کتاب آموزش نکته به نکته دروس کنکور معماری مطابق با آخرین تغییرات کتب درسی: ۱ـ عناصر و جزئیات ساختمان ۲ـ
- admin
- معرفی کتاب
- 19th دسامبر 2016
- بدون نظر
بازدید
کتاب آموزش نکته به نکته دروس کنکور معماری مطابق با آخرین تغییرات کتب درسی: ۱ـ عناصر و جزئیات ساختمان ۲ـ
نویسنده : محمدذاکر یگانه
محل نشر : تهران
تاریخ نشر : ۱۳۸۳/۰۸/۲۰
رده دیویی : ۷۲۰.۷۶
قطع : رحلی
جلد : شومیز
تعداد صفحه : ۳۴۴
نوع اثر : تالیف
زبان کتاب : فارسی
شماره کنگره : NA۲۲۴۷/آ۸
نوبت چاپ : ۳
تیراژ : ۳۰۰۰
شابک : ۹۶۴-۷۰۱۰-۲۴-۹
ادامه مطلب + دانلود...
بازدید
مدت ¾ قرن دانشمندان مشغول جمع آوری اطلاعات درباره ساختمان اتم بودند . مقداری از این معلومات از بررسی خواص اجسام رادیو اکتیو مانند اوارنیم حاصل شده بود . دستگاههای پرشتاب کننده ذره ها , در طیف نگار جرمی و دستگاههای اشعه X و طیف نماها و مقدار زیادی دستگاههای الکترونی دیگر , اطلاعات بیشتری به دانشمندان دادند , و با مجموعه آنها تئوری قابل فهم ساختمان اتمی عناصر را , بسط دادند .
همانطور که در ۳§ از بخش یکم دیدیم این تئوری شامل توضیح مطلب مهم و قابل ملاحظه ای است که بوسیله یک مدل مطابق خواص معلوم عناصر بیان می شود .
این مدل ساختملن اتمی , در درس بعد از این بخش و نیز در بخش چهارم بیان خواهد شد . شما همینطور که می خوانید متوجه باشید که این توضیحات بر مبنای بهترین توجیه حاصل از آزمایشهائی است که درباره ساختمان اتم بعمل آمده است . ممکن است در صورت لزوم آزمایشهای بیشتری درباره تحقیق مدل اتمی عناصر بعمل آید .
در زمان حاضر دانشمندان مشخص کرده اند که اتمها , ذره های ساده غیر قابل تقسیم نیستند بلکه از چند جزء خیلی کوچکتر که بطور مفصلتری مرتب شده اند تشکیل شده اند .
یک اتم از دو قسمت اصلی تشکیل شده است . قسمت مرکزی که دارای بار الکتریکی مثبت است و به هسته مــوسـوم است . هسته بسیار کوچک و نسبتا سنگین است قطر هسته در حدود
۱۳ – 10 سانتیمتر است . واحد مناسب تر برای بیان قطر اتم , آنگسترم o A است و یک آنگسترم برابر ۸ – 10 سانتیمتر است . یعنی o A 1 بهمان نسبت از cm 1 کوچکتر است که cm1 از ۱۰۰۰ کیلومتر کوچکتر می باشد . پس قطر هسته در حدود o A 5 – 10 می شود و در حدود یک صد هزارم قطر اتم است . سعنی اتم در حدود ۱ تا ۵ آنگسترم قطر دارد . ریزه های بسیار کوچک با بارالکتریسیته منقیس و بنام اکترون دور هسته در نواحی بنام لایه ها یا سطحهای انرژی حرکت می کنند در حدود سال ۱۹۱۳ نیل بهر دانشمند دانمارکی ( ۱۸۵۵ تا ۱۹۶۲ ) حرکت الکترونها بدوهسته را با حرکت سیارات منظومه شمسی بدور خورشید مقایسه کرد . هر چند امروزه بعقیده دانشمندان فیزیک و شیمی , مسیر حرکت الکترونها بدور هسته, مانند مدار سیارات مشخص و معلوم نیست و باید حرکت الکترونها را با حرکت نامنظم زنبوران عسل بدور کندویشان تشبیه کنیم . زیرا الکترونها گاهی به هسته نزدیک و گاهی از آن دور می شوند . پس باید فضای خالی نسبتا بزرگی را دور هسته اشغال کنند . بنابراین می گوئیم یک ابر الکترونی دور هسته , تشکیل می دهند که به اتم حجم می دهد و اتمهای دیکر را طرد می کنند .
