خرید اینترنتی کتاب

جستجو در تک بوک با گوگل!

تابعيت پايگاه تك بوك از قوانين جمهوري اسلامي ايران

فرادرس!



چطور!




تبلیغات!


مختصری درباره هندسه

562 views

بازدید

مختصری درباره هندسه
۵ (۱۰۰%) ۱ vote
هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آن‌ها است. این دانش همراه با حساب یکی از دو شاخه‌ قدیمی ریاضیات است.
واژه هندسه عربی شده واژه «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie می‌گویند که هردو از γεωμετρία (گیومتریا) در زبان یونانی آمده که به معنای اندازه‌گیری زمین است.
تاریخچه هندسه
احتمالا بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. در مصر هر سال رودخانه نیل طغیان می‌کرد و نواحی اطراف رودخانه را سیل فرا می‌گرفت. این رویداد تمام علایم مرزی میان املاک را از بین می‌‌برد و لازم می‌‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی کند. مصریان روش علامت‌گذاری زمین‌ها با تیرک و طناب‌ را ابداع کردند. آنها تیرکی را در نقطه‌ای مناسب در زمین فرو می‌‌کردند و تیرک دیگری در جایی دیگر نصب می‌شد و دو تیرک با طنابی که مرز را مشخص می‌‌ساخت به یکدیگر متصل می‌شدند. با دو تیرک دیگر زمین محصور شده و محلی برای کشت یا ساختمان سازی مشخص می‌شد.
در آغاز هندسه برپایه دانسته‌های تجربی پراکنده‌ای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم می‌شد. بعضی از این دانسته‌ها بسیار پیشرفته بودند مثلا هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث می‌شناختند.
یونانیان دانسته‌های هندسی را مدون کردند و بر پایه‌ای استدلالی قراردادند. برای آنان هندسه مهم‌ترین دانش‌ها بود و موضوع آن را مفاهیم مجردی می‌دانستند که اشکال مادی فقط تقریبی از آن مفاهیم مجرد بود. در سال ۶۰۰ قبل از میلاد مسیح، یک آموزگار اهل ایونیا (که در روزگار ما بخشی از ترکیه به‌شمار می‌رود) به نام طالس، چند گزاره یا قضیه هندسی را به صورت استدلالی ثابت کرد. او آغازگر هندسه ترسیمی بود. فیثاغورث که او نیز اهل ایونیا و احتمالا از شاگردان طالس بود توانست قضیه‌ای را که به‌نام او مشهور است اثبات کند. البته او واضع این قضیه نبود.
اما دانشمندی به نام اقلیدس که در اسکندریه زندگی می‌‌کرد، هندسه را به صورت یک علم بیان نمود. وی حدود سال ۳۰۰ پیش از میلاد مسیح، تمام نتایج هندسی را که تا آن زمان شناخته بود، گرد آورد و آنها را به طور منظم، در یک مجموعه ۱۳ جلدی قرار داد. این کتابها که اصول هندسه نام داشتند، به مدت ۲ هزار سال در سراسر دنیا برای مطالعه هندسه به کار می‌‌رفتند.
براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان می‌‌گذشت، شاخه‌های دیگری از هندسه توسط ریاضیدانان مختلف، توسعه می‌‌یافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسه تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می‌‌کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند. قبل از اقلیدس، فیثاغورث (۵۷۲-۵۰۰ ق.م) و زنون (۴۹۰ ق.م.) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را به ۶۰ قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست می‌‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در سده پنجم میلادی آپاستامبا، در سده ششم، آریابهاتا، در سده هفتم، براهماگوپتا و در سده نهم، بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
تقسیم بندی هندسه
هنـدسه مقـدماتی به دو قسمت تقسیـم می‌گردد:
* هنـدسه مسطحه
* هندسه فضایی.
* هندسه خطی.
در هندسه مسطح، اشکالی مورد مطالعه قرار می‌‌گیرند که فقط دو بعد دارند، هندسه فضایی، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب‌ها ،استوانه ها، مخروط ها، کره‌ها و غیره است
دایره
مقدمه
اشکال هندسی در زندگی همیشه دارای کاربردهای فراوان بوده و برای فعالیتهای انسان الهام بخش و سمبل نیز شده است. دایره یکی از این اشکال است. ابتدایی‌ترین کاربرد دایره ، چرخ و چرخ‌دنده‌ها هستند که از قدیم‌الایام بکار رفته و می‌روند. همچنین ابزار آلات زینتی چون تاج ، گردبند ، خلخال و حلقه‌ها ، کاربردی به اندازه تاریخ بشری دارند. نمونه مثال زدنی حلقه ازدواج است که بین زوجین مبادله می‌شود و این برگرفته از حلقه‌ای است که در دست اهورامزدا در پیکره‌ها و مجسمه‌ها دیده می‌شود.
با توجه به قرینه مذهبی قداست و پاکی ازدواج در ایران باستان را نشان می‌دهد که اکنون فرهنگی جهانی گشته است. دایره در فرهنگها ، انجمنها ، شهرسازی ، اندیشه‌های هنری و ریشه‌دار بخصوص در ابزار آلات نجومی جایگاه نمادین و کاربردی دارد. در فرهنگ و ادیان قدیم ازجمله بودا ، نماد آسمان ، جهان پاک ، افلاک گردنده و غیر دنیاست در حالی که در مقابل دنیا چهار گوشه و مربع است که به وضوح در بیان اشعار و ادبیات ایرانی بویژه غزلیات عرفانی مشاهده می‌شود.
دایره در هنرهای اسلامی ایران
در هنرهای اسلامی ایرانی دایره‌ها ، به شکل شمس و حلقه نورانی در اطراف سرایمه و بزرگان دین دیده می‌شود. همچنین با توجه به کراهت صورتگری و مجسمه سازی در اسلام و ظریف اندیشی شیعه ، هنرهای اسلامی به شکلهای اسلیمی ، گل و بوته ، نقشهایی ختایی سوق داده شد. اشکال و خطوط و ترکیب رنگ در مینیاتورها ، تذهیبها و فرشها با زینت و ترکیب و نقش نگار پخته‌تری تکامل یافتند.
دایره به شکل شمسه‌های زیبایی تزیین داده شد و شمسه‌ها به صورت منفرد یا در سایر هنرها کاربرد یافت. در خطوط گل و بوته و اشکال اسلیمی و ترکیب رنگ دایره به عنوان پایه‌ای‌ترین ، اصلی‌ترین و اساسی‌ترین شکل بکار گرفته می‌شود. و سیر کلی به سوی مرکز برای وصل فنا نقطه‌ای (سیاه) است. که اختیار را از چشمان بیننده گرفته و با سیر در تابلو به مرکز هدایت می‌کند.
دایره و نقطه سیاه و قرمز
در میان قبایل بدوی و بسیاری از انجمنها و دسته‌های سری قدیم ، سمبل مفاهیمی چون ابدیت ، جاودانگی و مرگ بوده است و دایره سیاره و دوایر متحدالمرکز در تمرینات اساسی ماینه‌تیستها ، هیپنوتیستها و درمانگران حرفه‌ای می‌باشد. دایره و نقطه سرخ که اغلب نشان آفتاب می‌باشد در پرچم و سمبل ملل شرق آسیا نیز مشاهده می‌شود.
هفت شهر
بطلیموس در دو قرن پیش از میلاد بر اساس تفاوت حرارت ، سرزمینهای شناخته شده آن روزگار را به هفت اقلیم تقسیم کرده است از آنجا که تقسیم بندی بطلیموس بر اساس دایره‌های مداری است اقلیمهای هفت گانه را اقلیمهای هندسی نیز نامیده‌اند. به نظر صاحبنظران ، اصطلاح هفت شهر ، هفت اقلیم و هفت وادی که در ادبیات و حکمت ایرانی وارد شده است الهامی از نظریات بطلیموسی را در خود دارد. اجرام آسمانی به دو دسته ثوابت و اجرام متحرک و متغیر تقسیم بندی شد و اجرام متغیر شناخته شده آن روز ، خورشید ، زمین ، بهرام ، تیر ، عطارد ، مشتری و زحل هر کدام در مداری و آسمانی تصور شدند. آسمان اول ، آسمان دوم … تا هفت آسمان.
دایره و نجوم
کره زمین برای شناسایی بهتر به دایره‌های افقی به نام مدار از صفر استوا تا ۹۰ درجه قطبین و دایره‌های عمودی به نام نصف‌النهار تقسیم بندی می‌شود. در علوم قدیم دایره بیشترین کاربرد و برترین جایگاه را در علم نجوم دارد. اولین مدلهای منظومه‌ای بر اساس گردش زهره در فرهنگ اینکاها ، گردش خورشید و کاینات دور کلیسا و زمین ، تا گردش زمین و سیارات دور خورشید در نجوم اسلامی و قوانین حاکم بر حرکت آنها بر روی مسیرهای دایروی بودند. مدلهای اتمی بعد از نظریه جوزف تامسون نیز هسته متمرکز در مرکز (بار مثبت) و الکترونهای متحرک در مدارهای دایروی بود. که به دلیل شباهت به مدل منظومه‌ای مشهور گشت.
بعدها تیکوبراهه ، کپلر ، کپرنیک روی این نظریه‌ها کار کردند. در سال ۱۶۱۹ کپلر سه قانون حرکت سیارات را با استفاده از مشاهدات تیکوبراهه بیان کرد. قوانین کپلر پایه و اساس قوانین نیوتن و مکانیک کلاسیک و مکانیک سماوی شد. در این نظریه مسیر دایره به مسیر بیضوی که خورشید در یک کانون بیضی قرار دارد تغییر یافت. با مطرح شدن فیزیک نوین و فیزیک کوانتومی ، اصل عدم قطعیت و سایر پیشرفتهای تکنولوژیکی مدل منظومه‌ای هسته نیز به مدل ابر الکترونی تبدیل گشت.

