جستجو در تک بوک با گوگل!

بازدید
تکنیک های تقویت ریاضی
به جای حفظ کردن، ریاضی را بفهمید
اغلب افراد به جای دقت در درک و فهم راه حل مسائل ریاضی، سعی میکنند این راه حلها را حفظ کنند.
بازدید
پیدایش رسمی احتمال از قرن هفدهم به عنوان روشی برای محاسبه شانس در بازی های شانسی بوده است. اگرچه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازی های شانسی و حتی در تقسیم کار بین راهبان در مراسم مذهبی وجود داشته است و به علاوه شواهدی از به کارگیری این ایده ها در مسایل حقوق، بیمه، پزشکی و نجوم نیز یافت می شود. اما بسیار عجیب است که حتی یونانیان اثری از خود در رابطه با استفاده از تقارنی که در هندسه به کار می برده اند در زمینه احتمال یا اصولی که حاکم بر مسایل شانس باشد بجا نگذاشته اند.
بازدید
آیا مادر فرد، عضو همین خانوار است؟ (شماره ی ردیف مادر) …..
بازدید
بازدید
بازدید
برگی از خاطرات محقق و ریاضیدان جانباز جمشید واحدی:
فرزندان، بر خلاف تصور کسانی که ریشه ریاضی را از ریاضت به معنی سختی کشیدن می دانند بدانید که ریاضی ازریشه «روض» به وعنای ورزش ذهنی و نوعی لذت بردن است.
هنگامی که به دلیل قطع دست چپم در بیمارستان بستری بودم یکی از دوستانم به عیادتم امد و پرسید: آیا خداوند قادر است موجودی را خلق کند که نتواند ان را از بین ببرد؟ به او یک دفتر ۱۰۰ برگ و یک نقاله دادم و از او خواستم تافردای آن روز برایم یک «مثلث قائم الزاویه متساوی اللاضلاع » رسم کند. ایشان فردای آن روز نزدم آمد و گفت غیر ممکن است چنین مثلثی بتوان رسم کرد زیرا اگر زاویه ۹۰ درجه داشته باشد دیگر سه ضلع آن مساوی نخواهد بود و اگر سه ضلع آن مساوی باشد هر کدام از زوایا ۶۰ درجه خواهد شد و جمع این دو یعنی هم مثلث قائم الزاویه باشد و هم متساوی الاضلاع محال است.
به او گفتم: آیا شما چیزی غیر از این از من سوال کردید ، در سوال شما توانستن و نتوانستن هر دو با هم هستند و این جمع ضدین محال است. سپس به ایشان گفتم در کف دست راست ما عدد ۱۸ و در دست چپ ما عدد ۸۱ تغریباً به وضوح آشکار است و اختلاف آنها ۶۳=۱۸-۸۱ خواهد بود که سن وفات حضرت رسول (ص) می باشد و هم می دانیم که پیامبر در ۴۰ سالگی به پیامبری مبعوث شد وقرآن طی ۲۳ سال بر ایشان نازل گردید. حال به سوره توحید توجه کن. همه حرکتهای حروف در بالا قرار دارند ولی در کلمه (یلِد)در حرف (ل) حرکت در پایین قرار دارد. تعداد حروف سمت چپ حرف(ل) ۲۳ عدد و تعداد حروف سمت راست ان نیز ۲۳ عدد می باشد.
درقرآن آنجا که خداوند درباره افراق سخن می فرماید از کلمات ( کل فی فلک) استفاده شده است. که اگر حرف آنها را روی محیط یک دایره قرار دهیم از دو طرف ( کل فی فلک) خوانده می شود. آیا زیبا تر این می توان به مدار و دوران اشاره کرد و میبینید حتی خداوند هم ریاضیات را دوست دارد. ان را در کلامش به کار برده است.