هر اتمی از نظر الکتریکی خنثی است زیرا بارالکتریکی مثبت هسته برابر بار الکتریکی منفی الکترونهای لایه ها یا سطوح انرژی است .
اتم هیدروژن :
معروفترین نوع هیدروژن گاهی بنام پروتیوم خوانده می شود . و دارای هسته ای شامل یک پروتون است و یک الکترون دور این هسته در گردش است . این الکترون در داخلی ترین لایه , یا کمترین سطح انرژی که یک الکترون می تواند داشته باشد , حرکت می کند . این لایه یا سطح انرژی , لایه K یا اولین سطح انرژی نام دارد . برای آنکه اندازه ها و فاصله های بین اجزاء اتم پروتیم بهتر فهمیده شود . هسته ( یک پروتون ) را باندازه ته یک سنجاق ۲۵/۰ سانتیمتر نشان می دهیم . باین مقیاس الکترون که کمی از آن پروتون بزرگتر است , باید دور هسته و بفاصله ای که بطور متوسط حدود ۱۲ متر باشد , یعنی در کره ای باین شعاع حرکت کند . این الکترون با سرعت دور هسته می چرخد و عملا چنین فضائی را اشغال می کند .
عدد اتمی یک اتم , برابر عده پروتونهای هسته آنست . یک عنصر شامل اتمهایی است که همه آنها دارای یک عده مساوی پروتون در هسته شان می باشند . بنابراین همه شان دارای همان عدد اتمی هستند ( تمام اتمهای طبیعی که برانگیخته نشده و خنثی هستند , دارای یک آرایش الکترونی مساوی دور هشته شان هستند . ) عنصر هیدروژن شامل اتمهائی است که در هسته شان یک پروتون دارند . بنابراین عدد اتمی آنها برابر ۱ است . هر اتمی که دارای عدد اتمی ۱ باشد دارای یک پروتون در هسته اش خواهد بود و اتم هیدروژن است .
علاوه بر پروتیوم که ۹۸۵/۹۹ درصد در هیدروژن طبیعی وجود دارد و نوع دیگر از هیدروژن می شناسیم که یکی ازآنها دوتریوم است که به نسبت %۱۵ ۰/۰ در هیدروژن طبیعی موجود است و هسته آن دارای یک پروتون و یک نوترون است و یک الکترون در خارج از هسته آن حرکت می کند . نوع سوم هیدروژن , تری تیم است که خاصیت رادیواکتیوی دارد و مقدار آن در طبیعت بسیار کم است .
ولی مصنوعا باواکنش های هسته ای ساخته می شود . هسته تری تیم دارای یک پروتون و دو نوترون است و یک الکترون دور آن در گردش است .
این سه قسم اتم همه اتم هیدروژن هستند زیرا هسته آنها یک پروتون دارد و عدد اتمی آنها در هر حال برابر ۱ است . با وجود این چون عده نوترونهای هسته آنها مختلف است , جرم این اتمها متفاوت است .
اتمهای یک عنصر که دارای جرمهای مختلف هستند ایــزوتوپ یعنی همخانه نامیده
می شوند .
بیشتر عناصسر داری دو یا چند شکل ایزوتوپ هستند که ممکن است طبیعی باشند یا بطور مصنوعی تهیه شوند . با وجود آنکه ایزوتوپهای عناصر داری جرم مختلف هستند در خواص شیمیائی تفاوت زیادی ندارند .
هر یک از اقسام مختلف اتم که بوسیله ترکیب هسته هایش مشخص می شود نو کلید می نامند .
و نو کلیدهائی که دارای عدد اتمی مساوی باشند ایزوتوپ نامیده می شوند سه نوع ایزوتوپ هیدرژن نو کلیدهای پروتیم و دوتریم و تریتیم هستند .
علاوه برنامهائی که به نو کلیدهای هیدرژن داده شده است می توان آنها را بوسیله عدد جرمی شان مشخص ساخت و عدد جرمی یک اتم برابر حاصل جمع پروتونها و نوترونهای هسته آن است .
عدد جرمی پروتیم ۱ است ( ۱ پروتون + ۰ نوترون ) در صورتیکه در هسته دو تریم برابر۲ است ( 1 پروتون + ۱ نوترون ) و در تریتیم ۳ است ( ۱ پروتون + ۲ نوترون ) . گاهی این ایزوتوپها را با اسم هیدرژن ی۱ و هیدرژن ۲ و هیدرژن ۳ مشخص می کنند .