0

نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...
مختصری درباره هندسه
5 (100%) 1 vote

آیا می دانید همنهشتی در اعداد طبیعی به چه معناست ؟

328 views

بازدید

امتیاز به این مطلب!

ریاضی کاربردی

شما از لحاظ قد در کدام دسته قرار می گیرید ؟ بلند ، متوسط یا کوتاه. مثلا اگر شما و دوستتان در دسته افراد با قد متوسط باشید شما دو نفر از لحاظ کمیت قد با هم برابرید. اگر از این به بعد با هم قرار بگذاریم که برابری دو انسان به معنی وجود آنها در یک دسته باشد آنگاه شما با دوستتان برابرید و در واقع همه افرادی که در دسته افراد با قد متوسط قرار دارند با هم برابرند.

حال می خواهیم نوعی برابری میان اعداد طبیعی تعریف کنیم.
از این به بعد دو عدد طبیعی را برابر (یا همنهشت) می گوییم هرگاه باقیمانده تقسیم آنها بر ۵ مساوی باشد. با این فرض مثلا ۶ و ۱۱ با هم مساویند !! چون باقیمانده تقسیم هر دو آنها بر ۵ برابر ۱ است. این مطلب را بصورت زیر نمایش می دهیم
۱۱=۶ (پیمانه ۵)

یکی از ساده ترین کاربرد های همنهشتی در شاخه ای از ریاضیات به نام “نظریه کدگذاری” ظاهر می شود. بعنوان مثال کد ISBN (International Standard Book Number( کتاب را در نظر بگیرید. فرض کنید کد ۰-۱۹-۸۵۹۶۱۷-۰ کد ISBN کتابی باشد. رقم اول این کد نشان دهنده زبانی است که کتاب با آن نوشته شده است دو رقم بعدی یعنی ۱۹ مشخص کننده ناشر آن و شش رقم ۸۵۹۶۱۷ شماره کتاب است و رقم آخر طوری انتخاب می شود که در رابطه
 

صدق کند. که در آن  رقم i-ام کد است.( اگر x=10 آنگاه از علامت X در کد استفاده می شود) به نظر شما علت وجود این رقم چیست ؟

تصمیم گیری با استفاده از برنامه ریزی چند معیاره

————————————————————————————————————————–
فرض کنید چند انتخاب و معیار هایی برای آنها پیش رو دارید. مثلا فردی را در نظر بگیرید که می داند (احتمالا) در رشته های ریاضی کاربردی ، مهندسی کامپیوتر ، مهندسی برق به ترتیب در شهر های مشهد ، کرمان و شاهرود پذیرفته خواهد شد.

او برای انتخاب بهترین مورد معیار هایی را در نظر می گیرد بعنوان مثال شهرت (دانشگاه) ، وجود آینده شغلی بهتر و مورد علاقه بودن.

اگر تعداد معیار ها کم باشد در تصمیم گیری چندان دچار مشکل نخواهیم شد. ولی در صورتی که تعداد معیار ها بیشتر شود تصمیم گیری دشوار بنظر می رسد.