دانستنیهای شیرین ریاضی:
آن وقتها من هم مثل بعضی ها از ریاضی متنفر بودم و ریاضی دانها را آدمهایی گوشه نشین و تنهایی می دانستم که چون حوصله فعالیت ندارند با عینک ته استکانیشان دائم سرشان در کتاب است تا با اعداد و ارقامی بی جان قانونی کشف کنند و قضیه ای بسازند.تا یک گرفتاری به گرفتاریهای ما دانش اموزان که مجبوریم قضیه های ساخته و پرداخته ایشان را حفظ کنیم اضافه کنند شاید ریشه این تنفر به سالهای قبل از دبستان برمی گشته که برادر بزرگم از سر لطف جمع و تفریق اعداد را به من یاد داد و من سالهای اول دبستان مجبور بودم در کلاسهای خشک و بی روح و خسته کننده ریاضی که هیچ چیز به جز جمع و تفریق دران مطرح نمی شد بنشینم بدون انکه مطلب جدیدی یاد بگیرم.
آنچه از آن سالها در خاطر دارم کلاسهای تاریک بود که نمی دانم چون درس ریاضی در ساعت اول تشکیل می شد هوا کاملاً روشن نشده بود یا هوا مثل دل من ابری بود. شاید هم هیچ کدام نبود . بله این تنفر من بود که همیشه کلاسهای ریاضی را تاریک می کرد. انگار هیچ کس ابتکاری، سوال نوی و حرف تازه ای نداشت.
اصلاً انگار ریاضیات جمع بود و تفریق. پرتقال فروش بود که گاهی جایش را با فروشنده کتاب و دفتر و مداد عوض می کرد.
بازدید
باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.
انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.
انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.
از این گفته ها میتوان به اهمیت تحصیل در رشته آمار و نیاز جامعه به فارغ التحصیلان این رشته پی برد.
گستره علم آمار
آمار مجموعهای از مفاهیم و روشهاست که در هر زمینه پژوهشی ، برای گرد آوری و تعبیر اطلاعات مربوط به آن و انجام نتیجه گوییها در شرایطی که عدم حتمیت و تغییر وجود دارد، بکار میرود.
دید کلی
بیشتر مردم با کلمه آمار ، به مفهومی که برای ثبت و نمایش اطلاعات عددی بکار میرود، آشنا هستند: تعداد بیکاران ، قیمت روزانه بعضی از سهام در بازار بورس ، کارمزد تحمل کالا بوسیله کشتی در ۱۵ سال گذشته مثالهایی از این مفهوماند. ولی این مفهوم با موضوع منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتا با وضعیتهای سروکار دارد که در آنها وقوع یک پیشامد بطور حتمی قابل پیش بینی نیست. استنتاجهای آماری غالبا غیر حتمیاند زیرا مبتنی بر اطلاعات ناکاملی هستند. معادل کلمه آمار در زبان انگلیسی statistics است که از لحاظ تاریخی از کلمه لاتین status مشتق شده است.
نقش آمار در زندگی روزمره
پی بردن به واقعیات امور از طریق گردآوری و تعبیر دادهها ، منحصر به پژوهشگران حرفهای نیست. این امر در زندگی روزمره همه مردم که میکوشند آگاهانه ، ناآگاهانه مسائلی را درباره جامعه ، شرایط زندگی ، محیط زندگی خود و کل دنیا درک کنند، معمول است. برای کسب اطلاع از وضع بیکاری ، آلودگی ناشی از ضایعات صنعتی ، اثر یک مسکن در رفع بیماری و سایر مسائل مورد علاقه در زندگی روزمره ، اطلاعات و ارقام را جمع آوری و آنها را تفسیر مینماییم یا کوشش میکنیم که تفسیرهای دیگران را بفهیم. بنابراین ، هر روز از طریق تجزیه و تحلیل ضمنی اطلاعات مبتنی بر واقعیات ، عمل کسب آگاهی انجام میگیرد.