قـانـون تنـاوبی بودن خواص عنـاصـر
۱_ جدول تناوبی مندلیف :
اگر قرار شود , خواص ۱۰۴ عنصر شیمیائی را برای کسب معلومات مختصری هم که باشد , در دانش شیمی بررسی کنیم , کار و تکلیف مشکلی در پیش خواهیم داشت , اما اگر بعضی از عناصر خواص شبیه هم داشته باشند و بتوانیم آنها را با هم طبقه بندی کنیم , بخاطر سپردن خواص مشخص کننده هر طبقه زیاد مشکل نخواهد بود , حتی ممکن است بعضی تغییر ها را در خواص افراد هر طبقه بخاطر بسپاریم . مخصوصا اگر این تغییرات بطور منظمی صورت گیرد . در طول اواخر قرن هیجدهم و اوایل قرن نوزدهم , شیمی دانان بعضی اجسام را بعنوان عنصر شیمیائی مشخص کردند بعلاوه نشان داند که شباهتهائی بین خواص بعضی عناصر موجود است . از جمله کشف کردند که سدیم و پتاسیم فلزهای نقره فام نرمی هستند و دریافتند که کلسیم و باریم و استرونسیم فلزی را براههای شیمیائی مشابهی همانندی تشکیل می دهند ؛ و کلروبرم و ید عناصر غیر فلزی رنگین هستند . اما این قبیل کشفیات
پراکنده برای طبقه بندی تمام عناصر معلوم در یک دستگاه واحد , زیاد مفید و امید بخش نبود .
۲_ اولین کوششها برای طبقه بندی عناصر :
در حدود سال ۱۸۰۰ شیمی دانان تعیین وزن اتمی دقیق بعضی عناصر را شروع کردند و بزودی کوششهائی برای طبقه بندی عناصر براین مبنی بعمل آمد . در سال ۱۸۱۷ یوهان ولفگانگ دوبرینر
( 1849 _ 1780 ) ملاحظه کرد که وزن اتمی استرونسیم تقریبا برابر نصف مجموع وزن اتمی ها ی کلسیم و باریم است . و نیز بعدها مشاهده رد که وزن اتمی برم میانگین وزن اتمی های کلروید است .همنیطور وزن اتمی سلنیم با متوسط وطن اتمی های گوگرد و تلوریم تفاوت چندانی نداشت . دوبرینر این دسته ها را ۳ تائی یا تریاد نامید .
در سال ۱۸۶۴ جهن نیولاند ( ۱۸۹۸ _ ۱۸۳۸ ) تمام عناصر معلوم آنزمان را بترتیب وزن اتمی شان مرتب کرد و بعد آنها را بدسته هائی که هر یک دارای هفت عنصر بود تقسیم کرد نیولانداین تقسیم را باین مناسبت انجام داد که عنصر هشتم بنظر او دارای خواص شیمیائی نظیر عنصر اول دسته قبل بود . آنوقت این عنصر را اول دسته دوم قرار داد و سعی کرد که بهمکارانش بقبولاند که قانون هشت تائی او مقید است ولی آنان در کمال ساده دلی باین فکر خندیدند .
لتارمیر ( ۱۸۹۵ _ ۱۸۳۰ ) نیز جدولی برای طبقه بندی عناصر مطابق وزن اتمی آنها تنظیم کرد .
موزلی عدد اتمی عناصر را تعیین کرد : در حدود ۴۵ سال بعد از کار مندلیف درباره جدول تناوبی عناصر , کشف مهم دیگری بعمل آمد که به حل مسئله طبقه بندی عناصر کومک کرد . در بخش سوم بیان کردیم که عدد اتمی یک عنصر , عده و پروتونهای هسته را تعیین می کند هنری گوین جفری موزلی ( ۱۹۱۵ _ ۱۷۸۷ ) دانشمند برگزیده جوان انگلیسی از اشعه X برای تعیین عدد اتمی عناصر استفاده کرد .
شعاعهای x تشعشعات الکترو مغناطیسی با تواتر زیاد و طول موج کوتاه هستند . اشعه x در این لوله ها با جنس فلزی که هدف قرار گرفته بستگی دارد . بنابراین فلزهای مختلف از آلومینیم تا طلا را که جرم اتمی آنها بترتیب زیاد می شود هدف قرار داد و مشاهده کرد که : هر چه پروتونهای هسته اتم فلز بیشتر باشد طول موج شعاع x هدف قرار گیرد , کمتر خواهد بود .