برنامه ریزی چند معیاره روشی بسیار ساده است که شما را در انتخاب بهترین گزینه یاری می کند. برای آشنایی با این روش نیازی به اطلاعات اولیه زیادی نیست.

برای اینکه براحتی بتوانید از این روش استفاده کنید آن را بصورت الگوریتمی بیان می کنم.

۱٫ ابتدا انتخاب ها و معیار های خود را به دقت تعیین کنید. فرض کنید تعداد انتخاب ها m و تعداد معیار ها n باشد.
در اینجا انتخاب های ما رشته های ریاضی کاربردی (A) ، مهندسی کامپیوتر (B) و مهندسی برق (C) و معیار ها شهرت دانشگاه (T) ، وجود آینده شغلی بهتر (E) و مورد علاقه بودن (F) هستند. همچنین m=n=3(برای سادگی از این به بعد از نماد های داخل پرانتز برای اشاره به آنها استفاده می کنیم. مثلا می گوییم معیار T یا انتخاب B)

۲٫ برای هر معیار دلخواه مانند X ماتریسی m*m بنام ماتریس مقایسه آن معیار ایجاد می کنیم. این ماتریس بدین ترتیب تشکیل می شود که در درایه i-j ام آن میزان ارجحیت انتخاب i بر انتخاب j با توجه به معیار X قرار داده می شود. هر گاه درایه i-j ام ماتریس مقدار دهی شد درایه j-i ام برابر وارون درایه i-j ام مقدار دهی می شود. در ضمن قطر اصلی ماتریس برابر ۱ خواهد بود. می بینیم که در این قسمت سلایق شخصی افراد لحاظ می شود.

بعنوان مثال ماتریس های مقایسه را برای معیار های T ، E ، F در اینجا مشاهده می کنید.
 

و
 

و
 

( سطرها و ستون ها را به ترتیب انتخاب های ممکن در نظر بگیرید )

۳٫ حال برای هر ماتریس مقایسه یک ماتریس نرمال تشکیل می دهیم.درایه i-j ام آن از تقسیم درایه i-j ام ماتریس مقایسه X بر مجموع درایه های ستون بدست می آید. مثلا برای بدست آوردن درایه واقع در سطر اول و ستون اول ماتریس نرمال مربوط به معیار T ، ابتدا همه درایه های ستون اول را با هم جمع می کنیم و سپس درایه واقع در سطر اول و ستون اول ماتریس مقایسه را بر عدد بدست آمده تقسیم می کنیم
به ماتریس های نرمال شده زیر توجه کنید
 

 
 
۴٫ اینک برای هر انتخاب مانند S ، وزن آن در معیار X را برابر میانگین درایه های موجود در سطر مربوط به S در ماتریس نرمال شده X تعریف می کنیم.
مثلا
 
توجه کنید که مثلا  به معنی وزن انتخاب C نسبت به معیار T است.
تا این مرحله وزن هر کدام از انتخاب ها تعیین شده است. اما باید ارجحیت معیار ها نسبت به یکدیگر را نیز در این فرآیند تصمیم گیری وارد نمود. برای اینکار عملیاتی مشابه آنچه در ۱ ، ۲ ، ۳ و ۴ انجام شد را دنبال می کنیم. برای هر کدام از معیار ها یک وزن (ارزش ) تعیین می کنیم.

۵٫ ماتریس مقایسه معیار ها را که n*n است بصورت زیر می سازیم. معیارها را در سطرها و ستون ها در نظر بگیرید. درایه i-j ام این ماتریس برابر میزان ارجحیت معیار i نسبت به معیار j است. هر گاه درایه i-j ام مقدار دهی شد درایه j-i ام برابر وارون درایه i-j ام خواهد بود. همینطور قطر اصلی برابر ۱ است.
در این مثال ماتریس مقایسه معیار ها را بصورت زیر در نظر گرفتیم.
 

۶٫ ماتریس نرمال و وزن هر معیار مشابه آنچه در مراحل ۳و ۴ بیان شد بدست می آیند.
در این مثال داریم
 
و
 
۷٫ حال برای یافتن وزن کل یک انتخاب کافیست وزن آن انتخاب در معیارهای مختلف را در وزن هر معیار ضرب و سپس با هم جمع کنیم.
برای مثال وزن کل انتخاب A بصورت
 
است. وزن B و C نیز بطور مشابه محاسبه می شود.
 
می بینید که وزن کل B از سایر انتخاب ها بیشتر است بنابراین ، این فرد بهتر است رشته مهندسی کامپیوتر کرمان را برای ادامه تحصیل انتخاب کند

قدرت اعداد
________________________________________

سال ها پیش در یکی از کلاس های ریاضیات مدارس آلمان، آموزگار برای اینکه مدتی بچه ها را سرگرم کند و به کارش برسد؛ از آنها خواست تا مجموع اعداد از یک تا صد را حساب کنند. پس از چند دقیقه یکی از شاگردان کلاس گفت: مجموع این اعداد را پیدا کرده و حاصل عدد ۵۰۵۰ می شود. با شنیدن این عدد معلم با حیرت فراوان او را به پای تخته برد تا روش محاسبه خود را توضیح دهد. به نظر شما این شاگرد باهوش که بعدها یکی از بزرگ ترین و معروف ترین ریاضیدانان دنیا شد، چه روشی را به کار بست؟ او اعداد یک تا صد را به ردیف پشت سرهم نوشت، سپس بار دیگر همین اعداد را بالعکس، این بار از صدتا یک، درست در ردیف زیرین اعداد قبلی نوشت. طوری که هر عدد زیر عدد ردیف بالاتر قرار گرفت.وی مشاهده کرد که مجموع هر کدام از ستون های به وجود آمده ۱۰۱ است. سپس نتیجه گرفت که صد تا عدد ۱۰۱ داریم که حاصل مجموع آنها می شود ۱۰۱۰۰=۱۰۱*۱۰۰. پس از آن تنها کافی بود که این مجموع به دست آمده نصف شود یعنی:
۵۰۵۰=۲/۱۰۱۰۰