نقش آمار در پژوشهای علمی
موضوع آمار عبارت است از هنر علم جمع آوری ، تعبیر و تجزیه و تحلیل دادهها و استخراج تعمیمهای منطقی در مورد پدیدههای تحت بررسی. با توجه به مراحل اساسی یک تحقیق علمی که عبارتند از: مشخص کردن هدف ، جمع آوری اطلاعات ، تجزیه و تحلیل دادهها و بیان یافتههای آشکار است که آمار بطور وسیعی در قلمرو تمام تحقیقات علمی بکار میرود. بویژه ، در مرحله جمع آوری اطلاعات ، آمار راهنمای محقق در انتخاب روشها و وسایل مناسب برای جمعآوری دادههای اطلاعاتی است. در مراحل بعد از گرد آوری دادهها ، نیاز بیشتری به روشهای آماری وجود دارد.
انواع آمار
آمار توصیفی
آن دسته از روشهای آماری که با تخلیص و توصیف ویژگیهای برجسته دادهها سروکار دارند، در مبحث آمار توصیفی قرار میگیرند. برخلاف گذشته ، امروزه آمار توصیفی فقط قسمت کوچکی از حوزه فعالیتهایی است که تحت پوشش موضوع آمار قرار میگیرند.
آمار استنباطی
در زمان حاضر ، قسمت عمده موضوع آمار عبارت است از کسب اطلاعات با انجام محاسباتی روی دادهها و ارزیابی معلومات تازهای که از این اطلاعات بدست میآید. این قسمت از قلمرو آمار استنباطی و روشهای مربوط به آن را استنباط آماری مینامند. استفاده از این روشها پایهای برای استدلال بدست میدهد تا بتوانیم واقعیات مشاهده شده را بطور منطقی تعبیر نماییم، تعیین کنیم که این واقعیات تا چه حدی مدل مفروضی را تایید ، یا آن را نقض میکنند و پیشنهادهایی برای اصلاح نظریه موجود ، و یا شاید طرحریزی تحقیقات دیگری ارائه دهیم.
جامعه و نمونه
جامعه آماری
عبارت است از مجموعه کامل اندازههای ممکن یا اطلاعات ثبت شده از یک صفت کیفی ، در مورد گردآوردن کامل واحدها ، که میخواهیم استنباطهایی راجع به آن انجام دهیم. جامعه ، آماج تحقیق است، و منظور از عمل گردآوری دادهها استخراج نتایج درباره جامعه میباشد.
نمونه
نمونهای از یک جامعه آماری ، مجموعه اندازههایی است که عملا در جریان یک تحقیق گردآوری میشود.
تفاوت جامعه و نمونه
برخلاف معنای معمولی کلمه جامعه ، این اصطلاح در آمار به معنای مجموعهای از موجودات زنده نیست. جامعه آماری گردآوردهای از اعداد است که اعداد مزبور عبارتاند از اندازههای مربوط به یک صفت مشخصه برای تمام واحدهایی که آماج تحقیقی را تشکیل میدهند. این صفت ممکن است به جامعه انسانی مربوط باشد یا نباشد. نمونه نیز جزئی از این جامعه نامتناهی است. در حالی که جامعه آماری (حتی اگر وجود خارجی نداشته باشد) به عنوان مجموعه ثابتی از اعداد در نظر گرفته می شود.
هدفهای اصلی آمار
• انجام استنباط درباره جامعه ، از طریق تجزیه و تحلیل اطلاعات موجود در دادههای نمونهای.
• سنجش میزان عدم حتمیتی که در این استنباطها وجود دارد. عملی که برای رسیدن به هدفهای فوق اهمیت دارد. عبارت است از طرح ریزی فرایند و دامنه نمونه گیری بطوری که مشاهدات مبنایی برای استخراج استنباطهای معتبر تشکیل میدهند.
ارتباط متقابل آمار با سایر علوم
وظیفه اولیه آمار که صرفا از جمع آوری و نمایش دادهها بود، کاملا تغییر کرده است و نقش جدید آن ، فراهم آوردن ابزارهایی تحلیلی است که با استفاده از آنها بتوان دادهها را بطور موثر جمع آوری کرد و از آنها معانی لازم را بیرون کشیده و تفسیر نمود با استفاده از مفاهیم و روشهای آماری میتوان از روی نمونه ، نتیجهگیریهای معتبری در مورد جامعه بدست آورد و علم آمار در تمام آن دسته از فعالیتهای بشری که در آنها اثبات ادعاها و طبقه بندی اطلاعات مبتنی بر شواهد تجربی است، حضور دارد.
