

Programming Microsoft® SQL Server™ 2000 with Microsoft Visual
Basic® .NET

Foreword

Acknowledgm ents

I nt roduct ion
 Who’s the Book For?
 What ’s Special About This Book?
 How’s the Book Organized?
 System Requirem ents
 Sam ple Files
 Support

1. Get t ing Started with Visual Basic .NET for SQL Server 2000
 Visual Studio .NET, the Visual Basic .NET I DE
 An Overview of ADO.NET Capabilit ies
 A Starter ADO.NET Sam ple
 Using Query Analyzer

2. Tables and Data Types
 Chapter Resources
 Data Types for Tables
 Scr ipt ing Tables

3. Program m ing Data Access with T-SQL
 I nt roduct ion to Data Access with T-SQL
 Aggregat ing and Grouping Rows
 Processing Dates
 Joins and Subquer ies

4. Program m ing Views and Stored Procedures
 I nt roduct ion to Views
 Creat ing and Using Views
 Views for Rem ote and Heterogeneous Sources
 I nt roduct ion to Stored Procedures
 Creat ing and Using Stored Procedures
 Processing Stored Procedure Outputs
 I nsert ing, Updat ing, and Delet ing Rows
 Program m ing Condit ional Result Sets

5. Program m ing User-Defined Funct ions and Tr iggers
 I nt roduct ion to User-Defined Funct ions
 Creat ing and I nvoking Scalar UDFs
 Creat ing and I nvoking Table-Valued UDFs
 I nt roduct ion to Tr iggers
 Creat ing and Managing Tr iggers

6. SQL Server 2000 XML Funct ionalit y
 Overview of XML Support
 XML Form ats and Schem as
 URL Access to SQL Server
 Tem plate Access to SQL Server

7. SQL Server 2000 Secur ity

 Overview of SQL Server Secur ity
 I nt roduct ion to Special Securit y I ssues
 Sam ples for Logins and Users
 Sam ples for Assigning Perm issions

8. Overview of t he .NET Fram ework
 An I nt roduct ion to the .NET Fram ework
 An Overview of ASP.NET
 XML Web Services

9. Creat ing Windows Applicat ions
 Get t ing Started with Windows Form s
 Creat ing and Using Class References
 I nher it ing Classes
 Program m ing Events
 Except ion Handling for Run-Tim e Errors

10. Program m ing Windows Solut ions with ADO.NET
 An Overview of ADO.NET Obj ects
 Making Connect ions
 Working with Com m and and DataReader Objects
 DataAdapters , Data Sets, Form s, and Form Cont rols
 Modify ing, I nsert ing, and Delet ing Rows

11. Program m ing ASP.NET Solut ions
 Review of ASP.NET Design I ssues
 Creat ing and Running ASP.NET Solut ions
 Session State Managem ent
 Data on Web Pages
 Validat ing the Data on a Web Page

12. Managing XML with Visual Basic .NET
 SQL Server Web Releases
 Overview of XML Technologies
 Generat ing XML Docum ents with t he .NET Fram ework
 Dynam ically Set t ing an XML Result Set
 The I nterplay Between XML and Data Sets
 Creat ing HTML Pages with XSLT

13. Creat ing Solut ions with XML Web Services
 Overview of Web serv ices
 A Web Service to Return a Com puted Result
 A Web Service to Return Values from Tables
 The SQL Server 2000 Web Services Toolk it
 More on Populat ing Cont rols with Web Services

About t he Author

Forew ord
During m y f ive years at Microsoft , I ’ve been helping developers understand
technologies such as Microsoft Visual Studio, Microsoft SQL Server, and Microsoft
Office Developer. Dur ing the past two years, I have worked on the Microsoft
Office XP Visual Basic Language Reference, and now, t he MSDN Office Developer
Center. I n t he m onthly colum n on MSDN, Office Talk , I have wr it t en art icles to
help Off ice developers understand the .NET plat form and how it affects their
current and future developm ent efforts.
As I wr ite t his foreword to Rick Dobson’s book on program m ing Microsoft SQL
Server solut ions with Microsoft Visual Basic .NET, I think back to m y own
experiences developing software applicat ions with Visual Basic. My first
experience with Visual Basic was learning the language using version 3.0. I
rem em ber pick ing up m y first Visual Basic beginner’s book and being excited as I
developed m y first few “Hello, Wor ld” applicat ions. I couldn’t believe how quick
and easy it was to develop software applicat ions that operated sim ilar ly to other
popular shareware program s of that t im e.
However, dur ing that t im e I also discovered som e of t he shortcom ings of Visual
Basic as an enterpr ise- level developm ent language. I t was then that I t urned m y
at tent ion to C+ + . I rem em ber being very frust rated at t ry ing to learn the
language, t ry ing to understand concepts such as pointers, m em ory allocat ion,
and t rue object -or iented program m ing. I took classes on C+ + at t he local
university , but I got even m ore frust rated having to wait m onths unt il I was
taught how to create the sim plest Microsoft Windows form , som ething I did in
just a couple of m inutes using Visual Basic. I n m y frust rat ion, I gave up t ry ing to
learn C+ + and have been using Visual Basic t o develop software applicat ions ever
since.
As each new version of Visual Basic was released, I readied m yself t o learn new
software developm ent t echnologies. First it was Act iveX cont rol developm ent .
Then it was calling the Windows API . Next it was DHTML Applicat ions. Then it was
database developm ent using Microsoft SQL Server. I t always seem ed as though I
had to learn a new language and a new developm ent paradigm for every new
technology that cam e along. I kept t hinking that there had to be an easier and
m ore unified approach.
Well, now we’ve reached the advent of the Microsoft .NET plat form , and with it , a
revolut ion in t he Visual Basic language, Microsoft Visual Basic .NET. I believe that
Visual Basic .NET will provide software developers with new opportunit ies for
quickly and easily designing integrated software applicat ions that connect
businesses and indiv iduals anyt im e, anywhere, and on v irt ually any software
device. With advances in t he Visual Basic .NET language, Visual Basic .NET
developers will f inally be on a par with their C+ + and C# counterparts,
part icipat ing in m any high-end developm ent projects. With Visual Studio .NET
features such as cross- language debugging, along with Visual Basic .NET
conform ance to t he com m on t ype system and the com m on language runt im e,
organizat ions can drive down their developm ent costs by tapping into the wide
range of sk ills that Visual Basic .NET developers now possess.
True object -oriented program m ing is now available in Visual Basic .NET, including
features such as inher it ance and m ethod over loading. I t ’s now sim pler to call t he
Windows API by using the .NET Fram ework Class Libraries. Web applicat ion
developm ent is now as easy as developing Windows form s–based applicat ions.
Database applicat ion developm ent is m ade easier by unit ing disparate data object
libraries such as DAO, RDO, OLE DB, and ADO under ADO.NET, ut ilizing the
power of XML to consum e and t ransm it relat ional data over com puter networks.
And a new technology, XML Web services, allows Visual Basic .NET developers to
host their software applicat ions’ logic over t he Web. Addit ionally , a big issue for

software developers today is that of software applicat ion deploym ent and
versioning. I f you don’t agree, j ust ask any software developer about “ DLL hell,”
and you’re bound to get an earful. For m any .NET applicat ions, the .NET plat form
features “copy and paste” or XCOPY deploym ent . (Users sim ply copy your
applicat ion files from the source m edia to any single directory and run the
applicat ion.) And because .NET no longer relies on the regist ry, virtually all DLL
com pat ibilit y issues go away.
With t his book, Rick aim s to give you the skills you need to program SQL Server
solut ions with Visual Basic .NET. I know you will f ind Rick’s book helpful. Rick
brings his exper ience to bear from three previous books: Program m ing Microsoft
Access Version 2002 (Microsoft Press, 2001), Program m ing Microsoft Access 2000
(Microsoft Press, 1999) , and Professional SQL Server Developm ent with Access
2000 (Wrox Press I nc., 2000) . Rick also br ings his exper ience of leading a
successful nat ionwide sem inar t our. More im portant , I know you will enj oy Rick ’s
book because of his deep interest in Visual Basic .NET and SQL Server, and in
helping you, t he professional developer, understand and apply t hese technologies
in your daily software applicat ion developm ent projects.
Paul Cornell MSDN Office Developer Center
ht tp: / / m sdn.m icrosoft .com / officeMicrosoft Corporat ion February 2002

Acknow ledgm ents
This sect ion offers m e a chance to say thank you to all who helped m ake this
book possible. I wish to offer special recognit ion to five support resources.
First , t he folks at Microsoft Press have been fantast ic. Dave Clark, an acquisit ions
edit or , selected m e to writ e t he book j ust m onths after I com pleted another book
for Microsoft Press. Dick Brown, m y project edit or, staunchly stood up for his
percept ion of how to m ake the book’s organizat ion and content clear t o you
without being pet t y or bor ing to m e. Dick also lightened m y load substant ially by
showing a real knack for edit ing m y text without distort ing the or iginal intent .
When Dick was especially busy, he handed off som e of his load to Jean Ross, who
also did an adm irable job. Others at Microsoft Press who cont r ibuted to m y well-
being in one way or another include Aaron Lavin and Anne Ham ilt on.
Second, I had excellent working relat ions with several professionals within
Microsoft . Paul Cornell, a widely known technical editor at Microsoft , was kind
enough to share his insights on how to present .NET concepts com pellingly. I
want t o thank Paul especially for writ ing the Foreword to t his book. Karthik
Ravindran served as the MSXML Beta Product Lead Engineer at Microsoft Product
Support Services dur ing the t im e that I wrote this book. He provided valuable
technical content about the SQL Server 2000 Web releases. Other Microsoft
representat ives providing m oral and technical support for this book include
Richard Waym ire and Jan Shanahan.
Third, I want to express m y appreciat ion to t he m any readers, sem inar
at tendees, and site v isit ors who took the t im e to tell m e what I did r ight or wrong
for them , and also to those who shared their t echnical support quest ions with m e.
I t is through this k ind of feedback that I am able to know what ’s im portant to
pract icing developers. I encourage you to visit m y m ain Web site
(ht tp: / / www.program m ingm saccess.com) and sign the guest book. The ent ry
form includes space for you to leave your evaluat ion of this book or your quest ion
about a topic covered in the book. I prom ise to do m y best to reply personally. I n
any event , I definitely read all m essages and use them so that I can serve you
bet ter with future edit ions of this, and other, books.
Fourth, I want t o t ell the world how grateful I am to m y wife, Virginia. Without
Virginia’s warm support , love, and care, t his book would be less professional. She
relieves m e of near ly every responsibilit y around the house when I undertake a
book proj ect . I n addit ion, she offers st rategic advice on the issues to address and
their style of coverage. When I run out of t im e, she even pitches in with the
proofreading.
Fift h, it is im portant for m e to give praise and glory to m y Lord and Savior, Jesus
Chr ist , who I believe gave m e the st rength and wisdom to wr ite this book. I n
addit ion, He gave m e health dur ing the long gestat ion per iod that resulted in the
birt h of t his book. I t is m y prayer t hat the book prove to be a blessing to you.

I nt roduct ion
Anyone who buys a book—or considers buying it—wants to know who the book is
for , what sets it apart from others like it , and how the book is organized. This
int roduct ion covers those three quest ions, and it also discusses system
requirem ents, sam ple files, and support .

• First , w ho is the book for? There are at least two answers to t his
quest ion. One answer is that t he book targets professional developers
(and others aspir ing to be professional developers) . The second group the
book addresses is those who want to build full- featured, secure SQL
Server solut ions with Visual Basic .NET.