شاید «شارل فردریک گاوس» شاگرد با ذکاوت کلاس که این روش جالب را به کاربرد، آن هنگام نمی دانست، روش بسیار کارا و مفیدی را برای جمع بستن رشته ای از اعداد ارائه داده است که تا سالیان سال مورد استفاده ریاضیدانان خواهد بود.اکثر مفاهیم ریاضی به قدری با زندگی روزمره ما گره خورده است که تمام مردم بدون آگاهی داشتن و واقف بودن به آن، از کنارش می گذرند و تنها کاربر خوبی هستند و بس! حتماً تا به حال با این عبارات در رادیو، تلویزیون یا موارد مختلف دیگر برخورد کرده اید: «وزارت آب و یا وزارت نیرو اعلام کرده است که میزان پرداختی قبض ها به صورت تصاعدی بالا می رود و از مصرف کنندگان تقاضا نمود که نهایت صرفه جویی را درمصرف آن داشته باشند.» حتماً در بیشتر موارد نیز از اینکه هزینه مصرف آب یا برق شما بسیار گران شده است گله مند و شاکی بوده اید و بسیار تعجب کرده و یا شاید هم فکر کرد ه اید که اشتباهی رخ داده است! اما در واقع این چنین نبوده است. بلکه این وزارتخانه ها و جاهای دیگر از این قبیل با به کار بردن یک مفهوم ساده ریاضی که از روابط جالب بین اعداد نشات می گیرد، تلاش نموده اند با این روش اندکی از مصرف سرانه انرژی های مفید در کشور بکاهند. بسیاری از رشته های اعداد در ریاضیات از قاعده و قانون خاصی پیروی می کنند. بدین صورت که مثلاً هر عدد نسبت به عدد قبلی خود به اندازه ثابتی کاهش یا افزایش می یابد، به این رشته از اعداد تصاعد «عددی» (حسابی) گویند. برای مثال در رشته اعداد ۱، ۴، ۷، ۱۰، ۱۳ و … هر عدد نسبت به عدد قبلی خود سه واحد بیشتر است. حال رشته ای از اعداد را در نظر بگیرید که در آن هر عدد نسبت به عدد ماقبل خود به اندازه توان هایی از یک عدد ثابت افزایش یا کاهش یافته باشد. به این رشته از اعداد تصاعد «هندسی» گویند.

برای مثال رشته اعداد ۱، ۲، ۴، ۸، ۱۶ و… را در نظر بگیرید. اگر کمی دقت کنید متوجه می شوید که هر عدد نسبت به عدد قبلی خود، دو برابر شده است. به عبارت دیگر در این رشته از اعداد با توان هایی از عدد ۲ و یا اعداد دیگر مواجه هستیم.

یعنی :…و۲۴، ۳ ۲، ۲ ۲۲۱۲۰،، به ترتیب از چپ به راست می شود …و ۱۶، ۸، ۴، ۲۱،

اگر کمی حوصله کنید و با ما همراه باشید مثال ها و داستان های جالبی از خاصیت شگفت آور این رشته از اعداد خواهید خواند که حتماً متعجب می شوید.

در گذشته های دور، یکی از پادشاهان هندوستان به ازای یاد دادن سرگرمی خوبی به او، جایزه بزرگی تعیین کرد. می دانید که هندی ها در ابداع و اختراع روابط شگفت انگیز بین اعداد بسیار توانا هستند و تاریخچه بلندی در این زمینه دارند. روزی یکی از همین دانشمندان متبحر کار با اعداد، نزد پادشاه رفت و بازی شطرنج را به او آموخت. کسی چه می داند، شاید بازی شطرنج از همان زمان اختراع شده باشد.این مرد زیرک به ازای سرگرمی خوبی که به پادشاه آموخته بود از وی خواست تا به ازای ۶۴ خانه شطرنج به او گندم دهد. بدین ترتیب که از یک دانه گندم برای خانه اول آغاز کند و به هر خانه شطرنج که رسید تعداد دانه های گندم را نسبت به خانه قبل دو برابر افزایش دهد. مثلاً برای روز چهارم پادشاه می بایست تعداد ۱۶=۲۴ دانه گندم به مرد فاضل بدهد. مرد خردمند شرط کرد که در صورت عدم توانایی پرداخت این گندم ها از سوی پادشاه می باید تاج و تخت هندوستان را برای همیشه ترک کند. پادشاه نیز با کمال میل پذیرفت و در دل به بی خردی آن ناشناس خندید. مسلماً در روزهای اول مشکلی وجود نداشت. اما مشکل اصلی از آنجا شروع می شد که این اعداد به صورت شگفت آوری بزرگ می شدند. در روز دهم تعداد ۱۰۲۴=۲۱۰ دانه گندم باید پرداخت می شد که تعداد زیادی نیست. اما روز بیستم تعداد قابل ملاحظه ای می شود یعنی ۵۷۶/۰۴۸/۱=۲۲۰ دانه گندم. فکر می کنید وقتی که به روز آخر یعنی خانه شصت و چهارم برسید چه اتفاقی بیفتد. درست حدس زده اید پادشاه ما به ….=۲۶۴ دانه گندم نیاز دارد که این تعداد گندم با تمام دانه های شن و ماسه موجود بر روی زمین برابری می کند! در روزهای آخر این شرط تازه پادشاه هند متوجه شد که چه کلاه بزرگی سرش رفته است اما چاره ای جز کناره گیری از تاج و تخت نبود!مثال های بسیاری از این دست موجود است که به قدرت شگرف اعداد و بیشتر از آن به قدرت تفکر انسان هایی که راه سود بردن از آن را بدانند اشاره می کند


0

نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...
امتیاز به این مطلب!

اقلیدس (ریاضیدان)

517 views

بازدید

امتیاز به این مطلب!
کسی که هندسه نمی‎داند از این در داخل نشود،
کتیبه سر در روی آکادمی افلاطون
بیشتر مردم نمی‎دانند که در حدود یک سده و نیم پیش انقلابی در زمینه هندسه روی داد که از لحاظ علمی به عمق انقلاب کوپرنیکی در نجوم، و از جنبه نتایج فسلفی به اهمیت نگره تکامل داروین بود. کاکستر ، هندسه‎دان کانادایی می‎نویسد: «تأثیر کشف هندسه هذلولوی در تصوری که از حقیقت و واقعیت داریم آنچنان عمیق بوده است که بدشواری می‎توانیم تصور کنیم که امکان وجود هندسه‎ای غیر از هندسه اقلیدسی تا چه اندازه در سال ۱۸۲۰ تکان دهنده جلوه‎ کرده است.» اما همه ما امورزه نام هندسه فضا – زمان نگره نسبیت اینشتاین را شنیده‎ایم. «در واقع، هندسته پیوستار  فضا – زمان به حدی به هندسه تا اقلیدسی وابسته است که آگاهی از این هندسه‎ها شرط لازم برای درک کامل جهانشناسی نسبیت است.»
هندسه اقلیدسی، همان هندسه‎ای که شما در دبیرستان خوانده‎اید، هندسه‎ای است که بیشتر برای تجسم جهان مادی به کار می‎بریم. این هندسه از کتابی به نام اصول  به دست ما رسیده که توسط اقلیدس، ریاضیدان یونانی، در حدود ۳۰۰ سال پیش از میلاد مسیح نگاشته شده است. تصوری که ما براساس این هندسه از جهان مادی پیدا کرده‎ایم تا حد زیادی به توسط آیزک نیوتن در اواخر سده هفدهم ترسیم شده است.
هندسه‎هایی که اقلیدسی نیستند از مطالعه عمیقتر موضوع توازی در هندسه اقلیدسی پیدا شده‎اند. دو نیمخط موازی عمود بر پاره خط PQ را در نمودار زیر در نظر بگیرید:

در هندسه اقلیدسی فاصله (عمودی) بین دو نیمخط هنگامی که به سمت راست حرکت می‎کنیم همواره مساوی فاصله P تا Q باقی می‎ماند؛ ولی در اوایل سده نوزدهم دو هندسه دیگر پیشنهاد شد. یکی هندسه هذلولوی (از کلمه یونانی هیپربالئین به معنی «افزایش یافتن») که در آن فاصله میان نیمخطها افزایش می‎یابد، دیگری هندسه بیضوی  (از کلمه یونانی الیپن «کوتاه شدن») که در آن این فاصله رفته رفته کم می‎‏شود و سرانجام نیمخطها همدیگر را می‎برند. این هندسه‎های نااقلیدسی بعدها به توسط ک.ف. گاوس و گ.ف.ب. ریمان در قالب هندسه کلیتری بسط داده شدند (همین هندسه کلیتر است که در نگره نسبیت عام اینشتاین مورد استفاده قرار گرفته است ).
در این کتاب ما به هندسه‎های هذلولوی و اقلیدسی خواهیم پرداخت. هندسه هذلولوی تنها به تغییر یکی از اصول اقلیدس نیاز دارد، و می‎تواند به همان آسانی هندسه دبیرستانی فهیمده شود. از سوی دیگر، هندسه بیضوی شامل مفهوم توپولوژیک تازه «سوناپذیری» است، زیرا همه نقاط صفحه بیضوی که بر روی یک خط نیستند در یک طرف آن خط قرار داردند. از این هندسه نمی‎شود به همان سهولت هندسه اقلیدسی صبحت کرد، زیرا به بسط قبلی هندسه تصویری نیاز دارد. بنابراین بحث در باره هندسه بیضوی را در یک ضمیمه کوتاهی انحام داده‎ام. (اشتباه نشود! منظو ما این نیست که ارزش هندسه بیضوی کمتر از ارزش هندسه‌هذلولوی است.) فهم هندسه ریمانی مستلزم درک کامل محاسبات دیفرانسیل و انتگرال، و لذا بیرون از ظرفیت این کتاب است (در ضمیمه «ب» مختصری راجع به آن بحض شده است).
فصل اول با تاریخچه مختصری در باب هندسه در دوران قدیم آغاز می‎شود، و به بیان اهمیت بسط روش بنداشتی  توسط یونانیان ادامه می‎یابد. همچنین پنج اصل موضوع اقلیدس معرفی و به تلاش لژاندر برای اثبات اصل موضوع پنجم ختم می‎شود. برای پیدا کردن نقص برهان لژاندر (و برهانهای دیگر)، لازم است که مبانی هندسه دو باره دقیقاً مورد بررسی قرار گیرد. ولی، پیش از آنکه بتوانیم اساساً هندسه‎ای بنا کنیم، باید به بعضی از اصول بنیادی منطق آگاهی داشته باشیم. این اصول در فصل دوم به گونه‎ای غیر رسمی دوباره بررسی شده‎اند. در این فصل عناصر مشکله یک برهان دقیق را از نظر می‎گذرانیم و بویژه به روش اثبات نامستقیم یا برهان خلف تکیه می‎کنیم. فصل دوم به مفهوم بسیار مهم الگو  برای یک دستگاه بنداشت ختم می‎شود، که با الگوهای متناهی از بنداشتهای وقوع نقاط و خطوط در هندسه نشان داده شده‎اند.
فصل سوم با بحثی از برخی نقایص در نحوه ارائه هندسه به توسط اقلیدس آغاز شده، و این نقایص با ارائه کامل بنداشتهای داوید هیلبرت (با اندکی تغییر) و نتایج اولیه آنها برطرف شده‎اند. ممکن است هنگام اثبات نتایجی که خودبخود بدیهی به نظر می‎رسند بی‎حوصله شوید. اما، هرگاه بخواهید با اطمینان در فضای نااقلیدسی کشتی برانید باید به این کار اساسی تن درهید.
مطالعه نتایج بنداشتهای هیلبرت، جز اصول نوازی، در فصل چهارم ادامه یافته است.
موضوع این مطالعه هندسه نتاری نامیده شده است. بعضی از قضیه‎های اقلیدس (مثل قضیه زاویه خارجی) را که شما با آنها آشنایی دارید، با روشی غی از روشهایی که به توسط اقلیدس به کار رفته‎اند اثبات خواهیم کرد. این تغییر به علت شکافهای منطقی موجود در استدلالاهای اقلیدس لازم بوده است؛ همچنین برخی قضایا را که اقلیدس نمی‎توانسته است بر آنها واقف باشد (مانند قضیه‌ساکری – لژاندر) ثابت خواهیم کرد.
به اتکای پایه‎های محکمی که در فصول مقدم بر فصل پنجم گذاشته شده‎اند، آمادگی خواهیم داشت که در فصل پنجم چند تلاش مهم را که برای اثبات اصل توازی صورت گرفته‎اند مورد تجزیه و تحلیل قرار دهیم (در تمرینات مجال خواهید داشت که نقایصی را در تلاشهای دیگر پیدا کنید). بر اثر این مطالعات، شیوه تفکر اقلیدسی شما چنان تکان می‎خورد که در فصل ششم می‎توانیم «دنیا شگرف تازه»‎ای را کشف کنیم، دنیایی را که در آن مثلثها مجموع زوایای «نادرست» دارند، مستطیل وجود ندارد، خطوط موازی ممکن است واگرا و یا به طور مجانبی همگرا باشند. در ضمن این کار داستان هیجان‎انگیز تاریخی اکتشاف تقریباً همزمان هندسه هذلولوی توسط گاوس، بویوئی و لوباچفسکی، در اوایل سده نوزدهم، را ورق خواهیم زد.
این هندسه با اینکه ناآشناست، به همان سازگاری هندسه اقلیدسی است. این نکته را در فصل هفتم هنگام بررسی سه الگوی اقلیدسی که در تجسم هندسه هذلولوی نیز ما را یاری می‎کند اثبات خواهیم کرد. الگوهای پوانکاره این برتری را دارند که در آنها زوایا به روش اقلیدسی اندازه گرفته می‎شوند؛ برتری الگوی بلترامی – کلاین در نمایش خطوط توس پاره‎خطهای اقلیدسی است. همچنین در فصل هفتم از مطالبی از هندسه اقلیدسی بحث خواهیم کرد که در کتابهای دبیرستانی ذکری از آنها نشده است.
سرانجام،‌فصل هشتم به طریقی کلی برخی از استلزامهای فلسفی هندسه‎های نااقلیدسی را دربر می‎گیرد. عرضه مطالب تعمداً به گونه‎ای جدلی صورت گرفته است و منظور از مقاله‎های انشایی برانگیختن خواننده و تشویق او به تفکر و مطالعه بیشتر است.
بسیار مهم است که شما همه تمرینات را حل کنید، زیرا که نتایج تازه در ضمن تمرینات بسط داده شده و سپس در فصول بعدی مورد استفاده قرار گرفته‎اند. با حل همه تمرینات، ممکن است شما هم به جایی برسید که از هندسه به اندازه من لذت ببرید.