موزلی دریافت که در بعضی موارد یک تغییر غیر عادی در طول موج اشعه بین دو عنصر متوالی پیش می آید . این تغییر دو برابر مقدار محاسبه شده بود . موزلی نتیجه گرفت که د راین موارد یک عنصر از جدول تناوبی کم است . بعدها چندین عنصر کشف شد و خانه های خالی که موزلی تعیین کرده بود پرشد .
قانون تناوب : وقتی عناصر را در یک جدول تناوبی بجای ترتیب جرم اتمی صعودی , بترتیب عدد اتمی آنها مرتب کنیم , مسائلی که در تنظیم جدول پیش آمده بود خود _ بخود برطرف می شود . وقتی جدول را بترتیب جرم اتمی صعودی مرتب کنیم پتاسیم قبل از آرگن قرار می گیرد . در صورتیکه اگر مطابق خواص شیمیائی شان در جدول مرتب کنیم پتاسیم بعد از آرگن واقع می شود و اینمطلب با عدد اتمی ۱۸ برای آرگن و ۱۹ برای پتاسیم مطابقت دارد . همین طور است در مورد تلوریم ۵۲ وید ۵۳ .
همنطور که در ( ۱ § ) دیدیم مندلیف اینطور نتیجه گرفت که خواص فیزیکی و شیمیائی عناصر تابع تناوبی وزن اتمی آنها است . امروزه کاملا واضح است که عدد اتمی بهتر ترتیب تنظیم جدول تناوبی را می دهد و نتیجه تحقیقات مندلیف امروزه بشرح زیر ولی بنام قانـون تنــاوبی بیان
می شود : خواص فیزیکی و شیمیائی عنصرها تابع تناوبی عدد اتمی آنها هستند . بعبارت دیگر وقتی عناصر را به ترتیب عدد اتمیشان مرتب کنیم خواص آنها در فواصل معینی تکرار می شود .
تنظیم جدول تناوبی مدرن : مراجعه مکرر باین جدول وقتی این درس را می خوانید به شما در فهمیدن و یادگرفتن جدول کمک خواهد کرد . هر عنصر در این جدول جای مخصوص و معینی دارد . در میان هر خانه علامت اختصاری یک عنصر نوشته شده و بالای علامت اختصاری جرم اتمی و پائین آن عدد اتمی دیده می شود . طرف راست هر علامت اختصاری اعدادی می بینید که عده الکترونهای هر لایه را نشان می دهد . عناصری که در یک خط قرار دارند , عناصر یک نوبت یا سری و عناصر یک خط عمودی را گروه یا ستون یا خانواد ه می نامند .
عدد اتمی هیدرژن ۱ است و این عنصر بتنهائی بالا و بیرون جدول قرار دارد . زیرا دارای چند خاصیت منحصر بخود او است , د رحقیقت , هیدروژن در ستون اول سمت چپ جای دارد . زیرا مدار خارجی آن مانند دیگر عناصر این ستون دارای یک الکترون است .
هلیم با عدد اتمی ۲ بالای ستون آخر سمت راست قرار دارد و ساده ترین عنصر این ستون است که به گازهای نجیب اختصاص دارد . دقت کنید که هلیم دوالکترون در لایه k دارد و این لایه با ۲ الکترون کامل می شود . هیدروژن و هلیم نوبت اول عناصر را تشکیل می دهند .
نوبت دوم شامل هشت عنصر است . لیتیم یک فلز نرم و نقره فام است . فلز تند اثری است که اتم آن دارای یک الکترون در مدار خارجی L است . بریلیم فلزی است نقره فام ولی کم اثر از لیتیم , که اتم آن دارای ۲ الکترون در لایه L است . برون یا بر یک جسم جامد سیاه زنگ با کمی خاصیت فلزی است و اتمهای آن دارای ۳ الکترون در لایه L هستند . کربن عنصر جامدی است با خواص شیمیائی جالب و مخصوص که بین خواص فلزها و غیر فلزها است و چها ر الکترون در لایه L دارد . نیتروژن گازیست بی رنگ با خواص غیر فلزی که ۵ الکترون در لایه دارد . اکسیژن گازیست بی رنگ با خواص غیر فلزی که ۵ اکترون در لایه L دارد . فلوئور گاریست زرد کمرنگ با خاصیت غیر فلزی بسیار شدید و ۷ الکترون در لایه L و نئون گازی بیرنگ و کم اثر با ۸ الکترون در لایه خارجی L دارد .