• Second, w hat ’s special about the book? I hope you com e to believe
that the m ost im portant answer to t his quest ion is that the book
considered qualit y and depth of coverage m ore im portant t han rushing to
m arket . The book will arr ive on bookshelves m ore than three m onths after
the official release of t he .NET Fram ework. I t is m y wish that you der ive
value from the ext ra t im e taken to develop the m any code sam ples and
the in-depth discussions of advanced topics, such as class inher itance,
ASP.NET, and XML Web services.

• Third, how is the book organized? The short answer is that t here are
two m ain sect ions. One sect ion int roduces SQL Server concepts as it
dem onst rates T-SQL (Transact SQL) program m ing techniques. After
conveying SQL Server basic building blocks in t he first part , t he second
part reveals how to put those parts together with Visual Basic .NET and
related technologies into SQL Server solut ions for handling com m on
database chores.

The three support item s include a br ief descr ipt ion of the book’s com panion CD
and how to use it , Microsoft Press Support I nform at ion for t his book, and a
sum m ary of system and software requirem ents for the sam ple code presented in
the book.

W ho’s the Book For?

This book targets professional Visual Basic and Visual Basic for Applicat ions
developers. From m y sem inar tours and Web sites
(ht tp: / / www.program m ingm saccess.com and ht tp: / / www.cabinc.net) , I know
that these professionals are dr iven by a passion to deliver solut ions to t heir
clients through applying the m ost innovat ive technologies their clients will accept .
I n-house developers are the go- to persons for get t ing results fast— part icular ly for
custom in-house system s and databases. I ndependent developers specialize in
serv ing niche situat ions that can include under-served business needs and work
overf lows. I n both cases, these professionals need t raining m aterials that address
pract ical business requirem ents while showcasing innovat ive technologies without
wast ing their t im e. This book st r ives to serve this broad need in two specific
areas.
This book is for developers looking for code sam ples and step-by-step inst ruct ions
for building SQL Server 2000 solut ions with Visual Basic .NET. The book focuses
on the integrat ion of SQL Server 2000 with .NET technologies tapped v ia Visual
Basic .NET. I t is m y firm belief that you cannot create great SQL Server solut ions
in any program m ing language without knowing SQL Server. Therefore, this book

goes beyond t radit ional coverage of SQL Server for Visual Basic developers. You’ ll
learn T-SQL program m ing techniques for data access, data m anipulat ion, and
data definit ion. A whole chapter equips you to secure your SQL Server solut ions.
I n addit ion, there’s plenty of content in this book on Visual Basic .NET and related
technologies, such as ADO.NET, ASP.NET, XML (Extensible Markup Language),
and XML Web services. The presentat ion of t hese technologies dem onst rates
coding techniques and explores concepts that equip you to build bet ter solut ions
with SQL Server 2000 databases. I n addit ion, the book highlights innovat ions
int roduced through the Web releases for SQL Server 2000 that integrate SQL
Server 2000 t ight ly with Visual Basic .NET.
This isn’t a book about XML, but t hree of t he book’s 13 chapters focus in whole or
in part on XML. Therefore, those seeking pract ical dem onst rat ions of how to use
XML with SQL Server and Visual Basic .NET will derive value from this book. I f
you have looked at any of t he com puter m agazines over the past couple of years,
you know that XML is com ing to a solut ion near you. However, t he rapid pace of
XML innovat ion m ay have dissuaded som e from j um ping on the bandwagon while
they wait t o see what ’s going to last and what ’s j ust a fad. I n the book’s three
chapters on XML technology, you’ ll learn about XML docum ents, fragm ents, and
form at t ing as well as related technologies, such as XPath (XML Path Language)
quer ies, XSLT (Extensible Sty lesheet Language Transform at ion) , and WSDL (Web
Services Descript ion Language) .

W hat’s Special About This Book?

There are several features that m ake this book stand apart from the flood of
books on .NET. One of the m ost im portant of these is that t his book didn’t rush to
m arket but rather shipped m onths after t he release of the .NET Fram ework. This
allowed m e enough t im e to filter, exam ine, and uncover what were the m ost
useful and innovat ive features for Visual Basic .NET developers building SQL
Server solut ions. For exam ple, t he book includes a whole chapter on creat ing
solut ions with XML Web services. That chapter includes two m ajor sect ions on the
SQL Server 2000 Web Services Toolk it , which didn’t ship unt il the day of the .NET
Fram ework release.
The .NET Fram ework content is at a professional level, but it isn’t j ust for t echies.
This book doesn’t assum e any pr ior knowledge of t he .NET Fram ework. I t does
assum e that you get paid for building solut ions program m at ically and that at least
som e of t hose solut ions are for SQL Server databases. Therefore, the book
explains basic .NET concepts and dem onst rates how to achieve pract ical results
with t hose concepts through a huge collect ion of .NET code sam ples.
This book is about building solut ions for SQL Server 2000. I include coverage of
the m any special features that t ie Visual Basic .NET and SQL Server 2000 closely
to one another. Although there is coverage of general .NET database techniques,
this book dives deeply into T-SQL program m ing techniques so that you can create
your own custom database object s, such as tables, stored procedures, views,
t riggers, and user-defined funct ions. I n addit ion, t here is separate coverage of
the XML features released with SQL Server 2000 as well as separate coverage of
the XML features in t he first three Web releases that shipped for SQL Server
2000. There are num erous code sam ples throughout t he book. These will equip
you to build solut ions with Visual Basic .NET, T-SQL, and com binat ions of t he two.
Finally, t his book is special because of the unique exper iences of it s author, Rick
Dobson. I have t rained professional developers in Aust ralia, England, Canada,
and throughout the United States. This is m y fourth book in four years, and you
can find m y art icles in popular publicat ions and Web sites, such as SQL Server
Magazine and MSDN Online. As a Webm aster, m y m ain site

(ht tp: / / www.program m ingm saccess.com) serves hundreds of thousands of
sessions to developers each year. I constant ly exam ine their v iewing habits at the
site to determ ine what interests them . I n addit ion, m y site features scores of
answers to t echnical support quest ions subm it ted by professional developers. My
goal in offer ing answers to t hese quest ions is to stay in touch with pract icing
developers wor ldwide so that m y new books address the needs of pract icing,
professional developers.

How ’s the Book Organized?

There are two m ain part s to this book t ied together by an int roductory part . Part
I I , the first m ain part , dwells on SQL Server t echniques. Part I I I builds on the
SQL Server background as it lays a firm foundat ion in .NET techniques for Visual
Basic .NET developers. Part I , the int roductory part , dem onst rates ways to use
SQL Server and Visual Basic .NET together.

Part I , I nt roduct ion

Part I , which includes only Chapter 1, has three m ain goals. First , it acquaints you
with t he basics of Visual Basic .NET within Visual Studio .NET. You can think of
Visual Basic .NET as a m ajor upgrade to t he Visual Basic 5 or 6 that you are
probably using current ly . This first sect ion int roduces som e concepts that you will
find useful as you init ially learn the landscape of Visual Basic .NET. The second
goal of Chapter 1 is to int roduce ADO.NET. I f you think of Visual Basic .NET as a
m ajor upgrade to Visual Basic 6, ADO.NET is m ore like a m ajor overhaul of ADO.
I n two sect ions, you get an int roduct ion to ADO.NET classes— part icular ly as they
relate to SQL Server— and you get a chance to see a couple of beginner sam ples
of how to create SQL Server solut ions with Visual Basic .NET and ADO.NET. The
third goal of t he int roductory part is to expose you to Query Analyzer. This is a
SQL Server client tool t hat ships with all com m ercial edit ions of SQL Server 2000.
You can think of it as an I DE for T-SQL code. Most of the book’s f irst part relies
heavily on T-SQL, and therefore having a convenient environm ent for debugging
and running T-SQL code is helpful. The final sect ion of Chapter 1 addresses this
goal.

Part I I , SQL Server

Part I I consists of six relat ively short chapters that focus substant ially on
program m ing SQL Server 2000 with T-SQL. Chapter 2 and Chapter 3 int roduce T-
SQL and SQL Server data types. I f you are going to program SQL Server and
create eff icient , fast solut ions, you m ust learn SQL Server data t ypes, which is
one of t he m ain points conveyed by Chapter 2. Many readers will gravitate to
Chapter 3 because it int roduces core T-SQL program m ing techniques for data
access. You’ ll apply t he techniques covered in this chapter often as you select
subsets of rows and colum ns in data sources, group and aggregate rows from a
table, process dates, and j oin data from two or m ore tables. Chapter 3 also
considers special data access topics, such as outer j oins, self j oins and
subquer ies.
The next pair of chapters in Part I I , Chapter 4 and Chapter 5, take a look at
program m ing database objects t hat you will use for data access and data
m anipulat ion, such as v iews, stored procedures, user-defined funct ions, and
t riggers. These database objects are im portant for m any reasons, but one of the
m ost im portant is that t hey bundle T-SQL statem ents for their easy reuse. I t is

widely known that the best code is the code that you don’t have to wr it e.
However, if you do have to write code, you should definit ely wr it e it j ust onc, and
then reuse it whenever you need its funct ionalit y. Stored procedures are
part icular ly desirable database objects because they save com piled T-SQL
statem ents that can deliver significant speed advantages over resubm it t ing the
sam e T-SQL statem ent for com pilat ion each t im e you want to perform a data
access or data m anipulat ion task. Chapter 4 and Chapter 5 are also im portant
because they convey T-SQL syntax for using param eters and condit ional logic
that support dynam ic run- t im e behavior and user interact iv it y.
One of t he m ost im portant features of SQL Server 2000 is it s XML funct ionalit y .
Because XML as a topic is changing so rapidly, Microsoft adopted a st rategy of
upgrading the SQL Server 2000 XML funct ionalit y through Web releases. Although
those with SQL Server 2000 can download the Web releases without charge from
the Microsoft Web sit e, the Web releases are fully supported. Chapter 6
int roduces core XML funct ionalit y int roduced with SQL Server 2000 as well as
funct ionalit y from the f irst two Web releases. I n part icular, you can learn in t his
chapter about I I S v irt ual directories as well as form ats for XML docum ents and
schem as. You also learn about tem plates in virt ual director ies that facilitate data
access and data m anipulat ion tasks over t he Web.
Chapter 7 closes out the SQL Server part of t he book with an in-depth look at
program m ing SQL Server secur ity . I n t hese t im es, secur it y has grown into a
m onum ental topic, and this chapter can keep you out of t rouble by blocking
hackers from get t ing into or corrupt ing your database. You learn such topics as
how to create and m anage different types of login and user accounts and how to
cont rol the perm issions available to indiv idual accounts as well as groups of
accounts. By learning how to script accounts and perm issions with T-SQL, you
sim plify revising and updat ing secur ity as condit ions change (for exam ple, when
users leave the com pany or when new, sensit ive data gets added to a t able) .