هندسه اقلیدس
اصل توازی… در دوران کهن حل نهایی مسئله‎ای بود که بایستی ریاضیات یونان را زمانی دراز پیش از اقلیدس به خود مشغول داشته باشد.
هانس فروید نتهال
منشأ هندسه
واژه «ژئومتری» از دو واژه یونانی؛ ژئو، به معنی زمین، و متراین، به معنی اندازه‎گیری آمده است؛ هندسه در اصل علم اندازه‎گیری زمین بوده است. هرودت، مورخ یونانی (سده پنجم قبل از میلاد)، پیدایش هندسه را به مساحان مصری نسبت می‎دهد. ولی تمدنهای کهن دیگر (بابلی، هندی، چینی) هم اطلاعات هندسی زیاد داشته‎اند.
هندسه پیشینیان در واقع گرد‎اوری از روشهای «قاعده سرانگشتی» بود که از راه آزمایش. بررسی شباهتها، حدسها و شهودهای اتفافی، دست یافتن به آنها میسر شده بود. خلاصه، هندسه موضوعی تجربی بود که جوابهای تقریبی آن معمولاً برای مقاصد عملی کافی بودند. بابلیهای ۲۰۰۰ تا ۱۶۰۰ سال پیش از میلاد مسیح محیط دایره را ۳ برابر قطرش می‎گرفتند. یعنی  را مساوی ۳ اختیار می‎کردند. این همان مقداری است که ویتروویوس  معمار رومی به آن داده بود و در نوشته‎های چینی همان مقدار پیدا شده است. حتی یهودیان باستانی این مقدار را مقدس می‎شمردند و می‎پنداشتند که کتاب مقدس آن ار تثبیت کرده است (کتاب اول پادشاهان، باب هفتم، آیه بیست و سوم) و تلاش خاخام نهه میا  برای تبدیل   به ۷/۲۲ به نتیجه نرسیده بود. مصریان سال ۱۸۰۰ پیش از میلاد، طبق پاپیروس رایند  مقداری تقریبی   را چنین می‎گرفته‎‏اند:
 