در این شرح مختصر از خواص این عناصر , باید دفت شود که تبرتیب از یک فلز تند اثر شروع شده و بیک غیر فلز تند اثرر و یک عنصر بی اثر خاتمه می یابد . این تغییر خاصیت فلز تند اثر بغیر فلز با تغییر عده اکترونهای لایه L از ۱ تا ۷ همراه است و نئون عنصر بی اثر دارای ۱۸ الکترون یک اکته در لایه L است .
نوبت سوم هم شامل هفت عنصر است : سدیم فلزی است نفره فام و نرم , مانند لیتیم با یک الکترون در لایه M و منیزیم فلز نقره فام و خواص شبیه بریلیم بادو الکترون در لایه M است آلومینیم فلز خاکستری رنگ با کمی خاصیت غیر فلزی و ۳ الکترون در لایه M . سیلیسیم غیر فلز تیره رنگ با خواصی شبیه کربن و ۴ الکترون در لایه M است . فسفر غیر فلز جامد که ترکیباتی شبیه ترکیبات نیتروژن و ۵ الکترون در لایه M دارد . گوگرد غیر فلزی است جامد برنگ زرد با ۶ الکترون در لایه M و کلر عنصر گازی شکل برنگ سبز مایل بزرد با خاصیت غیر فلزی شدید شبیه خواص فلوئورو ۷ الکترون در لایه M . واپسین آنها آرگن گاز بیرنگ کم اثر با ۸ الکترون در لایه M است .
ادامه مطلب + دانلود...
بازدید
یکی از اهداف اصلی اکتشاف ژئوشیمیایی دستیابی به تمرکزغیرعادی عناصری است که در ارتباط با کانی¬سازی باشند. علت توجه به این روش این است که در سیستم هوازدگی ژئوشیمیایی سطحی بسیاری از عناصر جذب لایه-های سطحی اکسیدهای آهن، منگنز، آلومینیوم، سیلیسیوم و همچنین کربناتها می¬گردند. این اکسیدها مکان هندسی حرکت کاتیونها Reaction siteمی¬باشند؛ که این امر توسط بسیاری از محققین ( Hawkes 1979 , Chao ,Roze, et al, 1979 Antropova, et al 1992) مورد تأیید قرار گرفته است. علاوه براین در تجزیه جزئی توسط اسید نیتریک ۵ درصد بخش عمده¬ای از عناصر سرب، روی و مس مربوط به کانیهای سولفیدی آنها جدا شده و کانی سازی محیط را به خوبی نشان می¬دهند(Shiva, 1998 ).
روش تجزیه جزئی به منظور مشخص نمودن کانی-سازی احتمالی کاربرد فراوانی دارد(Hall, et al 1996) و ازاین روش اکثراً در مورد رسوبات رودخانه¬ای استفاده می¬شود. بدلیل آنکه میزان مس اولیه و pH، روی میزان مس در آبهای جاری منطقه تأثیر می گزارد یعنی آنومالی مس در داخل آب وجود خواهد داشت، از رسوبات رودخانه¬ای در محدوده مورد مطالعه برداشتی صورت نگرفته است .
در عملیات اکتشافی ژئوشیمیایی قبلی در منطقه نمونه برداری از رسوبات رودخانه¬ای صورت گرفته بود که نتایج آن تنها آنومالیهای موجود را نشان می¬دادند.
به منظور بررسی تغییرات عیاری زونهای کانی¬سازی و ارتباط آن با آلتراسیون از رخنمونهای سنگی نمونه برداری انجام شد، که در این فصل به طور کامل به آن پرداخته می¬شود.
۲ اکتشاف ژئوشیمیایی ناحیه ای
در سال ۱۳۷۲ کارشناسان چینی شرکت جیانگ چنگjang cheng با همکاری سازمان زمین شناسی کشور در طی عملیات اکتشاف ژئوشیمیایی ناحیه¬ای، نمونه گیری هایی را از آبراهه¬های منتهی به معدن تکنار صورت داده¬اند که تعداد ۳۵ نمونه فقط از محدوده تکنار اخذ گردیده است.
این پروژه اکتشاف منجر به شناسایی آنومالیهای مس، سرب، روی، طلا، نقره، آرسنیک، آنتیموان، تنگستن و … گردیده است.