Part I I I , .NET

Chapter 8 starts the .NET part of the book with a review of selected .NET topics
that are covered in the init ial look Chapter 1 offered at t he .NET Fram ework. This
chapter provides an overview of t he archit ecture for .NET solut ions, and it dr ills
down on two topics: ASP.NET and XML Web services. The general purpose of t his
chapter is t he sam e as Chapter 1, which is to int roduce concepts. The em phasis
in Chapter 8 isn’t how you do som ething, but rather what are the m ajor
technologies enabling you to do som ething. Chapter 1 and Chapter 8 are both
relat ively short chapters, but you m ay f ind them invaluable if you are the k ind of
person who benefits from high- level overviews of a collect ion of topics.
Chapter 9 starts with a close exam inat ion of how to use Windows Form s with
Visual Basic .NET. I t then shifts it s focus to a review of t radit ional class
processing concepts via Visual Basic .NET as an int roduct ion to class inheritance,
a new object -or iented feature that m akes it s f irst appearance in Visual Basic with
Visual Basic .NET. Next the t reatm ent of classes progresses to the handling of
built - in events as well as the raising of custom events. Finally t he chapter closes
with an exam inat ion of the new except ion handling techniques for processing run-
t im e errors.
Chapter 10 is a how- to guide for solut ions to typical problem s with ADO.NET.
Before launching into it s progression of sam ples showing how to perform all k inds
of tasks, the chapter starts with an overview of the ADO.NET object m odel t hat
covers the m ain obj ects along with selected propert ies and m ethods for each
object . The how- to guide focuses on data access tasks, such as select ing rows
and colum ns from SQL Server database objects, as well as data m anipulat ion
tasks, such as insert ing, updat ing, and delet ing rows in a table. Working through

the sam ples in t he how- to guide offers a hands-on feel for using the
System .Data.SqlClient nam espace elem ents to perform typical tasks.
Chapter 11 switches the focus to the Web by addressing the creat ion and use of
ASP.NET solut ions. This chapter starts by int roducing basic elem ents that you
need to know in order to use ASP.NET to create great Web solut ions with Visual
Basic .NET. These include learning what happens as a page does a round- t r ip
from a browser t o a Web server and back to t he browser— part icularly for data
associated with t he page. Other prelim inary topics that equip you for building
professional Web solut ions include running the sam e page in m ult iple browser
types and sniff ing the browser for cases in which you want t o send a page
opt im ized for a specific kind of browser type. Managem ent of session state is a
m ajor t opic in t he chapter, and you learn how to use enhancem ents to Session
variables for Web farm s as well as the new view state var iables, a non-server-
based technique for m anaging state in ASP.NET solut ions. The last two sect ions in
the chapter deal with ADO.NET topics in ASP.NET solut ions and the new
autom at ic data validat ion features built r ight into ASP.NET.
The last two chapters in the book explore how XML interplays with Visual Studio
.NET and SQL Server 2000. For exam ple, Chapter 12 exam ines special tools in
Visual Studio .NET to facilitate the design and edit ing of XML docum ents and
schem as. I n addit ion, you learn how to designate XPath queries that accept run-
t im e input for returning SQL Server result sets inside Visual Basic .NET program s.
The chapter dem onst rates techniques for processing the XML docum ent
associated with all ADO.NET data set objects. I n the chapter ’s last sect ion, I
present a couple of code sam ples that illust rate how to program stat ic HTML
pages based on XML docum ents with XSLT.
Chapter 1 3 dr ills down on XML Web services by dem onst rat ing several different
approaches for creat ing Web services as well as consum ing XML output from Web
services. Web serv ices behave som ewhat like COM objects in that you can set up
server applicat ions for client applicat ions. The server applicat ions expose m ethods
to which the client applicat ions can pass param eters. XML com es into play with
Web services in a couple of areas. First , Web services represent t heir inputs and
outputs v ia WSDL, an XML-based language that form ally describes an XML Web
service. Second, Web services return data to t heir clients as XML docum ents or
docum ent fragm ents.

System Requirem ents

The requirem ents for this book vary by chapter. I developed and tested all
sam ples throughout t his book on a com puter equipped with Windows 2000
Server, SQL Server Enterprise Edit ion, and the Enterprise Developer Edit ion of
Visual Studio .NET, which includes Visual Basic .NET. To use this book, you’ ll need
to have Visual Basic .NET or Visual Studio .NET installed on your com puter. (See
Chapter 1 for m ore inform at ion on versions of Visual Basic .NET and Visual Studio
.NET.) I n addit ion, you’ ll need SQL Server 2000, and for som e of the chapters,
you’ ll need SQL Server 2000 updated with Web releases 1, 2, and 3. Chapter 6
gives the URLs for downloading Web releases 1 and 2. Chapter 12 gives two
different URLs for downloading Web Release 3— one with t he SQL Server 2000
Web Services Toolk it and the other without it .
For selected chapters, you can run the sam ples with less software or different
operat ing system s than the one that I used. For exam ple, chapters 2 through 5
will run on any operat ing system that supports a com m ercial version of SQL
Server 2000, such as Windows 98 or a m ore recent Windows operat ing system .
Chapter 7 requires an operat ing system that supports Windows NT secur ity , such
as Windows 2000 or Windows XP Professional. Chapter 6, Chapter 11, and

Chapter 1 3 require Microsoft I nternet I nform at ion Services (I I S) . I n addit ion,
Chapter 6 requires the installat ion of Web releases 1 and 2. For Chapter 11, your
system needs to m eet t he m inim um requirem ents for ASP.NET. (See a note in t he
“How Does ASP.NET Relate to ASP?” sect ion of Chapter 8.) Several of t he
sam ples in Chapter 1 3 require Web Release 3 and its associated SQL Server
2000 Web Services Toolkit .

Sam ple Files

Sam ple files for t his book can be found at the Microsoft Press Web sit e, at
ht tp: / / www.m icrosoft .com / m spress/ books/ 5792.asp. Click ing the Com panion
Content link takes you to a page from which you can download the sam ples.
Supplem ental content f iles for t his book can also be found on the book’s
com panion CD. To access those files, insert the com panion CD into your
com puter’s CD-ROM dr ive and m ake a select ion from the m enu that appears. I f
the AutoRun feature isn’t enabled on your system (if a m enu doesn’t appear when
you insert t he disc in your com puter ’s CD-ROM drive) , run StartCD.exe in the root
folder of t he com panion CD. I nstalling the sam ple f iles on your hard disk requires
approxim ately 15.3 MB of disk space. I f you have t rouble running any of t hese
files, refer to t he text in the book that describes these program s.
Aside from the sam ple files t hat t his book discusses, the book’s supplem ental
content includes a stand-alone eBook installat ion that will allow you to access an
elect ronic version of the pr int book direct ly from your desktop.

Support

Every effort has been m ade to ensure the accuracy of t his book and the contents
of t he com panion CD. Microsoft Press provides correct ions for books through the
World Wide Web at t he following address:
ht tp: / / www.m icrosoft .com / m spress/ support
To connect direct ly to t he Microsoft Press Knowledge Base and enter a query
regarding a quest ion or an issue that you m ay have, go to:
ht tp: / / www.m icrosoft .com / m spress/ support / search.asp
I f you have com m ents, quest ions, or ideas regarding this book or the com panion
content , or quest ions that are not answered by querying the Knowledge Base,
please send them to Microsoft Press via e-m ail t o:
m spinput@m icrosoft .com
Or v ia postal m ail t o:
Microsoft Press At tn: Program m ing Microsoft SQL Server 2000 with Microsoft
Visual Basic .NET Editor One Microsoft Way Redm ond, WA 98052-6399
Please note that product support is not offered through the above m ail address.
For product support inform at ion, please visit the Microsoft Support Web site at :
ht tp: / / support .m icrosoft .com

Chapter 1 . Get t ing Started w ith Visual
Basic .NET for SQL Server 2 0 0 0
This book aim s to give professional developers the background that they need to
program SQL Server applicat ions with Microsoft Visual Basic .NET. This overall
goal im plies three guidelines:

• First , t he book targets pract icing developers. I n m y exper ience, these are
busy professionals who need the details fast . These indiv iduals already
know how to build applicat ions. They buy a book to learn how to build
those applicat ions with a specific set of tools.

• Second, the book is about building applicat ions for SQL Server 2000. This
focus just ifies in-depth coverage of SQL Server program m ing topics— in
part icular, T-SQL, Microsoft ’s extension of the St ructured Query Language
(SQL) .

• Third, t he book illust rates how to program in Visual Basic .NET, but with
part icular em phasis on database issues for SQL Server 2000. Special
at tent ion goes to related .NET technologies, such as the .NET Fram ework,
ADO.NET, ASP.NET, and XML Web services.

My goal in t his chapter is to equip you conceptually for t he rest of the book.
Therefore, this chapter includes m ater ial t hat acquaints you with applicat ion
developm ent t echniques and topics for SQL Server 2000 and Visual Basic .NET.
The discussion of the sam ples in t his chapter generally aim s to convey broad
approaches instead of how to run the sam ple. All t he rem aining chapters except
for Chapter 8, another conceptual chapter, have sam ples with inst ruct ions aim ed
at professional developers.
I believe that t he overwhelm ing m ajor ity of professional Visual Basic developers
have no hands-on fam iliar it y with Visual Basic .NET and its related technologies.
I f you already knew Visual Basic .NET, it wouldn’t m ake any sense to buy a book
describing how to use it . This chapter therefore focuses on how to get started
with Visual Basic .NET and one of it s core related technologies for those building
SQL Server applicat ions— ADO.NET. I also believe that m ost Visual Basic
developers don’t have an int im ate knowledge of SQL Server— especially for
creat ing user-defined objects, such as tables, v iews, and stored procedures. This
capabilit y can em power you to build m ore powerful and m ore secure applicat ions.
As you learn about database objects and how to create them in Chapter 2
through Chapter 7, reflect back on the Visual Basic .NET coverage in t his chapter
and how to m arry database creat ion techniques and Visual Basic .NET
developm ent t echniques. One of t he best tools to build database objects is SQL
Server 2000 Query Analyzer. This chapter ’s closing sect ion conveys the basics of
Query Analyzer t hat you need to follow the sam ples in Chapter 2 through Chapter
7.

Visual Studio .NET, the Visual Basic .NET I DE

Visual Studio .NET is t he new m ult ilanguage integrated developm ent environm ent
(I DE) for Visual Basic, C# , C+ + , and JScr ipt developers. I f you are developing
solut ions for Visual Basic .NET, I definitely recom m end that you use Visual Studio
.NET as your developm ent environm ent . This sect ion dem onst rates how to get
started using Visual Studio .NET for developing solut ions with Visual Basic .NET.

Visual Basic .NET is available as part of Visual Studio .NET in four edit ions:

• Professional
• Enterpr ise Developer
• Enterpr ise Architect
• Academ ic

All four edit ions of Visual Studio .NET include Visual Basic .NET, Microsoft Visual
C# .NET, Microsoft Visual C+ + .NET, and support for other languages. I n
addit ion, Microsoft offers Visual Basic .NET Standard, which doesn’t include Visual
C# .NET or Visual C+ + .NET.
Because this book targets professional Visual Basic developers creat ing SQL
Server applicat ions, it uses the Enterpr ise Developer Edit ion of Visual Studio
.NET. You m ay not ice som e differences if you’re using another edit ion.
Visual Studio .NET can be installed on com puters running one of f ive operat ing
system s: Windows 2000, Windows NT, Windows XP, Windows ME, and Windows
98. Not all the .NET Fram ework features are available for each operat ing system .
For exam ple, Windows 98, Windows Me, and Windows NT don’t support
developing ASP.NET Web applicat ions or XML Web services applicat ions. The
sam ples for t his book are tested on a com puter running Windows 2000 Server,
which does support all .NET Fram ework features.

Start ing Visual Studio .NET

To open Visual Studio .NET, click t he Start but ton on the Windows taskbar,
choose Program s, and then choose Microsoft Visual Studio .NET. Visual Studio
displays it s integrated developm ent environm ent , including the Start Page (unless
you previously configured Visual Studio t o open different ly) . From the Start Page,
you can configure Visual Studio to work according to your developm ent
preferences, and you can start new solut ions as well as open exist ing projects.