کاربرد آمار
کاربرد روشهای آماری در قلمروهای گوناگون از علوم انسانی ، علوم مهندسی ، رشتههای علمی جدیدی پدید آورده است که در ارتباط متقابل با آمار هستند. نظیر آمار زیستی ، روانسنجی ، آمار مهندسی ، آمار بازرگانی ، اقتصاد سنجی و جمعیت شناسی. به علاوه علم آمار در رشتههای بسیار دیگری که هنوز از ترکیب آنها با آمار شاخههایی با اسامی خاص پدید نیامده، از قبیل علوم سیاسی ، هواشناسی و محیط شناسی نقش عمدهای ایفا میکند
توزیعهای آماری
برای تعیین توزیعهای آماری لازم است دو نوع فضای احتمال تعریف شود:
۱- فضای نمونهای را که تعداد عنالصر آن متناهی یا بطور شمارش پذیر نامتناهی باشد، فضای نمونه گسسته گوییم.
۲- وقتی فضای نمونه شامل تمام اعداد متعلق به یک فاصله باشد، آن را فضای نمونه پیوسته گوییم.
انواع توزیعهای احتمال
۱- توزیع احتمال یک متغیر تصادفی گسته ، یا بطور خلاصه ، توزیع یک متغر تصادفی عبارت است از فهرست مقادیر Xi از متغیر تصادفی X همراه با احتمال منسوب به هر یک از این مقادیر ، (f(xi) = P(X=Xi. اغلب می توان به جای استفاده از یک فهرست مفصل، از یک فرمول استفاده کرد.
۲- تابع چگالی احتمال (f(x ، توزیع احتمال یک متغیر تصادفی پیوسته را توصیف میکند و دارای خواص زیر است.
الف) مساحت کل زیر منحنی چگالی برابر با یک است.
ب) مساحت زیر منحنی چگالی بین b,a مساوی است با (P(a≤x≤b
ج) (f)x مثبت یا صفر است.
انواع توزیعهای احتمال گسسته
امتحان برنولی (موفقیت شکست)
در اینجا تکرارهای متوالی یک آزمایش یا مشاهده را مورد بررسی قرار میدهیم و هر تکرار را یک امتحان مینامیم.
به علاوه فرض میکنیم که برای هر امتحان فقط دو برآمد ممکن وجود دارد. که یکی از آنها را موفقیت و دیگری را شکست مینامند بر این تاکید شده باشد که آنها تنها برآمدهای ممکناند.
ویژگیهای امتحان برنولی
الف) هر امتحان به یکی از دو برآمد ممکن میانجامد که در اصطلاح فنی موقعیت و شکسیت نامیده میشوند.
ب) برای تمام امتحانها ، احتمال موفقیت p ، یکی است. بنابراین احتمال شکست برای هر امتحان q=1-p است که آن را با q نشان میدهید، بطوری که p+q=1
ج) امتحانها مستقل از یکدیگرند. احتمال موفقیت در یک احتمال با داشتن هر مقدار اطلاعات از برآمدهای سایر احتمالها ، تغییر نمیکند.
د) احتمالهای برنولی به صورت P(X=x) = pxq1-x تعریف می شود. دارای میانگین p (احتمال موفقیت) و واریانس pq (احتمال موفقیت در احتمال شکست) میباشد.
توزیع دو جملهای
در حالتی که n امتحان مرکدر برنولی (n عدد ثابت) انجام میشوند و احتمال موفقیت در هر امتحان p است. توزیع دو جملهای عبارت است از تعداد موفقیتهای در n امتحان.