نقشه¬های ژئوشیمیایی عناصر مختلف با مقیاس ۱:۱۰۰۰۰۰ برای عناصر فوق تهیه شده است. در تهیه این نقشه¬ها از روش کانتور¬زنی استفاده شده است. بدلیل آنکه اطلاعات تجزیه مربوط به برداشت از یک نقطه (که در واقع آنومالی بالادست رودخانه را نشان می¬دهد) بوده است، ولی در نقشه به صورت یک منحنی نمایش داده می-شود؛ لذا منبع آنومالی به درستی قابل ردیابی نیست. با این وجود این نقشه¬ها مبنای خوبی برای اکتشافات محلی هستند و تصویری از آنومالی های موجود در منطقه می¬دهند.
۳ بررسی نتایج اکتشاف ژئوشیمیایی ناحیه¬ای
نتایج حاصل از عملیات فوق به صورت نقشه در شکلهای (۹-۱) و (۹-۲) و (۹-۳) آورده شده¬اند.همانگونه که در شکل(۹-۲) و (۹-۳) دیده می¬شود عناصر سرب، جیوه، طلا، نقره و بیسموت با عناصر روی، آنتیموان، مولیبدن، مس، آرسنیک و قلع همپوشانی نشان می¬دهند.
از طرف دیگر عناصر Cr, Ni, Li, Sr, Ba, B, W نیز باهم همپوشانی نشان می¬دهند که پراکندگی آنها کاملاً متفاوت با گروه اول است.
علت تفاوت به این خاطر است که گروه اول جزء زون ساختاری – متالوژنی تایباد – تربت حیدریه – کاشمر هستند و در واقع آنومالیهای موجود در منطقه مورد مطالعه را نشان می-دهند، در حالیکه گروه دوم مربوط به زون ساختاری – متالوژنی سبزوار – عریتین( سبزوار – فریمان – عریان) است، و آنومالیهای مجموعه افیولیتی را مشخص می¬کند.
الف) ب)
شکل ۱) الف) موقعیت تکنار ب) آنومالی Cr در بالای منطقه معدنی تکنار- مقیاس: 2.5 Km
Au) ) (Hg)
(Ag) (Bi)
شکل ۹-۲) آنومالیهای Au, Ag, Bi, Hg درمنطقه معدنی تکنار- مقیاس : 2.5 Km
(Cu) (Zn)
(As) (Pb)
شکل ۹-۳) آنومالیهای Cu, Zn, Pb, As درمنطقه معدنی تکنار- مقیاس: 2.5 Km
۹- ۴ اکتشاف ژئوشیمیایی محلی
۹-۴- ۱ نمونه برداری
برای مطالعات ژئوشیمیایی تعداد ۶۰ نمونه از داخل تونلها به روش برداشت از شیار بطور پیوسته برداشت شد. تعداد سه نمونه سطحی از زونهای برشی حاوی کانی سازی ( یک نمونه از تک III و دو نمونه تک IV) و سایر نمونه ها از دو تونل شمالی و جنوبی برداشت گردید. نمونه برداری به روش Channel Chip Sampling انجام گردید.
نمونهبرداری از یک امتداد خطی در یک طول یک الی دو متر به روش مجموعه خرده سنگ برداشت شد. برای نمونه¬برداری سعی شد حداقل ۴۰ قطعه نمونه به وزن تقریبی هر کدام حدود ۵۰ گرم برداشت شود. وزن هر نمونه در کل ۳ الی ۴ کیلوگرم می¬باشد.
جهت کسب اطلاعات در خصوص ژئوشیمی زمینه از مناطقی که کانیسازی نداشتند، نمونه برداری انجام شد.
۹-۴- ۲ روش نمونه برداری
در مرحله اول برای طراحی سیستم نمونه برداری اقدام به تهیه پلان و نقشه تونل¬ها، با استفاده از متر و کمپاس، با مقیاس ۱:۱۰۰ گردید. نقشه¬ها حاوی اطلاعات زمین شناسی، کانی سازی، ساختمانی بوده که در نهایت اطلاعات تجزیه شیمیایی نیز به آنها اضافه شده است.
برای نمونه برداری، به موازات محور تونلها متر کشی انجام شد. در تونل شمالی هر ۱۰ متر و در تونل جنوبی به علت عریض تر بودن تونل هر ۵ متر به عنوان ایستگاه نمونه برداری مشخص گردید. سپس با توجه به تراکم کانی سازی تصحیحاتی صورت گرفت تا ایستگاه¬های مورد نظر در محلهایی باشند که کانه زایی بیشتری با چشم قابل مشاهده بود. سپس بوسیله اسپری محل نمونه برداری در روی دیواره علامت زده شده و شماره گذاری گردید. محل ایستگاههای نمونه برداری بطور دقیق در نقشه¬ها علامت گذاری شده است.