Configuring Visual Studio .NET for Visual Basic .NET

Use the links on the left side of the Start Page to begin conf igur ing Visual Studio
.NET for developing solut ions in Visual Basic .NET. Click t he My Profile link t o
open a pane in which you can specify an overall profile as well as indiv idually
indicate your preferences for Keyboard Schem e, Window Layout , and Help Filt er.
You also can designate the init ial page that Visual Basic .NET displays. When you
are beginning, it m ay be part icular ly convenient to choose Show Start Page. As a
Visual Basic developer who has worked with Visual Basic 6, you m ight feel m ost
fam iliar with a layout t hat reflects your pr ior developm ent environm ent . Figure 1-
1 shows these My Profile select ions.

Figure 1 -1 . My Profile select ions for start ing Visual Studio .NET for a
Visual Basic developer.

Using the Start Page

After set t ing your profile, you can return to the init ial Start Page pane by
choosing the Get Started link from the m enu on the left border. I f you had
created previous solut ions, the last four m odified proj ects would appear on the
Proj ects tab of t he Start Page. The tab shows project nam es along with date last
m odified. I f a project you want t o v iew doesn’t appear on the list , you can click
the Open Project link t o display the Open Project dialog box and then navigate to
a directory containing the previously created solut ion. Select the project ’s folder
that you want to open in t he I DE, and double-click the solut ion file (.sln) for the
proj ect . The next sect ion illust rates this process in t he context of a sam ple
proj ect .
To create a new solut ion, click the New Project link t o open the New Project
dialog box. I f you saved preferences such as those shown in Figure 1-1, the
dialog will autom at ically select Visual Basic Proj ects in the Project Types pane of
the New Project dialog box. On the r ight , you can select a tem plate for launching
a proj ect . Table 1-1 shows the project tem plate nam es along with a br ief
descript ion available from the Enterpr ise Developer Edit ion of Visual Studio .NET.
Choosing a tem plate (by clicking OK after select ing a tem plate) opens a proj ect
ready for creat ing the t ype of solut ion that you want t o develop. When Visual
Studio .NET saves the tem plate to start a new project , it specifies either a file
folder or a Web site for the tem plate’s f iles; you can overr ide the default nam es
for the file folder and Web sit e.

Note

Not all the project template types in Table 1-1 are available
with the non-Enterprise (or Standard) edit ions of Visual
Studio .NET. I n addit ion to the em pty projects, the Standard
edit ions make available the Windows Applicat ion, ASP.NET
Web Applicat ion, ASP.NET Web Serv ice, and Console
Applicat ion tem plates.

7DEOH������9LVXDO�%DVLF��1(7�3URMHFW�7HPSODWH�7\SHV�
7HPSODWH�1DPH� &UHDWHV�$�

Windows
Applicat ion

Windows applicat ion with a form

Class Library Windows applicat ion suitable for a library of classes without a
form

Windows Cont rol
Library

Proj ect for developing custom reusable form cont rols for
Windows applicat ions

ASP.NET Web
Applicat ion

Web applicat ion on a Web server

ASP.NET Web
Service

XML Web service on a Web server

Web Cont rol Library Proj ect for developing custom reusable cont rols for Web
applicat ions

Console Applicat ion Com m and line applicat ion that operates in an MS-DOS–sty le
window (the Console)

Windows Service Windows serv ice, form erly NT serv ice, applicat ion that runs
in the background without it s own custom user interface

Em pty Project Local project with no custom style
Em pty Web Project Web proj ect with no custom style
New Project I n
Exist ing Folder

Blank proj ect in an exist ing folder

There are two m ain categor ies of tem plates: Web projects and local proj ects. Web
proj ects perm it a browser to serve as the client for a proj ect . Web proj ects are
opt im ized for form processing on the Web server. Local projects offer custom
form user interfaces with t he capabilit y of processing on a local workstat ion. Local
proj ects can provide richer environm ents m ore conducive to client -side
program m ing, but local projects don’t offer the wide accessibilit y of solut ions
running from a Web server.

Creat ing and Running a Console Applicat ion

When you select a Console Applicat ion tem plate and click OK to launch a new
proj ect , Visual Studio .NET responds by opening a proj ect with a blank m odule. I n
addit ion to the Module window, Visual Studio displays Solut ion Explorer and the
Propert ies window. You can enter code direct ly into t he Module window, which
appears as a tab that you can select alt ernately with the Start Page. Figure 1-2
shows a code sam ple in the Main subrout ine that prom pts for a f irst and second
nam e before com bining them and displaying them in t he Console (t he com puter’s
m onitor) . The code is also available as MyNam eI sFrom Console in the Chapter 1
folder on the com panion CD for this book. Although Visual Basic developers didn’t
previously have Console applicat ions rout inely available, t his sam ple should be

very easy to follow. The final two lines present an inst ruct ion and cause the
window to rem ain open unt il t he user responds to the inst ruct ion. This allows the
user to v iew the full nam e in the Console window.

Figure 1 - 2 . A Console applicat ion for displaying a full nam e based on user
input for first and second nam es.

To the r ight of t he Module window are two other windows. The top one of these is
Solut ion Explorer. I t shows the file st ructure for the solut ion. Solut ion Explorer
indicates in it s f irst line that the solut ion consist s of just one proj ect . Below that
line appears the nam e of the proj ect , MyNam eI sFrom Console. Within the proj ect
are three ent r ies: one each for t he References, Assem blyI nfo.vb, and Module1.vb
elem ents within the solut ion’s proj ect . By default , the Propert ies window is below
Solut ion Explorer. I n t he Full Path property t ext box is an excerpt showing the
path to Module1.vb on m y com puter. When you click the proj ect nam e in Solut ion
Explorer, the Project Folder t ext box in t he Propert ies window displays the path of
the directory holding the solut ion’s f iles. I t is t his directory that you copy to
deploy your solut ion on another com puter with t he .NET Fram ework installed. The
solut ion won’t run without the com m on language runt im e on the com puter t o
which you copy the directory containing the .NET Fram ework solut ion. See
Chapter 8 for m ore detailed coverage of t he .NET Fram ework, including the
runt im e and dist r ibut ing .NET Fram ework solut ions as assem blies of f iles in
folders.
You can test run the applicat ion by choosing Start from the Debug m enu, or by
pressing F5. This opens the Console window with a prom pt to enter a first nam e.
After you close your applicat ion and save any changes to it , your solut ion appears

on the Start Page for recent solut ions. I f you start Visual Studio .NET and the
solut ion you want to open doesn’t appear on the Proj ects tab of t he Start Page,
you can also open the solut ion by click ing Open Project . I n t he Open Project
dialog box, choose the file with t he .sln extension and the solut ion’s nam e
(MyNam eI sFrom Console) . A solut ion can contain just one .sln f ile, but it can
contain m ult iple projects.
You also can run the solut ion and open the Console window direct ly from
Windows Explorer without using Visual Studio .NET. Open the bin subdirectory
within the directory containing the assem bly folder for t he solut ion. Then double-
click t he MyNam eI sFrom Console.exe f ile. This opens the Console window with t he
prom pt for a first nam e.

An Overview of ADO.NET Capabilit ies

ADO.NET encapsulates the data access and data m anipulat ion for the .NET
Fram ework. This sect ion gives you an overview of t he topic that equips you for a
starter sam ple in t he next sect ion. Microsoft chose the nam e ADO.NET for t he
.NET Fram ework data access com ponent t o indicate it s associat ion with the ear lier
ADO technology for data access. While t here are som e sim ilarit ies in syntax
between ADO.NET and ADO (part icular ly for connect ion st r ings) , m any will f ind
the differences are m ore obvious than the sim ilarit ies. These differences
substant ially upgrade ADO.NET over ADO in two key areas— scalabilit y and XML
(Extensible Markup Language) interoperabilit y. As a result , you will be able to
create database applicat ions with ADO.NET that serve m ore users and share m ore
data than you did with ADO. See Chapter 10 for a m ore intensive exam inat ion of
ADO.NET. Chapter 12 explicit ly explores interoperabilit y between ADO.NET and
XML.

.NET Data Provider Types

Your .NET Fram ework solut ions require .NET data providers to connect to data
sources. These providers are different from those used with ADO, but there are
dist inct sim ilar it ies in som e of t he ways you use them . With .NET data providers,
your solut ions can connect , read, and execute com m ands against data sources.
The .NET providers also offer selected other funct ions, such as the m anagem ent
of input and output param eters, security, t ransact ions, and database server
errors.
Visual Studio .NET ships with two .NET data providers— the SQL Server .NET data
provider and the OLE DB .NET data provider. I n addit ion, you can download an
ODBC .NET data provider from the Microsoft MSDN download site
(ht tp: / / m sdn.m icrosoft .com / downloads/ default .asp) .

Note

As I write this chapter , the ODBC .NET data provider just becam e
available with the rollout of the shipping version of Visual Studio
.NET. You can download it from
ht tp: / / msdn.m icrosoft .com/ downloads/ default .asp?url= / downloads/ s
ample.asp?url= / msdn- files/ 027/ 001/ 668/ msdncompositedoc.xm l.
The URLs for resources somet imes change. You can always search
for the ODBC .NET data provider at the MSDN download site to
obtain its current download locat ion.

The three providers taken together offer fast , highly focused access to selected
data sources as well as general access to a wide range of possible data sources.
The SQL Server .NET data provider is opt im ized for SQL Server 7.0 and SQL
Server 2000. This data provider connects direct ly t o a SQL Server instance.
The OLE DB .NET data provider connects to OLE DB data sources through two
interm ediate layers— the OLE DB Service Com ponent and the classic OLE DB
provider int roduced along with ADO. The OLE DB Service Com ponent m anages
connect ion pooling and t ransact ion serv ices. The classic OLE DB provider, in turn,
direct ly connects to a database server. Microsoft explicit ly tested the OLE DB .NET
data provider with SQL Server, Oracle, and Jet 4.0 databases. Use the OLE DB
.NET data provider to connect t o t he SQL Server 6.5 version and earlier ones.
This provider is also good for connect ing to your Microsoft Access solut ions based
on the Jet 4.0 engine.
The OLE DB .NET data provider definit ely doesn’t work with t he OLE DB provider
for ODBC data sources (MSDASQL) . Because the .NET OLE DB data provider
doesn’t connect to ODBC data sources, you require t he ODBC .NET data provider
for connect ing to ODBC data sources from your .NET Fram ework solut ions.
There are four m ain .NET data provider classes for interact ing with a rem ote data
source. The nam es of t hese classes change slight ly for each type of provider, but
each .NET data provider has the sam e four kinds of classes. The nam es for t he
SQL Server .NET data provider classes for interact ing with SQL Server instances
are SqlConnect ion, SqlCom m and, SqlDataReader , and SqlDataAdapter . You can
use the SqlDataReader class for read-only applicat ions from a SQL Server data
source. Two especially convenient ways to display results with a SqlDataReader
class are in a m essage box or the Visual Studio .NET Output window. The
SqlDataAdapter class acts as a bridge between a rem ote SQL Server data source
and a DataSet class instance inside a Visual Basic .NET solut ion.
A data set in a Visual Studio solut ion is a fifth type of ADO.NET class. A data set
can contain m ult iple tables. A sixth ADO.NET class is the DataView class, which
acts like a v iew based on a table within a DataSet obj ect . Windows Form s in
Visual Basic .NET applicat ions can bind only to tables within a DataSet obj ect and
DataView objects. I exam ine the DataSet object later in t his sect ion. Chapter 10
includes a system at ic sum m ary of all six ADO.NET classes that reviews selected
propert ies and m ethods of each class. The overview of ADO.NET classes in
Chapter 10 is supported by num erous code sam ples that illust rate how to
m anipulate instances of the classes program m at ically .

