر یک ماتریس مانند A دارای مرتبه ی n*n باشد، گوییم A یک ماتریس مربع مرتبه n است. مجموعه ماتریس های مربع مرتبه ی n را با      یا      نشان می دهند.
درایه های ۱۱a و ۲۲a و… و anx یک ماتریس مربع مرتبه n باشد، مجموع درایه های قطر اصلی A را اثر ماتریس A می نامند و با نماد tr(A) نشان می دهند. بنابراین:
در واقع اثر ماتریس، تابعی از مجموعه ماتریسهای مربع در مجموعه اعداد حقیقی است، یعنی
مثال: اگر         درایه های قطر اصلی A عبارتند از ۴- و ۶- بنابراین
۲=۶+۴-tr(A)
ماتریس سطری: ماتریس هایی را که فقط یک سطر دارند ماتریس سطری یا بردار سطری می نامند. مثلاً ماتریس     ی ماتریس سطری *n1 است.
ماتریس ستونی: ماتریسی است که فقط دارای یک ستون باشد. هر ماتریس ستونی را بردار ستونی نیز می گویند. مثلاً ماتریس زیر یک ماتریس ستونی ۱×m است.
ماتریس صفر: ماتریسی است که همه درایه هایش صفر باشد. بنابراین ماتریس     ماتریس صفر است. هرگاه:
ماتریس صفر از مرتبه m*n را با نماد Qm*n نشان می دهند.
مثال:
اگر مرتبه ماتریس صفر، داده شده باشد و یا از طریق متن، مرتبه آن معلوم باشد، در اینصورت برای سهولت ماتریس صفر را با و یا حتی با O نشان می دهند.
تساوی ماتریس ها: هرگاه در ریاضیات اشیا جدیدی معرفی شوند، باید مشخص شوند که چه وقت دوتای آنها با هم مساویند. مثلاً در مجموعه اعداد گویا دو عدد دو سوم و چهار ششم را، علیرغم اینکه یک شکل نیستند، مساوی می نامند. در مورد اعدادگ ویا، دو عدد         را مساوی می گویند. هر گاه ad=bc تساوی ماتریسها نیز به صورت زیر تعریف می شود.
تعریف: دو ماتریس     و    مساویند هرگاه هم مرتبه باشند و درایه های نظیر در دو ماتریس (یعنی درایه های هم موضع) مساوی باشند. به عبارت دیگر، دو ماتریس    و    مساویند هر گاه داشته باشیم:
مثال:        و    تساوی A و B به این معناست که
جمع ماتریس ها: مجموع دو ماتریس    و    ماتریسی است که با نماد A+B نشان می دهیم و به صورت زیر تعریفق می شود.
توجه کنید که برای جمع دو ماتریس می بایست دو ماتریس هم مرتبه باشند. بنا به تعریف اگر A+B+C=[Cij] در اینصورت
برای این که تعریف فوق روشن تر شود، شکل گسترده آن را در حالت ماتریس های ۲×2 در زیر می آوریم
تذکر: با توجه به تعریف، جمع دو ماتریس A+B وقتی تعریف شده که A و B هم مرتبه باشند. در این صورت A و B را ماتریس های قابل جمع می گویند.
تعبیر عمل جمع دو ماتریس به مثابه یک ماشین: عمل جمع را می توان به منزله ماشینی تصور کرد که دارای دو ورودی و یک خروجی است (مطابق شکل)، به طوری که اگر دوماتریس مثلا۲×2 به آن بدهیم از خروجی آن یک ماتریس ۲×2 بیرون می اید.
قرینه یک ماتریس: اگر A یک ماتریس m*n باشد، قرینه A ماتریسی است از همان مرتبه که با نماد –A نشان می دهند و اگر     در این صورت بنا به تعریف
مثال: قرینه ماتریس    عبارت است از    و ملاحظه می شود که
خواص جمع ماتریس ها
الف) جمع ماتریسها خاصیت شرکت پذیری دراد
اثبات: فرض کنید    و    و    سه ماتریس هم مرتبه دلخواه باشند، نشان می دهیم
(A+B)+C=A+(B+C)
قبل از اثبات لازم است معنی عبارات (A+B)+C و A+(B+C) را بدانیم. در این مورد از تعبیر عمل جمع به مثابه عمل یک ماشین کمک می گیریم. از آنجا که ماشین جمع دو ورودی دارد نمی توان یکباره سه ماتریس را با هم جمع کرد، از این رو برای جمع سه   ماتریس A و B و C می توان ابتدا A و B را به ماشین داده و A+B را به دست آورد. سپس A+B و C را به ماشین می دهیم تا (A+B)+Cبه دست آید.
عبارت A+(B+C) به این معناست که نخست B و C را وارد ماشین کرده ایم و B+C را به دست آورده ایم و سپس (B+C)+A را بیرون می دهد.
حال می خواهیم نشان دهیم که در هر صورت ماتریس های بدست آمده مساویند برای این کار قرار می دهیم
درایه سطر I ام ماتریس =D+C درایه سطر I ام ستون j ام ماتریس (A+B)+C
ب) ماتریس صفر عضو بی اثر مجموعه ماتریس ها نسبت به عمل جمع است.
اثبات: فرض کنید     یک ماتریس دلخواه باشد، نشان می دهیم.
که در آن ماتریس صفر هم مرتبه با A است.
اثبات مشابه اثبات فوق است.
ج) هر ماتریس نسبت به عمل جمع دارای متقابل است.
دیدیم که قریبنه هر ماتریس A=[aij]، ماتریسی هم مرتبه با آن به صورت –A[-aij] است. در واقع –A متقابل A نسبت به عمل جمع است، زیرا قبلاً نشان دادیم