توزیع دو جملهای را به صورت
px(1-p)1-x (ترکیب x شیء از n شیء) = (P(X=x) = b(x;n;p برای تمایز n,…,2,1,0 تعریف میشود. اصطلاح توزیع دو جملهای از قضیه مهمی در جبر به نام قضیه بسط دو جملهای ، که مربوط است به فرمول بسط a+b) n) گرفته شده است توزیع دو جملهای دارای میانگین np (تعداد موفقیتهای در n امتحان) و واریانس npq)تعداد موفقیتها در n امتحان ضرب در احتمال شکستها) میباشد.
بازدید
ماتریس های مربع: اگر در یک ماتریس تعداد سطرها و ستون ها مساوی باشد، آن را ماتریس مربع گویند. در این حالت اگر یک ماتریس مانند A دارای مرتبه ی n*n باشد، گوییم A یک ماتریس مربع مرتبه n است. مجموعه ماتریس های مربع مرتبه ی n را با یا نشان می دهند.
درایه های ۱۱a و ۲۲a و… و anx یک ماتریس مربع مرتبه n باشد، مجموع درایه های قطر اصلی A را اثر ماتریس A می نامند و با نماد tr(A) نشان می دهند. بنابراین:
در واقع اثر ماتریس، تابعی از مجموعه ماتریسهای مربع در مجموعه اعداد حقیقی است، یعنی
مثال: اگر درایه های قطر اصلی A عبارتند از ۴- و ۶- بنابراین
۲=۶+۴-tr(A)
ماتریس سطری: ماتریس هایی را که فقط یک سطر دارند ماتریس سطری یا بردار سطری می نامند. مثلاً ماتریس ی ماتریس سطری *n1 است.
ماتریس ستونی: ماتریسی است که فقط دارای یک ستون باشد. هر ماتریس ستونی را بردار ستونی نیز می گویند. مثلاً ماتریس زیر یک ماتریس ستونی ۱×m است.
ماتریس صفر: ماتریسی است که همه درایه هایش صفر باشد. بنابراین ماتریس ماتریس صفر است. هرگاه:
ماتریس صفر از مرتبه m*n را با نماد Qm*n نشان می دهند.
مثال:
اگر مرتبه ماتریس صفر، داده شده باشد و یا از طریق متن، مرتبه آن معلوم باشد، در اینصورت برای سهولت ماتریس صفر را با و یا حتی با O نشان می دهند.
تساوی ماتریس ها: هرگاه در ریاضیات اشیا جدیدی معرفی شوند، باید مشخص شوند که چه وقت دوتای آنها با هم مساویند. مثلاً در مجموعه اعداد گویا دو عدد دو سوم و چهار ششم را، علیرغم اینکه یک شکل نیستند، مساوی می نامند. در مورد اعدادگ ویا، دو عدد را مساوی می گویند. هر گاه ad=bc تساوی ماتریسها نیز به صورت زیر تعریف می شود.
تعریف: دو ماتریس و مساویند هرگاه هم مرتبه باشند و درایه های نظیر در دو ماتریس (یعنی درایه های هم موضع) مساوی باشند. به عبارت دیگر، دو ماتریس و مساویند هر گاه داشته باشیم:
مثال: و تساوی A و B به این معناست که
جمع ماتریس ها: مجموع دو ماتریس و ماتریسی است که با نماد A+B نشان می دهیم و به صورت زیر تعریفق می شود.
توجه کنید که برای جمع دو ماتریس می بایست دو ماتریس هم مرتبه باشند. بنا به تعریف اگر A+B+C=[Cij] در اینصورت
برای این که تعریف فوق روشن تر شود، شکل گسترده آن را در حالت ماتریس های ۲×2 در زیر می آوریم
تذکر: با توجه به تعریف، جمع دو ماتریس A+B وقتی تعریف شده که A و B هم مرتبه باشند. در این صورت A و B را ماتریس های قابل جمع می گویند.
تعبیر عمل جمع دو ماتریس به مثابه یک ماشین: عمل جمع را می توان به منزله ماشینی تصور کرد که دارای دو ورودی و یک خروجی است (مطابق شکل)، به طوری که اگر دوماتریس مثلا۲×2 به آن بدهیم از خروجی آن یک ماتریس ۲×2 بیرون می اید.