Note

I n order to use abbreviated names, such as those listed in
this sect ion for the SQL Server .NET data provider class
instances, your applicat ion needs a reference to the SqlClient
namespace. You can create such a reference with an I m ports
System.Data.SqlClient statement just before a Module
declarat ion.

SqlConnect ion Class

An instance of t he SqlConnect ion class can interface direct ly with a SQL Server
data source. Use a const ructor statem ent t o instant iate a SqlConnect ion object
from the SqlConnect ion class. The const ructor statem ent is a new type of sy-ntax
for .NET Fram ework solut ions. This type of statem ent perm its you to declare,
instant iate, and pass startup param eters to an object based on a class. With t he
SqlConnect ion const ructor statem ent , you can specify a connect ion st r ing as an
argum ent for the const ructor statem ent . Alternat ively, you can assign the

connect ion st r ing to t he SqlConnect ion obj ect after it s instant iat ion with a
property assignm ent statem ent for the Connect ionSt ring property. The following
line shows the syntax to instant iate a new SqlConnect ion obj ect , MySQLCnn1 ,
wit h a connect ion st r ing designat ing integrated secur ity t o the m ydb database on
the m yserver instance of SQL Server. You don’t have to explicit ly indicate a
provider because the const ructor statem ent reveals the type of provider through
its reference to the SqlConnect ion class.
Dim MySQLCnn1 As New _
SqlConnection(“Integrated Security=SSPI;" & _
"Data Source=myserver;Initial Catalog=mydb")

After instant iat ing a SqlConnect ion object , you need to invoke it s Open m ethod
before the object can link another object based on one of t he other SQL Server
.NET data provider classes, such as SqlCom m and, SqlDataAdapter , or
SqlDataReader , to a SQL Server instance. I nvoke the Close m ethod to recover t he
resources for a SqlConnect ion obj ect when your solut ion no longer needs it . The
Close m ethod rolls back any pending t ransact ions and releases the connect ion to
the connect ion pool. The Dispose m ethod is also available for rem oving
connect ions, but it invokes the Close m ethod and perform s other .NET
adm inist rat ive funct ions. Microsoft recom m ends the Close m ethod for rem oving a
connect ion. Unclosed connect ions aren’t returned to t he connect ion pool.

SqlCom m and and SqlDataReader Classes

One way to put a connect ion to use is t o em ploy it along with t he SqlCom m and
and SqlDataReader objects. A SqlDataReader object can m aintain an open
forward-only, read-only connect ion with a SQL Server database. While the
SqlDataReader using a SqlConnect ion object is open, you cannot use the
SqlConnect ion object for any other purpose except to close the connect ion.
Closing a SqlDataReader obj ect releases it s associated SqlConnect ion obj ect for
other uses. The SqlDataReader class doesn’t have a const ructor statem ent . You
declare the SqlDataReader obj ect with a Dim statem ent and assign a result set
from a SqlCom m and obj ect to a SqlDataReader wit h t he ExecuteReader m ethod
of t he SqlCom m and obj ect . Finally, invoke the SqlDataReader object Read
m ethod to open a row from the result set in t he SqlDataReader .
The SqlCom m and obj ect can serve m ult iple funct ions, including processing a T-
SQL statem ent against a connect ion. When used in t his fashion, the SqlCom m and
can take two argum ents. The first can be a T-SQL data access statem ent , such as
SELECT * FROM MyTable . The second SqlCom m and argum ent designates the
source connect ion for t he T-SQL statem ent . For exam ple, you can use the nam e
of a SqlConnect ion obj ect , such as MySQLCnn1 .
Figure 1-3 shows the route from a SQL Server data source to a SqlDataReader
obj ect . Although the SqlConnect ion and SqlCom m and obj ects support two-way
interact ion with a data source, the SqlDataReader object allows read-only access
to the result set from the T-SQL statem ent serv ing as an argum ent for a
SqlCom m and const ructor. Because a SqlDataReader object cannot specify it s own
data source, a SqlDataReader object m ust link t o a SqlConnect ion object through
an interm ediate SqlCom m and object .

Figure 1 -3 . A schem at ic illust rat ing the route by w hich a SqlDataReader
object returns values to an applicat ion.

The SqlCom m and obj ect can do m ore than provide a result set to t he
SqlDataReader obj ect . The discussion of the SqlDataReader obj ect described the
use of t he SqlCom m and obj ect ExecuteReader m ethod. Three related m ethods
highlight som e cont rast ing SqlCom m and obj ect funct ionalit y.

• I nvoke the ExecuteNonQuery m ethod to perform two types of act ions.
First , use this m ethod to perform data def init ion tasks, such as creat ing
stored procedures and v iews. Second, the ExecuteNonQuery m ethod can
enable data m anipulat ion tasks, such as inserts, updates, and deletes.

• Next , you can apply the ExecuteScalar m ethod to a SqlCom m and obj ect
when you want to return a single value from a SELECT statem ent . The
m ethod returns the first colum n from the first row of a result set . I f you
program this cell t o be an aggregate value such as a count or sum , you
can readily ext ract t hat single value with the ExecuteScalar m ethod.

• Finally, t he ExecuteXMLReader m ethod opens a T-SQL source statem ent
with a FOR XML clause into an XMLReader obj ect . Chapter 6 contains
extensive coverage of t he FOR XML clause. Objects for dealing with XML
will be covered in Chapter 12.

The SqlDataAdapter Class and the DataSet Class

You use objects based on the SqlDataAdapter class in com binat ion with objects
based on the DataSet class. A DataSet object , which is an instance of t he DataSet
class, represents an in-m em ory cache of data ret r ieved from a database. The
DataSet obj ect offers a disconnected data source as opposed to the always-
connected data source for SqlDataReader objects. As a consequence, using the
SqlDataAdapter and DataSet obj ects instead of a SqlDataReader object im proves
applicat ion scalabilit y. This scalabilit y im provem ent results because the DataSet
doesn’t persist a connect ion to it s underly ing data source over t he whole of it s
lifet im e as does the SqlDataReader obj ect . While t he SqlDataReader isn’t as
scalable as the SqlDataAdapter / DataSet com binat ion, t he SqlDataReader can
provide faster perform ance from a rem ote data source because it delivers data in
the style of a forward-only, read-only cursor— the classic f irehose delivery m odel.

Note

The term firehose refers to the fact that data gushes out of a
forward-only, read-only cursor.
The SqlDataAdapter and DataSet obj ects com bine to enable both data access and
data m anipulat ion capabilit ies. This is im portant because SqlDataReader obj ects
provide st r ict ly data access capabilit ies (that is, you cannot perform update,

insert , or delete tasks with a SqlDataReader obj ect) . Use the SqlDataAdapter Fill
m ethod to populate a DataSet obj ect with values from a SQL Server data source.
Because a single DataSet obj ect can work with m ult iple SqlDataAdapter and OLE
DB DataAdapter objects, you can populate a single DataSet obj ect with
heterogeneous data sources from m ult iple database servers. For exam ple, you
can populate a single data set with tables, v iews, or stored procedures from two
different SQL Server instances or from Access and Oracle data sources in addit ion
to a SQL Server data source. Furtherm ore, you can j oin all the data sources
within a DataSet object on fields with com m on data types.
Use the SqlDataAdapter Update m ethod to t ransfer changes from a DataSet
obj ect to it s under ly ing data sources. When users perform insert , update, and
delete operat ions against the contents of a DataSet obj ect , those m odificat ions
don’t t ransfer t o the data sources for t he DataSet obj ect unt il your applicat ion
invokes the Update m ethod for a SqlDataAdapter object underly ing the data
source. Despite it s nam e, t he Update m ethod can process all t hree types of data
m anipulat ion operat ions. However, you need a custom SqlCom m and obj ect to
accom m odate each type of data m anipulat ion task. Therefore, a SqlDataAdapter
can relate t o a rem ote data source through m ore than a single SqlCom m and
obj ect . Between the t im e you populate the DataSet obj ect and the t im e your
applicat ion invokes the SqlDataAdapter Update m ethod, it ’s possible for the
underly ing data source on a SQL Server instance to change. Any changes can
cause except ions because the or iginal values in a data set can be different from
the current values in the SQL Server data source. The SqlDataAdapter has events
and propert ies to help m anage except ions that can occur dur ing an update
process. Figure 1-4 presents a schem at ic diagram sum m arizing how
SqlDataAdapter and DataSet obj ects exchange data with an under ly ing data
source. By cont rast ing this diagram with t he one in Figure 1-3, you can easily
spot an im portant difference between the SqlDataReader and a DataSet object
supplied by a SqlDataAdapter object . The capabilit y of perform ing data
m anipulat ion with the DataSet obj ect is a cr it ical feature that m eans m any
applicat ions will rely on a DataSet obj ect instead of a SqlDataReader obj ect .

Figure 1 - 4 . A schem at ic illust rat ing the route by w hich SqlDataAdapter
and DataSet objects exchange values w ith a SQL Server data source.

The DataSet obj ect offers an object m odel for m anaging the indiv idual elem ents
within it . The DataSet object consists of a DataTable collect ion (along with other
elem ents) . This collect ion can contain one or m ore tables. You can create these
tables with t he SqlDataAdapter Fill m ethod when you init ially populate a DataSet
obj ect from a SQL Server data source. The SelectCom m and property, which is a
T-SQL statem ent or a stored procedure, for a SqlDataAdapter obj ect can serve as
the basis of a table in the DataTable collect ion for a DataSet object . You can use
m ult iple SqlDataAdapter obj ects to add m ore than one table to a DataSet obj ect .
Each table has a r ich object m odel t hat perm its the designat ion of pr im ary keys
and foreign keys as well as const raints to m anage data integrit y within a table.
One very pract ical use for t he DataTable collect ion and the object m odel for
indiv idual tables is t hat you will use it t o navigate am ong the values within a
DataSet obj ect .

Note

I n addit ion to referencing the column values of rows within
an indiv idual DataTable in a DataSet object , you can
reference the schem a of DataTable objects within a DataSet
object . This is part icular ly convenient when you want to
create a table that you want to populate with data from an
XML document .
The DataSet obj ect supports four key m ethods for exchanging it s data with XML
docum ents. Two of the m ethods are used for writ ing XML docum ents based on a
DataSet obj ect , and two are for reading XML docum ents into a DataSet object .
Within each pair , one m ethod focuses just on t ransferr ing schem a inform at ion
and the other focuses on t ransferr ing data as well as schem a inform at ion.

A Starter ADO.NET Sam ple

This sect ion presents a starter sam ple to illust rate som e of t he concepts
described in t he preceding sect ion. Don’t worry about following the details of the
exam ple. I nstead, pay at tent ion to how easy it is to get started with ADO.NET.
This sect ion reinforces the presentat ion of basic ADO.NET concepts described in
the preceding sect ion with sim ple drag-and-drop techniques and a lit t le code
included to t ie objects together or enable selected funct ionalit y. See Chapter 10
for a collect ion of code sam ples that illust rate how to program ADO.NET objects
when you require custom ized solut ions not readily available from the graphical
developm ent environm ent . Most professional developers get called on to do the
hard work that goes beyond dragging and dropping objects. After all, if it were
easy, t hey wouldn’t need you. However, it is nice to start out by seeing how easy
it is to create a sim ple solut ion m ost ly by dragging and dropping.

Note

For those who want the sam ple from this sect ion as a point
of departure, it is available on the book’s CD as the
GraphicalDataBind solut ion.