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

سرگذشت ریاضیات

1,311

بازدید

سرگذشت ریاضیات ۴٫۲۵/۵ (۸۵٫۰۰%) ۴ امتیازs
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیله شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن ۶۰ بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود ۲۵۰۰ سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام ساده هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به ۱۸۰۰ سال قبل از میلاد است شامل چند رساله درباره علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رساله پاپیروس آهس است که درسال ۱۸۶۸ توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
 قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود.
نخستین دانشمند معروف یونانی طالس ملطلی (۶۳۹_۵۴۸ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.
در اوایل قرن ششم ق.م. فیثاغورث (۵۷۲_۵۰۰ قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در ۴۹۰ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می‌دهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد.
در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد.
پس از مرگ این فاتح مقتدر در ۳۲۳ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانه بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند.
 در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای ۱۶۱تا ۱۲۶ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.
هیپارک نخستین کسی بود که تقسیم‌بندی معمولی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را نیز به ۶۰ قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را می‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.
در سال ۴۷ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال ۳۰ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد. در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند. بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدوره کامل مثلثاتکروی و مستقیم‌الخط و توضیح و محاسبه نمودهای حرکت بومی است. این کتاب را درسال ۸۲۷ از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند.
منلائوس که در اواخر قرن اول میلادی در اسکندریه می‌زیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس درباره چهارضلعی محاطی در آن ذکر شده است.
پاپوس که دوره زندگانیش در حدود ۳۵۰ میلادی بوده است دارای کتابی است به نام «مجموعه ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش می‌بود و بر آن افزود. مسأله معروف پاپوس که در همه کتابهای هندسه ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت داده‌اند.
در این احوال هندوستان به منزله یک مرکز جدید روشنفکری توسعه می‌یافت و چنین به نظر می‌رسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانی‌ها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود وشامل بعضی مقدمات علم طب یعنی همانقدر که برای ساختن مشروبات مقدس کفایت می‌کردو مختصری از علوم نجومیعنی درست همان اندازه که برای تشکیل تقاویم مذهبی مورد نیاز است و اندکی هندسه، مرکب از بعضی طرق عملی که برای ساختن مسجد و محراب لازم است بیش نبود.
در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:
آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده می‌شود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا «لیلاواتی» گذارده بودندکه معنی دلبری و افسونگری دارد! با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.
در سال ۶۲۲م که حضرت محمدصلی الله علیه و آله وسلماز مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سده هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در ۶۳۲ به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند و این توسعه‌طلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند. در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بین‌المللی گردید.
از ریاضی‌دانان بزرگ اسلامی یکی خوارزمیمی‌باشد که در سال ۸۲۰ به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.
وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادله درجه اولرا بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر می‌نامیم، انجام داده است.
دیگر ابوالوفا (۹۹۸_ ۹۳۸) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(۱۰۳۹_ ۹۶۵) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوماست.
قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاکت و بدبختی بسر می‌بردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمی‌یافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار می‌رفت اصلاح کرد. این دستگاه همان چرتکه بود.
برجسته‌ترین نامهائی که در این دوره ملاحظه می‌نمائیم، در مرحله اول لئوناردیوناکسی (۱۲۲۰_۱۱۷۰) ریاضی‌دان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی می‌باشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.
در قرن پانزدهم ترقی فنی، پیشرفت علوم نظری را تحت‌الشعاع خود را قرار داد. اختراع چاپ در سال ۱۴۴۰ بوسیله گوتنبرگ سبب آن شد که تعداد کتاب در جهان با سرعتی صاعقه‌آسا رو به افزایش نهد و زمینه برای مطالعه منابع علمی گذشته که کم و بیش فراموش شده بود مهیا گردد.
در قرون پانزدهم و شانزدهم دانشمندان ایتالیائی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. تارتاگلیا و کاردان در ایتالیا سنن ریاضی‌دانان عهد عتیق را از سر گرفتند.
رژیمن تانسوس آلمانی که از جمله بزرگترین منجمان این دوره است کتاب قدیمی‌ترین کتاب جالبی درباره مثلثات نگاشت. این کتاب قدیمی‌ترین کتاب کامل مثلثات است که در مغرب‌زمین انتشار یافت. همچنین ژان‌ورتر از اهالی نورنبرگ آلمان که به هندسه قدما به خوبی مسلط بود راه‌حل عالمانه و بدیعی از یکی از مسائل ارشمیدس که موضوع آن تقسیم کره به کمک صفحه به نسبت معلومی بود بدست داد. وی در تمام قسمتهای ریاضی بخصوص مثلثات تألیفات بسیار دارد.
ریاضی‌دانان فرانسوی در اوایل قرن شانزدهم عموماً مادون ایتالیائی‌ها بودند. مشهورترین آنها یکی اورنس فین است که در هندسه بویژه در موردتربیع دایره اکتشافات تازه‌ای کرد. دیگر پی‌یرلارامه موسوم به راموس است که بیشتر از لحاظ آثار فلسفی خود شهرت یافت. با وجود این به ریاضیات نیز علاقه فراوان نشان داد تا جائی که کتابی در ستایش ریاضیات و کتاب دیگری در مقدمات حسابو هندسهتألیف کرد. بالاخره کاندال را باید نام ببریم که در مطالعات مخصوص به چند وجهی‌ها تخصص یافت.
در اواخر قرن شانزدهم در فرانسه شخصی بنام فرانسواویت (۱۶۰۳_۱۵۴۰م) به پیشرفت علوم ریاضی خدمات ارزنده‌ای نمود. وی یکی از واضعین بزرگ علم جبر و مقابله جدید و در عین حال هندسه ‌دان قابلی بود. مثلثات جدید فقط متکی‌بر زحمات اوست. هر چند بسیاری از قدما و دانشمندان جدید باری پایه‌گذاری اساس آن زحماتی کشیده‌اند، اما ترقی آن کاملاً مرهون وی است. او اولین کسی است که مثلث کروی را با معلوم بودن سه ضلع آن حل کرد و در عین حال نخستین ریاضی‌دانی است که برای حل مسأله ترسیم دایره مماس بر سه دایره دیگر راه‌حل هندسی بدست داد و ریشه‌های معادله درجه چهارم را ساخت. کشور دانش خیز هلند نیز در اواخر این قرن مهد آزادی و یکی از مراکز مهم علمی جهان شده بود. آدرین‌رومن و سپس آدرین متیوس مقدار تقریبی عدد پی را محاسبه کردند و یکی دیگر از هموطنان آنان بنام وان سولن تا ۳۰ رقم اعشار آن را بدست آورد.
همچنین انگلستان که در آغاز قرن شانزدهم برای پیشرفت علم جبرکوشیده بود اینک با کشف لگاریتم بوسیله جان نپر تئوری فن محاسبه عددی را یک قدم قطعی بجلو برد. کوپرنیک(۱۵۴۳_۱۴۷۳) منجم بزرگ لهستانی در اواسط قرن شانزدهم در کتاب مشهور خود بنام «درباره دوران اجسام آسمانی» که همزمان با مرگش انتشار یافت تصویری از منظومه شمسی بدست داد که امروز هر دانش آموزی با آن آشناست:
۱٫    مرکز منظومه شمسی، خورشید است نه زمین.
۲٫    در حالی که ماه بگرد زمین می‌چرخد، سیارات دیگر، همراه با خود زمین بگرد خورشید می‌چرخند.
۳٫    زمین در هر ۲۴ ساعت یکبار حول محور خود می‌چرخد نه کره ستاره‌های ثابت.
پس از مرگ کوپرنیک در قلب اروپا، در کشور دانمارک مردی بنام تیکو براهه متولد شد که کارهای او پایه و اساس انقلاب قریب الوقوع نجوم گردید. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایره‌های هم‌مرکز وفق نمی‌دهد. از آنجا که تیکو براهه بیشتر به رصدهای مستقیم و اندازه‌گیری سرگرم بود، هیچ کوشش برای تجزیه و تحلیل نتایج خود انجام نداد و این کار به یوهان کپلر که در سال آخر زندگی تیکو براهه دستیار وی بود محول گشت.
پس از سال‌ها کار، وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل نمی‌پیمایند بلکه همه آنها بر روی بیضی‌هایی حرکت می‌کنند که خورشید در یکی از دو کانون آنها قرار دارد. همچنین وی در نخستین‌بار اصل ماند (اصل جبر) را در مکانیک حدس زد که بعدها بوسیله گالیله صورت تحقیق یافت.


نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...

ریاضیدانان مسلمان

5,446

بازدید

ریاضیدانان مسلمان ۴٫۲۰/۵ (۸۳٫۹۰%) ۴۱ امتیازs

ریاضی دانان بزرگ

ابوالوفا محمد بن یحیی بن اسماعیل بوزجانی

یکی از مفاخر علمی ایران و از بزرگترین ریاضیدانان و منجمان دوره اسلامی است در روز چهارشنبه اول ماه رمضان ۳۲۸ هجری قمری در شهر بوزجان(تربت جام فعلی) چشم به جهان گشود. وی از همان سنین کودکی به خاطر هوش سرشار، تیز بینی و کنجکاویش مورد توجه خانواده و اقوامش قرار گرفت ابوالوفا علم هندسه و عدد را نزد عموی خود ابوعمر و مغازلی و دایی خود ابوعبدالله محمد بن عنبسه فرا گرفت. دورانی که ابوالوفا در آن می زیست شرایط مناسبی برای رشد او فراهم شد. استفاده از محضر استادان، کتابها و مراکز علمی گوناگون، امکان پر گشودن ذهن را برای او فراهم ساخت وی در دوران حکومت سلسله آل بویه زندگی می کرد. ابوالوفا در سن ۲۰ سالگی به عراق مهاجرت کرد وتا پایان عمر در بغداد زندگی کرد. او به یاری همکارانش در رصد خانه بغداد به رصد پرداخت او یکی از مشهورترین منجمان زمان خود بوده است. وی گاهی در کارهای علمی با شخص معاصر خود ابوریحان بیرونی به وسیله مکاتبه شریک مساعی داشته است. او سنت گذشتگان را مبنی بر تلفیق کار علمی همراه با نگارش شرحهایی بر آثار قدما ادامه داد و شرح هایی بر آثار کسانی چون اقلیدس و دیونانتوس نوشت.
بوزجانی روشهای محاسبه ای را که کارمندان و بارزگانان در کشورهای شرق اسلامی در کارهای روزانه انجام می دادند آنها را به صورت منظم و مدون در آورد.
از کارهای جالب دیگر بوزجانی، حل یک مساله جالب است که در آن از قضیه فیثاغورث استفاده نشده است. تقسیم یک مربع به تعداد معلومی از مربع های کوچک تر یا تشکیل یک مربع بزرگ با تعداد معینی از مربع های کوچک  به وسیله پهلو به پهلو قرارر دادن آنها از کارهای دیگری است که او انجام داده است.
بوزجانی در مجالس علمی زیادی شرکت داشت که  حتی عمر خیام هم در آثار خود از مسائل ریاضی مختلفی یاد می کند که دانشمندانی مانند: ابوسهل کوهی، ابوالوفای بوزجانی و ابو حامد صاغانی در دربار عضد الدوله سخت به آن مشغول بوده اند.
تا کنون در غرب پژوهش های فراوانی درباره آثار بوزجانی انجام شده است. جنجال برانگیز ترین پژوهش مربوط به«سدیو» ریاضی دان و ستاره شناس فرانسوی است. او در این پژوهش ادعا می کند که بوزجانی ۹ قرن پیش از«تیکو براهه» منجم دانمارکی در اختلاف سوم حرکت ماه را کشف کرده است» از جمله آثار وی در زمینه ریاضی می توان از:
۱- کتاب اعمال هندسی      2- مجسطی  3- کتاب حساب     4- رساله در ترکیب اعدادالوفق در مربعات  5- جواب نامه بوزجانی  به ابوعلی حبوبی در باره محاسبه مساحت مثلث بدون به کاربردن ارتفاع آن    6- المدخل آلی صناعه الاثحاطیقی
۷- رساله فی النسبه و التعریفات    8- رساله فی جمع اضلاع المربعات و المکعبات
به طور کلی مهمترین آثاری وی شامل: کتاب فی یحتاج الیه الصانع من الاعمال الهندسیه و کتاب المجسطی یا کتاب الکامل است
سرانجام ابوالوفا بوزجانی در سال ۳۸۸ هجری قمری در بغداد چشم از جهان فرو بست.
 