بعد از تمیز نمودن و چکش کاری محل نمونه برداری در سقف و دیواره¬ ها با استفاده از قلم و تیشه کانال نمونه برداری کنده کاری گردید. برداشت نمونه از داخل تونلها به روش Channel chip sampling (نمونه برداری از شیار بطورپیوسته) صورت گرفت. کلیه قطعات جمع آوری شده در کیسه نمونه ریخته شده ، شماره گذاری گردیده و در فرم مخصوصی مشخصات آن نوشته شد.
نمونه گیری از مغزه¬ها به روش نصفه مغزه صورت گرفته است. مغزه¬ها پس از مطالعه نصف شده ونصف مغزه برای تجزیه برداشت شده است. هر دو مترمغزه به عنوان یک نمونه برداشت گردیده است. نمونه¬ها در آزمایشگاه معدن مس سرچشمه تجزیه شدند. در این عملیات تمام طول مغزه¬های حفاری مورد تجزیه قرار گرفته است که بهتر بود تنها قسمتهایی که کانه سازی حداقل با چشم دیده می¬شود، انتخاب می¬گردید.
جدول (۹-۱) طول نمونه برداری هر یک از ایستگاهها که شامل سقف و دو دیواره می¬باشد را نشان می¬دهد. شکل¬های (۹-۴) و (۹-۵) محل¬های نمونه برداری در دو تونل را نشان می¬دهند
شماره نمونه طول نمونه برداری (متر) شماره نمونه طول نمونه برداری (متر)
TK-3-S-01 8 TK-3-N-01 5.5
TK-3-S-02 8 TK-3-N-02 7.6
TK-3-S-03 8 TK-3-N-03 7
TK-3-S-04 9 TK-3-N-03AE 7.6
TK-3-S-05 10 TK-3-N-3AW 7
TK-3-S-06 15 TK-3-N-04E 6
TK-3-S-07 7 TK-3-N-04W 5
TK-3-S-08 10.8 TK-3-N-05 10.5
TK-3-S-09 8.5 TK-3-N-06E 7
TK-3-S-10 9 TK-3-N-06W 6
TK-3-S-11 6 TK-3-N-07E 6
TK-3-S-12 9 TK-3-N-07M 6.3
TK-3-S-12A 8.4 TK-3-N-07W 6.2
TK-3-S-13 8 TK-3-N-7B 13.8
TK-3-S-13A 4.4 TK-3-N-08 8.9
TK-3-S-14 7.6 TK-3-N-09 6.4
TK-3-S-15 6.3 TK-3-N-10 5.35
TK-3-S-16 5.2 TK-3-N-11 5.6
TK-3-S-17 6 TK-3-N-12 5.75
TK-3-S-18 6 TK-3-N-13 5.7
TK-3-S-19 6
TK-3-S-20 6
TK-3-S-21 8
TK-3-S-22 6
TK-3-S-23 11
جدول ۱) طول نمونه برداری هر یک از ایستگاهها
شکل ۹-۴) محل های نمونه برداری در تونل شمالی.
شکل ۹- ۵) محل های نمونه برداری درتونل جنوبی.
۹- ۵ خردایش و نرمایش نمونه¬ها
خردایش و نرمایش نمونه¬ها در سازمان زمین شناسی مرکز مشهد انجام شد. در مرحله اول نمونه¬ها توسط دستگاه سنگ شکن مخروطی (Jaw crusher) خرد شده تا به سایز حدود 5-3 میلیمتر تا یک سانتی متر رسیدند( Pea-size). سپس هر نمونه کاملاً مخلوط شده و با استفاده از مقسم (rifele splitter)250 گرم آن انتخاب گردید ؛ سپس در آسیاب (pulverizer ) به پودر حدود 200 مش(۷۴ میکرون) تبدیل شد.