Adding a SqlDataAdapter , SqlConnect ion , and DataSet

You can drag a SqlDataAdapter object to a form just like a text box or a com bo
box in Visual Basic 6. There is even a wizard to help you configure the
SqlDataAdapter object . Figure 1-5 shows the opening screen im m ediately after
dragging a SqlDataAdapter object to t he startup blank form , Form 1, for a
Windows applicat ion. You can use this wizard to specify two ADO.NET objects.

Figure 1 -5 . The Data Adapter Configurat ion W izard enables you to
graphically configure a SqlDataAdapter object and its related

SqlConnect ion object for use w ith a W indow s form .

First , you can designate a SQL Server database to which to connect ; t his creates
a SqlConnect ion obj ect . This wizard offers several routes for specify ing a
database connect ion. For exam ple, you can pick a previously created connect ion,
or you can create a new collect ion from the Data Link Propert ies dialog box. This
dialog box lets you specify the com m on connect ion st r ing argum ents, such as a
database server, a t ype of authent icat ion, and a database nam e. I n this starter
sam ple, I used the default connect ion to t he Northwind database.
Second, you can specify a data source within a database connect ion using a SQL
st r ing or a stored procedure. For this starter applicat ion, I used SELECT
CategoryID, CategoryName FROM Categories as the SQL st r ing source for t he
SqlDataAdapter object . Although a graphical designer is available for building
query statem ents, you will be severely ham pered as a SQL Server developer if
you don’t learn T-SQL, the dialect of SQL that SQL Server supports. I n addit ion,
you will f ind a grasp of T-SQL im portant for craft ing the statem ents for the
SqlCom m and obj ects t hat enable you to build solut ions that update a SQL Server
data source from a Windows applicat ion.

After you finish configur ing the Data Adapter Configurat ion Wizard, the
com ponent t ray will open below your blank form . The t ray will hold t he two
objects that the wizard created— a SqlDataAdapter object and a SqlConnect ion
obj ect . Because a SqlDataAdapter object is m erely a br idge between a rem ote
data source and a data set in a Windows applicat ion, you will need to create a
data set . Then your SqlDataAdapter obj ect can fill t he data set with data from the
rem ote data source specified by your replies to the Data Adapter Configurat ion
Wizard.
I m m ediately aft er a SqlDataAdapter obj ect is created, three links are displayed
near t he bot tom of t he Propert ies window for t he object . One of these links reads
Generate Dataset . Clicking the link opens the Generate Dataset dialog box, in
which you designate an exist ing data set or specify t he nam e for a new one.
Figure 1-6 shows the specificat ion of a new data set nam ed DsCategories for t he
SqlDataAdapter created with t he Data Adapter Configurat ion Wizard. When you
click OK within t he Generate Dataset dialog box port rayed in Figure 1-6, Visual
Basic .NET adds a new object nam ed DsCategories1 to the t ray below the form .
I n addit ion, Visual Basic .NET adds an XML schem a nam ed DsCategories.xsd to
the solut ion that describes the data set . You can view the schem a for the data set
graphically or as XML code by double-click ing the file’s nam e in Solut ion Explorer .
The schem a’s graphical view is interact ive so that you can change the data type
specificat ion for colum ns and m ake other design changes to t he Categor ies table.
The Propert ies window for t he DsCategor ies.xsd shows the nam e of t he table
specificat ion as Categor ies. At this point , you have com pleted the creat ion of the
DsCategories data set , which contains a DataTable nam ed Categories.

Figure 1 - 6 . You need to add a data set before you can use a
SqlDataAdapter. You can add the data set as sim ply as giving it a nam e in

the Generate Dataset dialog box.

Note

Although the Generate Dataset dialog box shows the data set
name as DsCategories, Visual Basic .NET assigns
DsCategories1 as the data set name in the t ray below Form1.
After adding a SqlDataAdapter object and a DataSet obj ect to an applicat ion, you
can preview the data that the SqlDataAdapter will br ing to t he applicat ion.
Click ing the Preview Data link in t he Propert ies window for a SqlDataAdapter
obj ect opens the Data Adapter Preview dialog box. Click t he Fill DataSet but ton to
display the data in t he dialog box. Because of the SQL statem ent used when
configur ing our SqlDataAdapter obj ect , the but ton populates the form with a table
that shows the CategoryI D and CategoryNam e colum n values from the Northwind
database. Don’t confuse click ing the but ton on the form with populat ing the data
set for use with a Windows form . Filling the Categories data table in the
DsCategories data set with data values from a SQL Server instance and displaying
the values on a Windows form requires two m ore steps. First you need to invoke
the Fill m ethod for t he SqlDataAdapter object . Second you need to bind form
cont rols, such as text boxes, t o colum ns in t he local Categor ies data table.

Filling a Data Set and Binding Controls to I t

A logical place to fill a data set for use with a form is the form Load event
procedure. A single line of code in t he tem plate will f ill t he data set . Run the line
of code from the form Load event t o m ake the contents for t he data set available
as soon as the form opens. The following code segm ent illust rates the syntax for
invoking the SqlDataAdapter Fill m ethod to populate a data set . The event
procedure is for Form 1 , which is the default star tup object for a Windows
applicat ion. The Fill m ethod takes two argum ents in t his situat ion. First you
specify t he data set nam e. Second you designate the DataTable nam e within the
data set . You m ust nam e a DataTable obj ect because one data set can hold
m ult iple DataTable obj ects. Leaving out t he DataTable nam e will cause an error.
 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 SqlDataAdapter1.Fill(DsCategories1, “Categories”)

 End Sub

After you fill the data set , you can bind it to cont rols on a form . For exam ple, I
added two text boxes to Form 1 for t he starter ADO.NET applicat ion. You can do
this with t he Toolbox j ust as in pr ior Visual Basic versions. What ’s new is that
there is now a DataBindings property. You can graphically bind the Text propert y
for a t ext box cont rol to a colum n in t he Categories data table. Figure 1-7 shows
how to bind the Text property for TextBox1 t o t he CategoryI D colum n in t he
Categor ies data table. The Form 1.vb Design tab shows TextBox1 selected on
Form 1. The Propert ies window reveals the assignm ent of t he CategoryI D colum n
to TextBox1 . Select ing a colum n from the Categor ies data table com pletes the
task. I followed the sam e process for TextBox2 , but I selected CategoryNam e
instead.
I f you run Form 1 by pressing the F5 key, you see the form with two text boxes
showing the CategoryI D and CategoryNam e colum n values for t he first row from
the Categor ies data table. While it is nice to see data in t he text boxes,
applicat ions typically seek to allow users to at least browse through data. To

enable browsing, you need cont rols that let a user navigate through the rows of
the Categor ies data table.

Figure 1 - 7 . Use the DataBindings property to bind the Text property of a
text box cont rol to a colum n in a DataTable object .

Navigat ing Through Row s

A row of but ton cont rols can provide the basis for a navigat ion bar. All we need
are Text property set t ings indicat ing the navigat ion each but ton provides and
event procedures for t he Click event of each but ton that navigates through the
rows in t he Categor ies data table. I added four but ton cont rols to Form 1 wit h
event procedures to cont rol navigat ion in response to click events. For exam ple,
Figure 1-8 shows the text boxes after t he but ton cont rol on the far r ight has been
clicked. Not ice that the last row (for CategoryI D 8 in the Categor ies data table)
shows in the top text box.

Figure 1 - 8 . Form 1 in the starter ADO.NET sam ple after the last - row
but ton (> |) has been clicked displays colum n values from the

corresponding row in its text box cont rols.

The following set of Click event procedures for But ton1 t hrough But ton4 shows
how easy it is t o cont rol navigat ion. The but tons from left t o r ight navigate to t he
first row, t he previous row, t he next row, and the last row. The procedures
update the Posit ion property of the BindingContext property on the form for t he
Categor ies DataTable in the DsCategor ies1 data set . This m anipulat ion, in turn,
affects all t ext box cont rols bound to t he Categories data table. Chapter 10 dr ills
down m ore deeply into the object m odel support ing these m anipulat ions. The
im portant point to not ice here is that t he code doesn’t have to handle m oving
past the beginning or ending row because ADO.NET is sm art about recognizing
either end of a rowset , such as the Categories data table.
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Move to the first row.
 Me.BindingContext(DsCategories1, “Categories”).Position _
 = Me.BindingContext(DsCategories1, “Categories”). _
 Position.MinValue

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Move to the previous row.
 Me.BindingContext(DsCategories1, “Categories”).Position _
 -= 1

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Move to the next row.
 Me.BindingContext(DsCategories1, “Categories”).Position _
 += 1

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button4.Click

 ’Move to the last row.
 Me.BindingContext(DsCategories1, “Categories”).Position _
 = Me.BindingContext(DsCategories1, “Categories”). _
 Position.MaxValue

 End Sub

Using Query Analyzer

Query Analyzer is your fr iend for debugging T-SQL statem ents. Because T-SQL is
so im portant to SQL Server developm ent , m astering this tool can be part of what
m akes you into a great SQL Server developer.

W hat ’s Query Analyzer For?

Query Analyzer is one of the client tools that ships with SQL Server 2000. This is
another way of saying that Query Analyzer isn’t part of t he database server. You
are author ized to use Query Analyzer, and the other client t ools, by the allocat ion
of a Client Access License to your workstat ion. Although the client tools don’t ship
with MSDE 2000 (Microsoft SQL Server 2000 Desktop Engine) , t hey are available
with any regular version of SQL Server 2000, such as the Enterprise, Standard,
Developer, and Personal edit ions.
I think of Query Analyzer as sort of an I DE for running T-SQL statem ents. This
client tool is a real help for anyone program m ing solut ions for SQL Server. Query
Analyzer will help you to easily and quickly debug your T-SQL code. Alt hough you
can program and debug T-SQL direct ly with Visual Basic .NET and ADO.NET,
Query Analyzer provides a m uch r icher environm ent that m akes your T-SQL
coding go m uch faster. Even if an applicat ion calls for running T-SQL inside of a
Visual Basic .NET applicat ion, I often find it convenient t o debug the statem ent in
Query Analyzer before insert ing the T-SQL code into m y Visual Basic .NET
applicat ion.
There are at least five reasons to becom e com fortable with T-SQL, and using
Query Analyzer m ay be one of t he best ways to do that .

• You can build r icher query statem ents t hat return precisely t he data you
want without having to resort to a graphical query builder. I ndeed, som e
query operat ions, such as those perform ed by the UNI ON funct ion, cannot
be represented by graphical query designers.

• You can create data m anipulat ion statem ents for updat ing, insert ing, and
delet ing rows. Graphical query builders aren’t always effect ive at creat ing
these statem ents.

• You can program secur ity topics, such as creat ing SQL Server logins and
cont rolling access to database objects and server adm inist rat ion funct ions.

• You can program the creat ion of databases and the objects within t hem ,
such as tables, stored procedures, and user-defined funct ions. Several
chapters within t his book include scripts to create databases and populate
those databases with objects autom at ically.

• You can take advantage of program m ing features, such as I F…ELSE
statem ents, local var iables, param eters, and return values to build
flex ibilit y and user interact ivit y into your applicat ions.

Many T-SQL sam ples are especially designed for use with Query Analyzer. For
exam ple, t hese sam ples set the database context for T-SQL code with a USE

statem ent . This statem ent explicit ly targets Query Analyzer and doesn’t run from
m ost other SQL Server clients, such as Visual Basic .NET. Books Online, the SQL
Server Help system , follows this convent ion with it s sam ples. Therefore, a basic
fam iliar it y with Query Analyzer will help you to take advantage of t he r ich
collect ion of sam ples in Books Online. I n addit ion, t he T-SQL sam ples in this book
follow the sam e convent ion. Therefore, t his sect ion gives you a br ief int roduct ion
to Query Analyzer. You will have am ple opportunity to reinforce and extend the
understanding this sect ion conveys with t he T-SQL sam ples throughout the
balance of t his book. I n fact , t he com m entary for these sam ples som et im es
describes how to run code in Query Analyzer.