 
ابن سینا
شیخ الرئیس حجه الحق ابوعلی حسین بن عبدالله حسین بن علی بن سینا مشهور به ابن سینا که در سال ۳۷۰ هجری قمری در افشنه نزدیک بخارا متولد شده و در آنجا به کسب علم پرداخت. از تحصیلات مقدماتی از حمله ادبیات، قرآن، فقه و حساب را نزد پدر آموخت و برای فراگرفتن منطق و هندسه و نجوم نزد ابوعبدالله ناتلی رفت. او از همان کودکی بسیار خارق العاده بود و دانش زمان خود را به سرعت فراگرفت. ابن سینا تا چهارده سالگی پیش تمام استادان بخارا رفت و هرچه آنها می دانستند، فراگرفت. در دوره پادشاهی نوح بن منصور، هفتمین امیر سامانی، بوعلی شانزده سال داشت که پدر و مادرش یکی پس از دیگری با فاصله کمی از دنیا رفته بودند. بوعلی درس طب را نزد ابومنصور نوح قمری می خواند. او در سن شانزده سالگی به طبابت پرداخت. وی پس از درمان کردن نوح بن منصور سامانی به دربار او راه یافت. شهرت طبابت ابن سینا در شهر پیچید و مریض هایی که از معالجه نا امید می شدند نزد او می آمدند و شفا می یافتند و این شهرت روز افزون سبب شد تا آوازه او به گوش سلطان محمود نیز برسد. مامور او را دعوت کرد تا به غزنین برود، اما ابن سینا به دلیل خشونت و تعصب دینی سلطان محمود دعوت او را رد کرد و از خوارزم فرار کرد. در آن زمان به او لقب بوعلی سینا دادند به علت زنده نگه داشتن نام پدر بزرگ (علی) و نام جدش (سینا).
ابن سینا پس از فرار از خوارزم مدتی را  در ترکستان و خراسان به سر برد و سپس وارد گرگان شد و  در آنجا به طبابت پرداخت. سپس به ری رفت و در آنجا مجدالدوله دیلمی را که به بیماری مالیخولیا مبتلا شده بود، درمان کرد. او در همدان مقام وزارت شمس الدوله را به دست آورد و از حمایت علاالدوله کاکویه برخوردار گشت.
در مدت نه سالی که ابن سینا در گنگانج به سر می برد کتابهای زیادی نوشت از جمله رساله ای در مورد فن موسیقی، قصیده ای در منطق، رساله ای درباره نبض کتابی مربوط به فلسفه و رساله ای درباره افسردگی و علل آن. در این مدت ابوریحان بیرونی هم در دربار خوارزم بود. ابن سینا و بیرونی مباحثات زیادی با هم داشتند.
سرانجام ابوعلی سینا در همدان در سال ۴۲۸ هجری قمری در گذشت. از جمله معرفترین آثار او می توان به دانش نامه علایی که به  زبان فارسی است و همچنین مهم ترین اثر فلسفی او به نام شفا که شامل چهار بخش (منطقی، طبیعیات، ریاضیات و مابعد الطبیعه) است را نام برد. این اثر و کتاب بعدی به نام قانون که دایره المعارف طبی است هر دو به زبان عربی می باشند. از جمله کتاب هایی  که در مورد علم ریاضیات نوشته است کتاب «رساله الی ابوسمل المسیحی فی الزاویه» است. به طور کلی ابن سینا از دانشمندان علوم ریاضی، هندسه، نجوم، منطق، فلسفه و طب بود و وی از جمله دانشمندانی بود که هم در زمان خودش و هم سال ها و قرن ها پس از مرگش مورد احترام همه مردم و حکما بوده است. از جمله امام خمینی (ره) که در مورد ابن سینا در شرح حدیث از امام محمد باقر(ع) به عنوان رئیس فلاسفه اسلام یاد می کند و نیز در کتاب چهل حدیث خود در شرح حدیثی از امام جعفر صادق(ع) از وی به عنوان امام فن و فیلسوف بزرگ اسلام نام برده اند.  
 