حدسهای مصریان در پاره‎ای از موارد درست و در پاره‎ای دیگر نادرست بودند. یکی از کارهای برجسته آنان پیدا کردن دستور صحیح برای حجم هرم ناقص مربع القاعده بوده است. از سوی دیگر، چنین می‎‏پنداشتند که دستوری که برای مساحت مستطیل صحیح است برای هر چهار ضلعی نامشخص نیز می‎تواند صحیح باشد. هندسه مصری به معنی یونانی کلمه علم نبود، بلکه صرفاً انبانی بود پر از قواعد محاسبه، بی‎هیچ موجبی یا توجیهی.
بابلیان در حساب و جبر خیلی از مصریان پیشرفته‎تر بودند. وانگهی، قضیه فیثاغورس را – که در هر مثلث قائم الزاویه مربع طول وتر مساوی با مجموع مربعات طولهای دو ضلع دیگر است – خیلی پیش از آنکه فیثاغورس به دنیا بیاید می‎دانستند. تحقیات اخیر اتونویگه باوئر  تأثیر جبر بابلیان بر ریاضیات یونانی را که قبلاً نادانسته بود مکشوف ساخته است.
ولی یونانیان. و پیش از همه طالس ملطی،  اصرار می‎ورزیدند که احکام هندسی باید از راه استدلال قیاسی ثابت شوند نه از راه آزمایش و خطا. طالس با محاسبات قسمتی درست و قسمتی نادرست که از ریاضیات بابلی و مصری در دست بود آشنایی داشت. وی ضمن کوشش برای تمیز نتایج درست از نادرست، نخستین هندسه منطقی را بنیاد نهاد. (طالس به سبب پیشگویی خورشیدگرفتگی سال ۵۸۵ پیش از میلاد نیز مشهور است). استخراج منظم قضایا از راه اثبات، از مشخصات ریاضیات یونانی و کاملا تازه بوده است.
نظام بخشی و تابع اصول سازی که با طالس آغاز شده بود، مدت دو سده توسط فیثاغورش و شاگردانش ادامه یافت. معاصران فیثاغورش در او به دیده پیامبری دینی می‎نگریستند. او به ابدیت روح و تناسخ معتقد بود. او از پیروان خود یک «جمعیت برادری» تشکیل داد که آداب تهذیب و تزکیه‎ای خاص خود داشت، و پیرو عقاید گیاهخواری و اشتراک اموال بود. تمایز فیثاغورسیان از دیگر گروههای مذهبی در این بود که آنان اعتلای روح و یگانگی با خدا را از راه مطالعه موسیقی و ریاضی میسر می‎دانستند. در موسیقی، فیثاغورس نسبتهای صحیح فواصل هارمونیک را حساب کرد. در ریاضیات، خواص مرموز و شگفت‎انگیز اعداد را تعلیم می‎داد. کتاب هفتم اصول اقلیدس که کتابی در باره نگره اعداد است، در مکتب او آموخته می‎شد.
زمانی که فیثاغورسیان طولهای کنگ، نظیر   را کشف کردند به سختی یکی خوردند (فصل دوم صفحات ۳۴-۳۵). در ‎آغاز کوشیدند که این کشف را پوشیده نگاه دارند. پروکلوس  مورخ می‎نویسد: «هم می‎دانیم مردی که نخستین بار نگره اعداد کنگ را آشکار ساخت هنگام غرق یک کشتی از میان رفت، تا چیزی که بیان نشدندی و تصور ناپذیر است برای همیشه پوشیده بماند». از آنجایی که فیثاغورسیان   را عدد نمی‎شمردند، جبر خود را به صورت هندسی درآوردند تا بتوانند   و طولهای کنگ دیگر را به توسط پاره خط (مثلاً   را با قطر مربعی به ضلع واحد) نشان دهند.
پی‎ریزی منظم هندسه مسطحه توسط مکتب فیثاغورش را بقراط ریاضیدان (با طبیبی به همین نام خلط نشود) در حدود سال ۴۰۰ پیش از میلاد مسیح در کتاب اصول سروصورتی داد. با اینکه این کتاب گم شده است، می‎توانیم با اطمینان خاطر بگوییم که قسمت اعظم کتابهای اول تا چهارم اصول اقلیدس را، که یک سده بعد منتشر شده، دربرداشته است. فیثاغورسیان هرگز قادر نبودند نگره تناسبهایی را که بر طولهای کنگ نیز جاری باشد بسط دهند. این کار بعداً توسط ائودوکسوس،  که نگر‎ه‎اش در کتاب پنجم اصول اقلیدس گنجانیده شده است، انجام گرفت.
سده چهارم پیش از میلاد مسیح ناظر شکوفایی آکادمی علوم و فلسفه افلاطون (که در حدود سال ۳۸۷ پیش از میلاد بنیاد نهاده شد) بود. افلاطون در کتاب جمهوری می‎نویسد: «مطالعه ریاضیات دستگاهی ذهنی را توسعه می‎دهد و به کار می‎اندازد که ارزش آن از هزار چشم بیشتر است، زیرا که درک حقیقت فقط از راه ریاضی میسر است». افلاطون می‎آموخت که جهان اندیشه مهمتر از جهان مادی حواس است. زیرا که این جهان سایه جهان اولی است. جهان مادی غاری است ناروشن که بر روی دیوارهای آن تنها سایه‎های جهان واقعی خارج را که به نور خورشید روشن شده است، می‎بینیم. خطاهای حواس باید از راه تمرکز فکر اصلاح شوند، که خود این تمرکز از راه مطالعه ریاضیات بهتر میسر می‎‏شود. روش سقراطی محاوره اصولا روش اثبات نامستقیم است، که با آن نشان داده می‎شود که حکم زمانی نادرست است که به تناقضی منجر شود. افلاطون کراراً اثبات کنگ بودن طول قطر مربعی به اضلاع واحد را به عنوان مثالی برای یک روش اثبات نامستقیم (()برهان خلف، فصل دوم، صفحات ۲۳-۳۵) آورده است. نکته اینجاست که این کنگ بودن طول هرگز نمی‎توانسته از راه‎ اندازه‎گیریهای عینی، که همیشه متضمن یک حاشیه کوچک تجربی خطاست، کشف شود.
اقلیدس شاگر مکتب افلاطون بود. در حدود ۳۰۰ سال پیش از میلاد روش قاطع هندسه‌ یونانی و نگره اعداد را در اصول سیزده جلدیش منتشر کرد. با تنظیم این شکاهار، اقلیدس تجربه و کارهای مهم پیشینیان خود در سده‎های جلوتر را گرد هم آورد: تجارب فیثاغورسیان را در کتابهای اول تا چهارم و هفتم و نهم؛ نتایج کارهای آرکیتاس  را در کتاب هشتم؛ کارهای ائودوکسوس را در کتابهای پنجم، ششم، دوازدهم، و کارهای تئه تتوس  را در کتابهای دهم و سیزدهم. کتاب اقلیدس چنان به طور کامل جانشین کوششهای پیشین در شناسانیدن هندسه شد که کمتر نشانه‎ای از آن کوششها به جا ماند. جای تأسف است که بازماندگان اقلیدس قادر نبودند حق تألیف کتاب او را گرد‎آوری کنند؛ چون نامبرده مؤلفی است که اثرش بیش از هرکسی در تاریخ بشریت خوانده شده است. روش او در هندسه متجاوز از دو هزار سال بر تعلیم این ماده مسلط بود. وانگهی، روش بنداشتی که اقلیدس به کاربرد الگویی است برای آنچه که ما امروز «ریاضیات محض » می‎نامیم. «محض» به معنی «اندیشه محض» است: هیچ تجربه عینی برای تحقیق درستی احکام لازم نیست – تنها باید مراقب استدلال در اثبات قضایا بود.
اصول اقلیدس از این حیث هم «محض» است که متضمن هیچ کاربرد علمی نیست؛ البته، هندسه اقلیدسی مورد استعمال بسیار در مسائل عملی مهندسی داشته است، ولی در اصول اشاره‎ای به آنها نشده است. در افسانه آمده است که یکی از آموزندگان مبتدی هندسه از اقلیدسی پرسید: «از آموختن این مطالب چه عاید من می‎شود؟» اقلیدس غلامش را خواند و گفت: «سکه‎ای به او بده، چون که می‎خواهد از آنچه که فرا می‎گیرد چیزی عایدش شود». این گونه تلقی از کاربرد ریاضیات در میان بسیاری از ریاضیدانان محض تا به امروز متداول مانده است – آنها ریاضیات را صرفاً برای خودش، و برای زیبایی و ظرفات ذاتیش فرا می‎گیرند.
چنانکه بعداً خواهیم دید، جای شگفتی است که ریاضیات محض اغلب کاربردهایی پیدا می‎کند که خالق آن هرگز خوابش را هم نمی‎دیده است – دورنمای «غیر عملی» ریاضیات محض، در نهایت، برای اجتماع مفید است. گذشته از آن، آن بخشهایی از ریاضیات هم که «کاربسته» نبوده‎اند برای اجتماع ارزش دارند، خواه به عنوان آثاری زیبا که با هنر و موسیقی قابل مقایسه‎اند و خواه از لحاظ سهم بزرگی که در بسط فهم و خود‎‏آگاهی انسان داشته‎اند.