قرینه یک ماتریس: اگر A یک ماتریس m*n باشد، قرینه A ماتریسی است از همان مرتبه که با نماد –A نشان می دهند و اگر در این صورت بنا به تعریف
مثال: قرینه ماتریس عبارت است از و ملاحظه می شود که
خواص جمع ماتریس ها
الف) جمع ماتریسها خاصیت شرکت پذیری دراد
اثبات: فرض کنید و و سه ماتریس هم مرتبه دلخواه باشند، نشان می دهیم
(A+B)+C=A+(B+C)
قبل از اثبات لازم است معنی عبارات (A+B)+C و A+(B+C) را بدانیم. در این مورد از تعبیر عمل جمع به مثابه عمل یک ماشین کمک می گیریم. از آنجا که ماشین جمع دو ورودی دارد نمی توان یکباره سه ماتریس را با هم جمع کرد، از این رو برای جمع سه ماتریس A و B و C می توان ابتدا A و B را به ماشین داده و A+B را به دست آورد. سپس A+B و C را به ماشین می دهیم تا (A+B)+Cبه دست آید.
عبارت A+(B+C) به این معناست که نخست B و C را وارد ماشین کرده ایم و B+C را به دست آورده ایم و سپس (B+C)+A را بیرون می دهد.
حال می خواهیم نشان دهیم که در هر صورت ماتریس های بدست آمده مساویند برای این کار قرار می دهیم
درایه سطر I ام ماتریس =D+C درایه سطر I ام ستون j ام ماتریس (A+B)+C
ب) ماتریس صفر عضو بی اثر مجموعه ماتریس ها نسبت به عمل جمع است.
اثبات: فرض کنید یک ماتریس دلخواه باشد، نشان می دهیم.
که در آن ماتریس صفر هم مرتبه با A است.
اثبات مشابه اثبات فوق است.
ج) هر ماتریس نسبت به عمل جمع دارای متقابل است.
دیدیم که قریبنه هر ماتریس A=[aij]، ماتریسی هم مرتبه با آن به صورت –A[-aij] است. در واقع –A متقابل A نسبت به عمل جمع است، زیرا قبلاً نشان دادیم
بازدید
بازدید
ریاضی دانان بزرگ
یکی از مفاخر علمی ایران و از بزرگترین ریاضیدانان و منجمان دوره اسلامی است در روز چهارشنبه اول ماه رمضان ۳۲۸ هجری قمری در شهر بوزجان(تربت جام فعلی) چشم به جهان گشود. وی از همان سنین کودکی به خاطر هوش سرشار، تیز بینی و کنجکاویش مورد توجه خانواده و اقوامش قرار گرفت ابوالوفا علم هندسه و عدد را نزد عموی خود ابوعمر و مغازلی و دایی خود ابوعبدالله محمد بن عنبسه فرا گرفت. دورانی که ابوالوفا در آن می زیست شرایط مناسبی برای رشد او فراهم شد. استفاده از محضر استادان، کتابها و مراکز علمی گوناگون، امکان پر گشودن ذهن را برای او فراهم ساخت وی در دوران حکومت سلسله آل بویه زندگی می کرد. ابوالوفا در سن ۲۰ سالگی به عراق مهاجرت کرد وتا پایان عمر در بغداد زندگی کرد. او به یاری همکارانش در رصد خانه بغداد به رصد پرداخت او یکی از مشهورترین منجمان زمان خود بوده است. وی گاهی در کارهای علمی با شخص معاصر خود ابوریحان بیرونی به وسیله مکاتبه شریک مساعی داشته است. او سنت گذشتگان را مبنی بر تلفیق کار علمی همراه با نگارش شرحهایی بر آثار قدما ادامه داد و شرح هایی بر آثار کسانی چون اقلیدس و دیونانتوس نوشت.
بوزجانی روشهای محاسبه ای را که کارمندان و بارزگانان در کشورهای شرق اسلامی در کارهای روزانه انجام می دادند آنها را به صورت منظم و مدون در آورد.