خوارزمی
ابو جعفر محمد بن موسی خوارزمی یکی از دانشمندان بزرگ ایرانی، منجم، ریاضی دان و جغرافیدان در سال ۱۸۵ هجری قمری در نزدیکی بغداد پا به عرضه وجود نهاد.
او بزرگترین عالم زمان و عصر خویش است و اجدادش اهل خوارزم بودند اما به احتمال زیاد خودش از اهالی قطر بولی منطقه ای نزدیک بغداد بود.
او در زمینه زیاضیات و نجوم مهارت بسزایی داشت. وی در این ریاضی دان دوره اسلامی است که آثارش به دست ما رسیده است.  وی در زمان خلافت مامون عضو دارالحکمه بود که گروهی از دانشمندان بغداد به سرپرستی مامون قرار داشتند و مورد توجه خلیفه وقت بود. او کتاب جبر و مقابله خود را که درباره ریاضیات مقدماتی است و اولین و اولین کتاب جبر است که به عربی نوشته شده آن را به مامون تقدیم کرد.
کتابهای او در زمینه جبر، حساب، نجوم که به زبان عربی نوشته شد هم در کشورهای اسلامی و هم در کشورهای اروپایی تاثیر بسزایی داشت.
کتابهای دیگر اوکه درباره ارقام هنری است بعد از آن که در قرن دوازدهم به زبان لاتینی منتشر شد تاثیر خاص بر روی اروپائیان گذارد و نام خوارزمی مترادف با هر کتابی که درباره حساب جدید بود فراگرفت و از همین جا اصطلاح جدید الگوریتم به فضای قاعده محاسبه رواج یافت.
از جمله کتابهای دیگر او و در زمینه ریاضی می توان مختصر من حساب الجبر و القابله، کتاب الجمع و التفریق و زیج را نام برد. وی سال ۲۳۳ هجری قمری درگذشت.
 



نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...



هو الکاتب


پایگاه اینترنتی دانلود رايگان كتاب تك بوك در ستاد ساماندهي سايتهاي ايراني به ثبت رسيده است و  بر طبق قوانین جمهوری اسلامی ایران فعالیت میکند و به هیچ ارگان یا سازمانی وابسته نیست و هر گونه فعالیت غیر اخلاقی و سیاسی در آن ممنوع میباشد.
این پایگاه اینترنتی هیچ مسئولیتی در قبال محتویات کتاب ها و مطالب موجود در سایت نمی پذیرد و محتویات آنها مستقیما به نویسنده آنها مربوط میشود.
در صورت مشاهده کتابی خارج از قوانین در اینجا اعلام کنید تا حذف شود(حتما نام کامل کتاب و دلیل حذف قید شود) ،  درخواستهای سلیقه ای رسیدگی نخواهد شد.
در صورتیکه شما نویسنده یا ناشر یکی از کتاب هایی هستید که به اشتباه در این پایگاه اینترنتی قرار داده شده از اینجا تقاضای حذف کتاب کنید تا بسرعت حذف شود.
كتابخانه رايگان تك كتاب
دانلود كتاب هنر نيست ، خواندن كتاب هنر است.


تمامی حقوق و مطالب سایت برای تک بوک محفوظ است و هرگونه کپی برداری بدون ذکر منبع ممنوع می باشد.


فید نقشه سایت


دانلود کتاب , دانلود کتاب اندروید , کتاب , pdf , دانلود , کتاب آموزش , دانلود رایگان کتاب

تمامی حقوق برای سایت تک بوک محفوظ میباشد

logo-samandehi