۹- ۶ تجزیه به روش جذب اتمی
روش اسپکترو¬فتومتری جذب اتمی بر مقدار جذب انرژی نورانی به وسیله اتمها استوار است. برای اینکه جذب انرژی نورانی انجام گیرد، نمونه باید به حالت محلول درآید. محلولی که دارای عنصر و یا عناصر خاصی است بوسیله شعله¬ای (که معمولا ازهوا و استیلن تغذیه می شود) در دمای بالا (حدود ۲۰۰۰ درجه سانتی گراد) پراکنده و بخار می¬گردد. بخاری که شامل عنصر مورد نظر است به وسیله یک چشمه نورانی، که معمولاً یک لامپ هالوکاتد از عنصر مورد اندازه گیری است، مورد تابش قرار می گیرد. اتمهای موجود در بخار حاصل که در حالت پایه هستند به ازای فرکانسهای معین، انرژی نورانی نظیر را از شعاع تابش شده از لامپ جذب می کنند و در نتیجه شدت شعاع تابش پس از عبور از شعله کاهش می¬یابد. میزان کاهش شدت شعاع تابش متناسب با غلظت عنصر مورد نظر در بخار است. در روش AAS حد قابل ثبت غالباً کمتر از ۱۰ گرم در تن و برای بعضی عناصر در حد گرم در هزار تن (ppb ) می¬باشد، البته با افزایش غلظت عنصر، صحت آن کم می-شود.
برای انجام آزمایش میزان کمی از نمونه پودر شده (۲تا ۳ گرم) را بطور دقیق وزن شده و سپس به مدت چند ساعت درمحلول تیز آب ( محلول اسید نیتریک و اسید کلریدریک با نسبت ۱ به ۳) حل گردید. محلول حاصل قبل از تجزیه از کاغذ صافی با شماره ۴۰ عبور داده شده و به حجم مورد نظر رسانیده شدند. در جدول(۹- ۲) استانداردهای مورد استفاده آورده شده است.
جدول ۹- ۲) استانداردهای مورد استفاده
Elements Standards (ppm)
Au
2 5 10
Zn 0.5 1 2
Cu 2 5 7
Pb 5 10 20
Ag 2 5 7
Bi 5 10 20
برای انجام این روش تعداد ۴۰ نمونه درآزمایشگاه تجزیه مواد (دانشکده علوم، بخش شیمی معدنی) دانشگاه فردوسی مشهد توسط دستگاه جذب اتمی مدل AA-670 Shimadzu مورد تجزیه قرار گرفتند. این نمونه¬ها برای عناصر Cu, Zn, Pb, Ag, Au, Bi تجزیه شدند. نتایج حاصل ازتونل شمالی در جدول(۹-۳) وتونل جنوبی در جدول(۹-۴) گزارش شده است.
همچنین تعداد ۱۵ نمونه از داخل تونلهای شمالی و جنوبی تک III و یک نمونه سطحی از تک III و دو نمونه سطحی از تک IV در آزمایشگاه معدن مس سرچشمه تجزیه شدند. نمونه¬ها برای عناصرCu, Zn, Pb, Ag, Au, Bi, Mo, As, Se, Sb تجزیه شدند. نتایج تعدادی از این نمونه¬ها در جدول(۹-۵) گزارش شده است.
جدول ۹-۳) نتایج تجزیه تونل شمالی در دانشگاه فردوسی مشهد
نمونه Cu % Zn (ppm) Ag (ppm) Bi (ppm) Au (ppm) Pb (ppm)
TK-3-N-02 0.4 70.5 11.9 272.8 n.d. n.d.
TK-3-N-03 1.1 62.5 n.d. 244.1 n.d. n.d.
TK-3-3A(E) 4.6 104.9 10.5 258.6 n.d. n.d.
TK-3-N-3Aw 1.7 205.1 6.7 75.2 n.d. n.d.
TK-3-N-4E 0.3 40.1 6.4 n.d. n.d. n.d.
TK-3-N-05 1.3 75.3 7.1 209.4 n.d. n.d.
TK-3-N-6E 1.9 69.4 52.3 53.1 n.d. n.d.
TK-3-N-7(B) 1.1 107.7 22.7 77 n.d. n.d.
TK-3-N-7E 0.7 63 11.2 61 n.d. n.d.
TK-3-N-7W 0.8 53.9 n.d. n.d. n.d. n.d.
TK-3-N-08 0.6 47.8 10 81.2 n.d. n.d.
TK-3-N-09 0.3 82 n.d. n.d. n.d. n.d.
TK-3-N-10 232.7 ppm 58.5 n.d. n.d. n.d. n.d.
TK-3-N-11 551.2 ppm 49.4 n.d. n.d. n.d. n.d.
TK-3-N-12 295.40 ppm 46.1 n.d. n.d. n.d. n.d.
TK-3-N-13 461.8 ppm 67.9 n.d. n.d. n.d. n.d.
جدول ۹-۴) نتایج تجزیه تونل جنوبی در دانشگاه فردوسی مشهد
ادامه مطلب + دانلود...