از کارهای جالب دیگر بوزجانی، حل یک مساله جالب است که در آن از قضیه فیثاغورث استفاده نشده است. تقسیم یک مربع به تعداد معلومی از مربع های کوچک تر یا تشکیل یک مربع بزرگ با تعداد معینی از مربع های کوچک به وسیله پهلو به پهلو قرارر دادن آنها از کارهای دیگری است که او انجام داده است.
بوزجانی در مجالس علمی زیادی شرکت داشت که حتی عمر خیام هم در آثار خود از مسائل ریاضی مختلفی یاد می کند که دانشمندانی مانند: ابوسهل کوهی، ابوالوفای بوزجانی و ابو حامد صاغانی در دربار عضد الدوله سخت به آن مشغول بوده اند.
تا کنون در غرب پژوهش های فراوانی درباره آثار بوزجانی انجام شده است. جنجال برانگیز ترین پژوهش مربوط به«سدیو» ریاضی دان و ستاره شناس فرانسوی است. او در این پژوهش ادعا می کند که بوزجانی ۹ قرن پیش از«تیکو براهه» منجم دانمارکی در اختلاف سوم حرکت ماه را کشف کرده است» از جمله آثار وی در زمینه ریاضی می توان از:
۱- کتاب اعمال هندسی 2- مجسطی 3- کتاب حساب 4- رساله در ترکیب اعدادالوفق در مربعات 5- جواب نامه بوزجانی به ابوعلی حبوبی در باره محاسبه مساحت مثلث بدون به کاربردن ارتفاع آن 6- المدخل آلی صناعه الاثحاطیقی
۷- رساله فی النسبه و التعریفات 8- رساله فی جمع اضلاع المربعات و المکعبات
به طور کلی مهمترین آثاری وی شامل: کتاب فی یحتاج الیه الصانع من الاعمال الهندسیه و کتاب المجسطی یا کتاب الکامل است
سرانجام ابوالوفا بوزجانی در سال ۳۸۸ هجری قمری در بغداد چشم از جهان فرو بست.
ابن سینا
شیخ الرئیس حجه الحق ابوعلی حسین بن عبدالله حسین بن علی بن سینا مشهور به ابن سینا که در سال ۳۷۰ هجری قمری در افشنه نزدیک بخارا متولد شده و در آنجا به کسب علم پرداخت. از تحصیلات مقدماتی از حمله ادبیات، قرآن، فقه و حساب را نزد پدر آموخت و برای فراگرفتن منطق و هندسه و نجوم نزد ابوعبدالله ناتلی رفت. او از همان کودکی بسیار خارق العاده بود و دانش زمان خود را به سرعت فراگرفت. ابن سینا تا چهارده سالگی پیش تمام استادان بخارا رفت و هرچه آنها می دانستند، فراگرفت. در دوره پادشاهی نوح بن منصور، هفتمین امیر سامانی، بوعلی شانزده سال داشت که پدر و مادرش یکی پس از دیگری با فاصله کمی از دنیا رفته بودند. بوعلی درس طب را نزد ابومنصور نوح قمری می خواند. او در سن شانزده سالگی به طبابت پرداخت. وی پس از درمان کردن نوح بن منصور سامانی به دربار او راه یافت. شهرت طبابت ابن سینا در شهر پیچید و مریض هایی که از معالجه نا امید می شدند نزد او می آمدند و شفا می یافتند و این شهرت روز افزون سبب شد تا آوازه او به گوش سلطان محمود نیز برسد. مامور او را دعوت کرد تا به غزنین برود، اما ابن سینا به دلیل خشونت و تعصب دینی سلطان محمود دعوت او را رد کرد و از خوارزم فرار کرد. در آن زمان به او لقب بوعلی سینا دادند به علت زنده نگه داشتن نام پدر بزرگ (علی) و نام جدش (سینا).