روش بنداشتی
ریاضیدانان برای کشف قضایا ممکن است از راههای آزمایش و خطا، محاسبه حالات ویژه، حدس در نتیجه الهام، و یا از هر راه دیگری استفاده کنند. روش بنداشتی روشی برای اثبات درستی نتایج است. برای برخی از نتایج مهم در ریاضیات اساساً تنها دلیلهای ناقص داده شده بوده است (خواهیم دید، که حتی اقلیدس هم در این زمینه مقصر بوده است). ولی مهم نیست، زیرا که دلیل درست، عاقبت (اغلب بسیار دیر) فراهم می‎شود و جهان ریاضی خشنود می‎گردد.
بنابراین، دلیلها به ما اطمینان می‎دهند که نتیجه‎ها درست هستند. در بسیاری از موارد این استدلالها نتایج کلیتری را عاید می‎کنند. مثلا، مصریان و هندیان به تجربه دریافته بودند که هرگاه اضلاع مثلثی ۳ و ۴ و ۵ باشند، آن مثلث قائم الزاویه است. اما یونانیان ثابت کردند که اگر اضلاع a و b وc  از مثلثی چنان باشند که  ، آنگاه مثلث قائم الزاویه است. برای کسب اطمینان از درستی این نتیجه لازم است بینهایت بار به آزمایش بپردازیم (و بعلاوه، آزمایشها تنها اندازه تقریبی اشیاء را به ما می‎‏دهند). بالاخره، استدلال بینشی شگرف از روابط بین اشیاء مختلفی که مطالعه می‎کنیم به ما می‎بخشد و ما را ملزم می‎سازد که اندیشه‎های خود را به گونه‎ای منسجم سازمان دهیم.
روش بنداشتی چیست؟ اگر بخواهم از راه استدلال محض شما را متقاعد سازم که حکم ۱S را بپذیرید، باید بتوانم نشان دهم که این حکم چگونه به طور منطقی از حکم دیگر ۲S، که  شما قبلاً آن را پذیرفته‎اید، نتیجه می‎شود. ولی اگر شما ۲S را قبول نداشته باشید، من باید نشان دهم که ۲S چگونه به طور منطقی از یک حکم دیگر ۳S نتیجه می‎شود. ممکن است لازم شود این عمل را چند بار تکرار کنم تا به حکمی برسم که شما آن را می‎‏پذیرید و احتیاجی به اثبات آن نیست. حکم اخیر نقش یک بنداشت (یا اصل موضوع) را ایفا می‎کند. اگر نتوانم به حکمی برسم که شما به عنوان مبنای استدلال من بپذیرید، دچار «تسلسل» خواهم شد، یعنی باید دلیل پشت دلیل بیاورم بی آنکه پایانی داشته باشد.
پس باید دو شرط مسلم شوند تا درستی برهانی را بپذیریم:
شرط ۱٫ پذیرفتن احکامی به نام «بنداشت» یا «اصل موضوع» که به هیچ توجیه دیگری نیاز نداشته باشند.
شرط ۲٫ توافق بر اینکه کی و چگونه حکمی «به طور منطقی» از حکم دیگر نتیجه می‎شود، یعنی توافق در برخی از قواعد استدلال.
کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بی‎نیاز به توجیهی پذیرفتنی بودند دستچین کرد، و از آنها ۴۶۵ گزاره نتیجه گرفت، که بسیاری از آنها پیچیده بودندو به طور شهودی بدیهی نبودند و تمام اطلاعات زمان او را دربرداشتند. یک دلیل بر زیبایی اصول اقلیدس این است که این همه را از آن اندک نتیجه گرفته است.
اصطلحات تعریف نشده (حدود اولیه)
در اینکه برای پذیرفتن درستی استدلالی چه لازم است بحث کردیم. اینک شرطی که آن را مسلم می‎شماریم:
شرط O. تفاهم متقابل در معنی واژه‎ها و نمادهایی که در سخن به کار برده می‎شوند.
تا وقتی که اصطلاحاتی را که به کار می‎بریم برای هردوی ما آشناست و از آنها به نحوی سازگار استفاده می‎کنیم در تفاهم متقابل مشکلی وجود ندارد. اگر من اصطلاح ناآشنایی را به کار ببرم شما حق دارید تعریف آ نرا از من بخواهید. تعاریف را به دلخواه نمی‎توان داد؛ تعاریف تابع قواعد استدلالیبی هستند که در شرط ۲ به آنها اشاره کردیم (ولی آنها را مشخص نکردیم). مثلاً اگر زاویه قائمه را زاویه ْ۹۰ تعریف کنم و زاویه ْ۹۰ را زاویه قائمه تعریف کنم، آنگاه از قاعده خلاف استدلال دوری عمل نمودن تخلف کرده‎ام.
و نیز، هر اصطلاحی را که به کار می‎بریم نمی‎توانیم تعریف کنیم. برای اینکه اصطلاحی را تعریف کنیم باید اصطلاحهای دیگری را بکار بریم و برای تعریف این اصطلاحها، باید بازهم از اصطلاحهای دیگری استفاده نماییم، و به همین قیاس، اگر مجاز نباشیم برخی از اصطلاحات را تعریف نشده بپذیریم دچار دور یا تسلسل خواهیم شد.


0

نويسنده / مترجم : -
زبان کتاب : -
حجم کتاب : -
نوع فايل : -
تعداد صفحه : -

 ادامه مطلب + دانلود...
امتیاز به این مطلب!



هو الکاتب


پایگاه اینترنتی دانلود رايگان كتاب تك بوك در ستاد ساماندهي سايتهاي ايراني به ثبت رسيده است و  بر طبق قوانین جمهوری اسلامی ایران فعالیت میکند و به هیچ ارگان یا سازمانی وابسته نیست و هر گونه فعالیت غیر اخلاقی و سیاسی در آن ممنوع میباشد.
این پایگاه اینترنتی هیچ مسئولیتی در قبال محتویات کتاب ها و مطالب موجود در سایت نمی پذیرد و محتویات آنها مستقیما به نویسنده آنها مربوط میشود.
در صورت مشاهده کتابی خارج از قوانین در اینجا اعلام کنید تا حذف شود(حتما نام کامل کتاب و دلیل حذف قید شود) ،  درخواستهای سلیقه ای رسیدگی نخواهد شد.
در صورتیکه شما نویسنده یا ناشر یکی از کتاب هایی هستید که به اشتباه در این پایگاه اینترنتی قرار داده شده از اینجا تقاضای حذف کتاب کنید تا بسرعت حذف شود.
كتابخانه رايگان تك كتاب
دانلود كتاب هنر نيست ، خواندن كتاب هنر است.

دانلود کتاب , دانلود کتاب اندروید , کتاب , pdf , دانلود , کتاب آموزش , دانلود رایگان کتاب


تمامی حقوق و مطالب سایت برای تک بوک محفوظ است و هرگونه کپی برداری بدون ذکر منبع ممنوع می باشد.


فید نقشه سایت

تمامی حقوق برای سایت تک بوک محفوظ میباشد