Making a Connect ion w ith Query Analyzer

To start Query Analyzer, click the Start but ton on the Windows taskbar; choose
Program s, t hen Microsoft SQL Server, and then Query Analyzer. When you start
Query Analyzer t his way, you will be greeted with t he Connect To SQL Server
dialog box. Recall t hat Query Analyzer is a client tool. Therefore, you can use it
wit h any SQL Server instance that you can connect to and for which you have
access perm ission. I f you are connect ing to the local instance of SQL Server on
your com puter for which you are the adm inist rator, you can designate the SQL
Server as “(local) ” and choose Windows Authent icat ion. (See Figure 1-9.) The
set t ings in Figure 1-9 are suitable for connect ing to SQL Server with any Windows
login. Click OK to com plete the connect ion to the server.

Figure 1 - 9 . The connect ion set t ings for logging in to the local instance of
SQL Server w ith W indow s authent icat ion.

Query Analyzer offers the norm al f lex ibilit y in how you connect to a SQL Server
instance. As I already noted, you can connect with any Windows login that a SQL
Server instance recognizes. I n addit ion, you can use SQL Server authent icat ion. I f
you select SQL Server Authent icat ion rather than Windows Authent icat ion in the
Connect To SQL Server dialog box, Query Analyzer enables the Login Nam e and
Password text boxes so that you can specify a SQL Server login and password. I n
addit ion, you can connect to any other SQL Server instance besides the local
default one. I f you know the nam e of t he instance to which you want t o connect ,
t ype the nam e in t he SQL Server com bo box in the Connect To SQL Server dialog
box. Otherwise, click the browse but ton (…) next to t he com bo box. This opens a
dialog box that lists SQL Server instances current ly act ive on the network to
which your workstat ion connects. Select an instance nam e to specify a connect ion
to that server.

See Chapter 7 for m ore about SQL Server secur ity and logging in to SQL Server
instances with different types of logins. Unt il Chapter 7, one safe approach to
running the sam ples is to connect as a m em ber of t he sysadm in server role, such
as the SQL Server adm inist rator. Mem bers of t he sysadm in server role have
unrest ricted perm ission on a SQL Server instance. Chapter 7 gives guidelines and
procedures for rest rict ing the perm issions for an applicat ion’s users.

Running, Saving, and Opening T- SQL Scripts

When Query Analyzer opens as descr ibed in t he preceding sect ion, it will connect
a user to the default database for t he login t hat the user specif ied in t he Connect
To SQL Server dialog box. The default is the m aster database unless a database
adm inist rator changed the standard default database specificat ion when adding a
new login.
Because m ost user-defined quer ies don’t interrogate the m aster database, which
is a system database, you will usually want t o change the database context
before wr it ing any SQL query statem ents. You can em ploy the USE statem ent for
this. Just follow USE wit h t he nam e of the database for which you want to wr it e a
query. The following statem ent directs Query Analyzer to run query statem ents
against the pubs database (unt il another USE statem ent or som e other specific
inst ruct ion to use another database) . The pubs database is one of t he sam ple
databases that is installed autom at ically with SQL Server 2000.
USE pubs

Figure 1-10 shows this sim ple SELECT statem ent for the authors table in the pubs
database:
SELECT au_fname, au_lname, state
FROM authors
WHERE contract = 1

The SELECT statem ent appears aft er the USE statem ent in the Editor pane, which
is where you type T-SQL statem ents in Query Analyzer. The statem ent selects
three colum n values from the authors table if a row has a cont ract colum n value
equal to 1. You can see the result set from the query statem ent in the Results
pane that appears below the Editor pane, as shown in Figure 1-10. Query
Analyzer autom at ically displays the Results pane when you run a query, but you
can also show and hide it by pressing Ct r l+ R.
By default , Query Analyzer displays the result set in the Results pane within a
spreadsheet like gr id. At the bot tom of t he Results pane are a Grids tab and a
Messages tab. You can click t he Messages tab to see general feedback from SQL
Server about how a query statem ent operated. For exam ple, t he Messages tab for
the query in Figure 1-10 says, “(19 row(s) affected)”, which corresponds to the
num ber of rows the query statem ent returns. Warnings and error feedback from a
SQL Server instance appear in t he Messages pane.
You also can choose to display the result set in the Results pane as text in
colum ns. I n that case, t here is only a Results tab at the bot tom of t he Results
pane, and both the result set and m essages are displayed in t he pane. To specify
whether you want to set the result set in a gr id or in text , choose Opt ions from
the Tools m enu, t hen choose the Results tab, and then use the com bo box at t he
right of t he Opt ions dialog box to specify Result s To Text , Results To Gr ids, or
Results To File.

Figure 1 -1 0 . A query statem ent for the pubs database and its result set
run from Query Analyzer .

After creat ing a T-SQL script , you can save it so that you or others can reopen it
and use it again later. Most of t he sam ple files for Chapter 2 t hrough Chapter 7
are saved scr ipts with t he .sql extension. To save a script f ile for the first t im e or
resave an exist ing script f ile with a new nam e, choose Save As from the File
m enu, navigate to a desired folder with t he Save Query dialog box, enter a
filenam e, and click Save. These steps will save the current scr ipt in the
designated folder with t he filenam e that you specify with the .sql extension. For
exam ple, I followed these steps to save the script shown in Figure 1-10 to m y
com puter. I saved the file as AuthorsQuery.sql in t he Chapter01 folder of t he SQL
Server Developm ent With VBDotNet directory on m y C dr ive.
There are several ways to open a script f ile. For exam ple, im m ediately after
connect ing to a SQL Server instance for a new Query Analyzer session, you can
choose Open from the File m enu, navigate in t he Open Query File dialog box to
the folder with the script file (.sql) , highlight the filenam e, and click Open. These
steps open an Editor pane in Query Analyzer with the saved script f ile. Figure 1-
11 shows the opened script f ile saved in t he preceding paragraph in an Editor
pane. Not ice that the t it le bar for t he pane includes the path along with the
filenam e and extension.
The Object Browser will also script objects for you. To autom at ically create a
script for an object , r ight -click an object such as the Categories table, and choose
Script Object To New Window As and then the Create com m and. This feature
allows you to see the T-SQL scr ipt behind your favorit e objects to learn how to

m ake m ore objects like them or to help you change their design to m eet
expanded object ives.
As you build up your collect ion of databases and the objects within t hem , you
m ight start to f ind special value in t he Object Search com ponent within Query
Analyzer. You can open the Object Search dialog box by pressing the F4 key or by
choosing Object Search from the Tools m enu and then Open. You can open
m ult iple Object Search dialog boxes at the sam e t im e. The dialog box lets you
search for any object or subset of objects, such as views or stored procedures, by
nam e or even a part of a nam e. Figure 1-13 shows an excerpt from the results in
a search for any type of database object that begins with Categ in any database
on the current ly connected SQL Server instance. As you can see, objects
beginning with Categ for their nam e are very popular in t he Northwind database.
(Other databases outside the excerpt shown also have objects beginning with
Categ.)

Figure 1 - 1 1 . An opened T- SQL scr ipt from a saved .sql file . The path and
filenam e in the t it le bar indicate the source of a .sql file.

Selected Other Topics

There’s lots m ore to Query Analyzer, but t he preceding int roduct ion equips you
for the ways in which this book exploits the tool. I n this sect ion, I br iefly highlight
a couple of m y favorit e other uses for Query Analyzer.
The Object Browser is a convenient t ool for explor ing the databases and the
objects within t hem on a connected SQL Server instance with a t ree- type
interface. You can use this Query Analyzer com ponent to exam ine the database
objects within a database. You can show or hide the Obj ect Browser by pressing
the F8 key or by choosing Object Browser from the Tools m enu and then the
Show/ Hide com m and. Figure 1-12 shows the Object Browser window expanded to
display the colum n nam es and data type specificat ions for t he Categor ies table
(dbo.Categories) in t he Northwind database. I often find it convenient t o drill
down into a database design and check the spelling of colum n nam es. Being able
to quickly look up the data type for a colum n in a table is part icularly convenient
when you are declaring a search param eter for a co- lum n in a table; use the
wrong data t ype, and you m ay not get a m atch, even with t he r ight value.

Figure 1 - 1 2 . The Object Brow ser opened to show the nam es and data
types for the colum ns in the Northw ind database.

Figure 1 -1 3 . You can use the Object Search dialog in Query Analyzer to
search for objects by nam e (or even part of a nam e) .

Chapter 2 . Tables and Data Types
This chapter targets the design and program m ing of SQL Server tables with T-
SQL (Transact St ructured Query Language) . SQL Server database adm inist rators
and developers use T-SQL for program m ing database adm inist rat ion and data
access. By data access, I m ean select ing records from a database. T-SQL is
generally com pat ible with the SQL-92 standard endorsed by ANSI (Am erican
Nat ional Standards I nst itute) and I SO (I nternat ional Standards Organizat ion).
However, Microsoft opt im ized and st ream lined T-SQL for use with SQL Server.
Any developer who wants to use Visual Basic .NET to build custom SQL Server
solut ions will be severely handicapped without a good grasp of SQL Server data
types and tables, as well as T-SQL. Several subsequent chapters in t his part of
the book will explore selected other database objects, such as views, stored
procedures, and user-defined funct ions, from design and im plem entat ion
perspect ives with T-SQL. The next part of t he book builds on this foundat ion as it
dem onst rates how to create custom SQL Server solut ions with Visual Basic .NET.
This chapter begins with an explorat ion of SQL Server data types. Next it
provides an overview of different t ypes of tables. A ser ies of T-SQL sam ples
illust rates core table design issues and solut ions. These sam ples int roduce you to
program m ing techniques for SQL Server tables. By understanding how to script
database objects, such as tables, you can readily duplicate those database
objects across m ult iple servers. For exam ple, a Visual Basic developer can build a
solut ion on one server and then readily t ransport the objects for use on another
server— just by running the scripts for t he objects. You can also adapt the script
from one object as a start ing point for other, sim ilar , objects. A clear
understanding of table script ing techniques will help you to autom ate table
design. This frees resources for focusing on the needs of clients for your
databases.

Chapter Resources

There are two key resources for t his chapter. First , a SQL Server database nam ed
Chapter 02 illust rates m any of the design concepts used throughout t his chapter.
Second, a collect ion of T-SQL sam ple scripts illust rates coding techniques for
creat ing tables and working with t he resources within a table.

The Chapter ’s T- SQL Sam ple Scripts

The T-SQL sam ple collect ion for t his chapter illust rates key design and
im plem entat ion issues for script ing SQL Server database objects. All t he sam ple
scripts that you see in t his chapter are available on the book’s com panion CD.
The sam ples are all saved with the .sql extension, so you can open and run each
of t hem from Query Analyzer. As you learned in Chapter 1, Query Analyzer is a
graphical tool that ships with Microsoft SQL Server 2000. As you read and run the
sam ple scripts, you m ight f ind it helpful t o learn m ore about the st ructure of the
Chapter02 database by browsing it w ith SQL Server Enterprise Manager, which
also was discussed in Chapter 1.