ابن سینا پس از فرار از خوارزم مدتی را در ترکستان و خراسان به سر برد و سپس وارد گرگان شد و در آنجا به طبابت پرداخت. سپس به ری رفت و در آنجا مجدالدوله دیلمی را که به بیماری مالیخولیا مبتلا شده بود، درمان کرد. او در همدان مقام وزارت شمس الدوله را به دست آورد و از حمایت علاالدوله کاکویه برخوردار گشت.
در مدت نه سالی که ابن سینا در گنگانج به سر می برد کتابهای زیادی نوشت از جمله رساله ای در مورد فن موسیقی، قصیده ای در منطق، رساله ای درباره نبض کتابی مربوط به فلسفه و رساله ای درباره افسردگی و علل آن. در این مدت ابوریحان بیرونی هم در دربار خوارزم بود. ابن سینا و بیرونی مباحثات زیادی با هم داشتند.
سرانجام ابوعلی سینا در همدان در سال ۴۲۸ هجری قمری در گذشت. از جمله معرفترین آثار او می توان به دانش نامه علایی که به زبان فارسی است و همچنین مهم ترین اثر فلسفی او به نام شفا که شامل چهار بخش (منطقی، طبیعیات، ریاضیات و مابعد الطبیعه) است را نام برد. این اثر و کتاب بعدی به نام قانون که دایره المعارف طبی است هر دو به زبان عربی می باشند. از جمله کتاب هایی که در مورد علم ریاضیات نوشته است کتاب «رساله الی ابوسمل المسیحی فی الزاویه» است. به طور کلی ابن سینا از دانشمندان علوم ریاضی، هندسه، نجوم، منطق، فلسفه و طب بود و وی از جمله دانشمندانی بود که هم در زمان خودش و هم سال ها و قرن ها پس از مرگش مورد احترام همه مردم و حکما بوده است. از جمله امام خمینی (ره) که در مورد ابن سینا در شرح حدیث از امام محمد باقر(ع) به عنوان رئیس فلاسفه اسلام یاد می کند و نیز در کتاب چهل حدیث خود در شرح حدیثی از امام جعفر صادق(ع) از وی به عنوان امام فن و فیلسوف بزرگ اسلام نام برده اند.
خوارزمی
ابو جعفر محمد بن موسی خوارزمی یکی از دانشمندان بزرگ ایرانی، منجم، ریاضی دان و جغرافیدان در سال ۱۸۵ هجری قمری در نزدیکی بغداد پا به عرضه وجود نهاد.
او بزرگترین عالم زمان و عصر خویش است و اجدادش اهل خوارزم بودند اما به احتمال زیاد خودش از اهالی قطر بولی منطقه ای نزدیک بغداد بود.
او در زمینه زیاضیات و نجوم مهارت بسزایی داشت. وی در این ریاضی دان دوره اسلامی است که آثارش به دست ما رسیده است. وی در زمان خلافت مامون عضو دارالحکمه بود که گروهی از دانشمندان بغداد به سرپرستی مامون قرار داشتند و مورد توجه خلیفه وقت بود. او کتاب جبر و مقابله خود را که درباره ریاضیات مقدماتی است و اولین و اولین کتاب جبر است که به عربی نوشته شده آن را به مامون تقدیم کرد.
کتابهای او در زمینه جبر، حساب، نجوم که به زبان عربی نوشته شد هم در کشورهای اسلامی و هم در کشورهای اروپایی تاثیر بسزایی داشت.
کتابهای دیگر اوکه درباره ارقام هنری است بعد از آن که در قرن دوازدهم به زبان لاتینی منتشر شد تاثیر خاص بر روی اروپائیان گذارد و نام خوارزمی مترادف با هر کتابی که درباره حساب جدید بود فراگرفت و از همین جا اصطلاح جدید الگوریتم به فضای قاعده محاسبه رواج یافت.
از جمله کتابهای دیگر او و در زمینه ریاضی می توان مختصر من حساب الجبر و القابله، کتاب الجمع و التفریق و زیج را نام برد. وی سال ۲۳۳ هجری قمری درگذشت.