The Chapter ’s Sam ple Database

The script in t his sect ion creates a new version of t he Chapter02 database.
Subsequent T-SQL code sam ples will create addit ional tables in t he database and
dem onst rate techniques for working with tables.
Prepare to create the Chapter02 database by start ing Query Analyzer and
connect ing to t he SQL Server instance you are using. Log in as sa or with a user
I D that belongs to t he sysadm in fixed server role. This book dr ills down on
secur ity explicit ly in Chapter 7, where you will learn how to fine- tune database
and user securit y set t ings. When users connect to a SQL Server database through
your Visual Basic .NET applicat ions, t hey m ust ident ify t hem selves through the
secur ity accounts discussed in Chapter 7. Unt il t hat chapter, using a login t hat
belongs to sysadm in will work for all sam ples.
Copy or type the following T-SQL scr ipt into t he Editor pane in Query Analyzer,
and press F5 to run the script to create the database. Alt ernat ively, you can open
the script direct ly from Query Analyzer: choose Open from the File m enu, and
then navigate to the locat ion of the script . Not ice that the first com m ent in t he
sam ple is “CreateSam pleDB”— the nam e of t he sam ple file. I use this convent ion
for all the sam ples in t he book to m ake it easier for you to locate and open them
from Query Analyzer.

Attaching a Database to a New SQL
Server I nstance

I regular ly read on the SQL Server newsgroups of folks asking how
to at tach a database to a server. These developers want to take a
database and its objects developed on one server and run them on
another server. Their need can be as simple as copying a database
applicat ion they are developing on their desktop to their laptop so
they can work on it while away from the office. Alternat ively, they
may want to copy a database from headquarters or one branch
office to one or more other branch offices.
Although there are wizards for this kind of thing, it is nice to know
how to program the adm inist rat ion of this k ind of task for your own
custom solut ions. This capabilit y liberates you from the canned
wizard solut ion and gives you more flexibilit y in how you work with
SQL Server. At its m ost elementary level, this can be as simple as
at taching a pair of database files to a new server instance. I n the
context of this chapter , a completed version of the Chapter02
database is on the book’s CD. Therefore, you m ight care to copy a
version to another instance of SQL Server besides the one you use
to test the samples for this chapter. The instance can be on another
computer or the same computer.
Start to m igrate the Chapter02 database by copying the
Chapter02_dat .mdf and Chapter02_log.ldf files from the CD to the
Data folder for the SQL Server instance to which you want to at tach
the completed database. After clear ing the read-only at t r ibute
set t ings for the files, you can run the following scr ipt from Query
Analyzer. The script at taches the chapter ’s two database files to the
default instance of the SQL Server to which Query Analyzer
connects. By changing MSSQL to MSSQL$MYOTHERI NSTANCE, you
can at tach the database files to a SQL Server instance named

MYOTHERI NSTANCE. You must copy your database files to the Data
path for the SQL Server instance in the sp_at tach_db statement
before running the scr ipt .
--AttachSampleDB
--Run the script from the master database.
USE master

--Update the paths for the data and log files so they
--are appropriate for your computer.
EXEC sp_attach_db @dbname = N’Chapter02’,
 @filename1 =
 N’c:\Program Files\Microsoft SQL Server\MSSQL\Data\Cha
pter02_dat.mdf’,
 @filename2 =
 N’c:\Program Files\Microsoft SQL Server\MSSQL\Data\Cha
pter02_log.ldf’

The init ial USE statem ent in the script specifies the source database so that t he
sam ple runs from the SQL Server m aster database. Next t he script rem oves any
prior version of the Chapter02 database on the server. This ensures that you can
always create a new copy of the database. After rem oving any pr ior version, the
code invokes the CREATE DATABASE statem ent . This statem ent assigns the
logical f ilenam es Chapter02_dat and Chapter02_log to t he data and log files for
the database. Although your SQL Server databases can have m ore f iles, these
two are necessary for populat ing a database and perform ing backup operat ions.
Update the operat ing system file paths so that they are appropr iate for your
com put ing setup.
--CreateSampleDB
--Execute statements from the master database.
USE master
GO

--Drop any prior version of Chapter02 database.
IF EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE CATALOG_NAME = N’Chapter02’)
DROP DATABASE Chapter02
GO

--Create new version of Chapter02 database.
CREATE DATABASE Chapter02
ON
(NAME = Chapter02_dat,
 FILENAME =
 ’c:\program files\microsoft sql server\mssql\data\Chapter02_dat.m
df’,
 SIZE = 1)
LOG ON
(NAME = Chapter02_log,
 FILENAME =
 ’c:\program files\microsoft sql server\mssql\data\Chapter02_log.l
df’,
 SIZE = 1,
 MAXSIZE = 5)
GO

Data Types for Tables

Tables are the building blocks for SQL Server applicat ions because they store the
data for the ent it ies that an applicat ion m odels. Likewise, colum ns are the
building blocks of tables because tables store their data as colum n values. SQL
Server applicat ions can often have tables with num erous rows, so it is im portant
to specify the data type for colum ns to ensure that they use the m inim um
am ount of storage. When you specify t he data t ype, you are indicat ing the k ind of
data that t he colum n is going to contain. Making these assignm ents correct ly
speeds the perform ance of your SQL Server applicat ions while also conserving
storage space. I n addit ion, t he validit y of your database m odel for a real-wor ld
system can depend on the use of proper data types.
I n m any circum stances, your applicat ions can denote data with one of t he data
types built into SQL Server— the system data types. When your applicat ion needs
m ore definit ion than these system data types allow nat ively, you can create user-
def ined data types that refine the system data t ypes. However, your abilit y t o
fashion valuable user-defined data types depends on your grasp of t he system
data types.
I f you are fam iliar with data types, you m ay want to skip t his sect ion and refer to
it as needed. But if you are new to SQL Server program m ing or need a refresher
on data types, read on.

System Data Types

I t is useful to think about the system data types in six groups. I n addit ion to t he
six hom ogeneous categor ies, there is a collect ion of special, or m iscellaneous,
system data types. The six hom ogeneous groups of data types pertain t o:

• Character data
• Unicode data
• Num eric data
• Monetary data
• Date and Tim e data
• Binary data

Charact er Data

Character data consists of alphanum eric character sequences. Therefore, you can
represent any com binat ion of num bers and words with character data, such as
“123 Mulberry Lane”, “$1,000,000”, “Your nam e goes here: ” or “Rick Dobson”.
SQL Server has three character data t ypes: char , varchar, and t ext . The following
table br iefly sum m arizes them .

'DWD�
7\SH�
1DPH�

'DWD�7\SH�'HVFULSWLRQ�

char For f ixed- length character data up to 8000 characters. Use char (n) t o
specify, with n as the num ber of characters. The storage size is n bytes.
Appropriate when all the colum n values are the sam e length (or when
this is very near ly t rue) .

varchar For var iable- length character data up to 8000 characters. Use
varchar(n) t o specify, w ith n as the m axim um num ber of characters.

The storage size for any varchar colum n value is the actual size, where
1 byte equals 1 character . Appropr iate when there is substant ial
variabilit y in length between colum n values.

text For var iable- length character data that can grow to 231-1
(2,147,483,647) characters in the SQL Server instance’s code page
form at . Although som e of t hese code pages perm it double-byte form at
for represent ing characters, t he length of a t ext data type colum n value
is st ill the num ber of characters, where 1 character equals 1 byte.

SQL Server supports im plicit and explicit conversion between data types. SQL
Server handles im plicit conversions autom at ically ; you use the CAST and
CONVERT funct ions to convert between types explicit ly . The CONVERT funct ion is
a propr ietary extension of t he CAST funct ion that offers ext ra conversion
capabilit y not available from CAST, which is SQL-92 com pliant . See the “CAST
and CONVERT” topic in SQL Server Books Online for m ore detail on conversion
between SQL Server data types.
I m plicit conversions don’t depend on the t ransform at ion of a value by the
CONVERT or CAST funct ion. I m plicit conversion also applies to t he conversion of a
result from com bining or com par ing two or m ore values with different data types.
A var iety of Books Online topics clar ify im plicit conversion, including the “CAST
and CONVERT” topic. For exam ple, see the “Data Type Conversion,” “Data Types
and Table St ructures,” and “Data Type Precedence” Books Online topics. You can
use the Search tab in Books Online to search for these topics. The Books Online
search engine will often return m ult iple topics for any search st r ing, even when
you specify a precise search topic t it le. Scan the list of t it les returned by the
search engine for the exact one you seek.

Unicode Data

Unicode is a 16-bit character encoding standard. SQL Server data types for
Unicode correspond to SQL character data types— nchar , nvarchar , and ntext for
fixed- length, var iable- length, and very long Unicode data. One key dist inct ion is
that the Unicode form at for t ranslat ing bits t o characters relies on a single
standard t ranslat ion table that uses 2 bytes per character . The character data
form ats use a collect ion of different code pages m ost of which assign 1 byte per
character . This dist inct ion gives Unicode form at the capacity to represent m ore
than 65,000 characters, while non-Unicode character data typically represents
only 256 characters at a t im e (or per code page). The Unicode codes that have
been assigned represent characters in m ost of t he wr it t en languages of the wor ld.
Character data uses system - level tables called code pages to determ ine how to
t ranslate bits to characters. Different count ries can rely on different code pages to
represent t heir character set . For applicat ions that run in m any different
count r ies, it can be challenging to find a single code page with valid and
consistent bit - t o-character t ranslat ions for all languages. Using Unicode data
resolves this problem because its code page accom m odates 216 characters. The
price for t his easier cross-count ry applicabilit y is that each character has a size of
2 bytes instead of the 1 byte per character. As a result , t he m axim um num ber of
characters for Unicode data types is half t hat of corresponding character data
types.
The following table sum m arizes the three Unicode data types. These data types
align with the character data types, but they have different length and
applicabilit y.

'DWD�7\SH�
1DPH�

'DWD�7\SH�'HVFULSWLRQ�

nchar For f ixed- length character data up to 4000 characters in length with a
Unicode data form at . Use nchar (n) t o specify, w ith n as the num ber of

characters. The storage size in bytes equals twice the num ber of
characters. Corresponds to t he char data type in term s of applicabilit y
except for it s broader usefulness for represent ing characters from
m ult iple languages.

nvarchar For var iable- length character data up to 4000 characters in length. Use
nvarchar (n) t o specify, wit h n as the m axim um num ber of characters.
The storage size for any nvarchar colum n value is the actual size,
where 2 bytes equal 1 character. Corresponds to the varchar data type
in term s of applicabilit y except for it s broader usefulness for
represent ing characters from m ult iple languages.

ntext For var iable- length character data that can grow to 230-1
(1,073,741,823) characters in the Unicode code page form at .
Corresponds to the t ext data type in t erm s of applicabilit y except for it s
broader usefulness for represent ing characters from m ult iple
languages.

Note

I n the case of column data type specificat ions, precede the
character data type name with an n to denote the m atching
Unicode data type nam e. Represent character constants in
SQL Server with single-quotat ion m ark delim iters. Use a
leading N to represent a Unicode constant . For example, a
character constant appears as ‘my character constant’ .
However, the matching Unicode equivalent appears as N’my
Unicode constant’ .

Num eric Data

Num eric data consists of num bers only. You can perform arithm et ic operat ions on
num eric data, and you can com pare num eric values along a num eric scale, which
can differ from com par isons based on collat ions for character data and Unicode
data. SQL Server has three general categor ies for num eric data: integer data,
decim al data, and approxim ate data. Within each of t hese categor ies, t here are
one or m ore specific data types. Beyond that , the num eric data categor ies denote
different classes of num bers or ways of represent ing num bers.

I nteger Data

I nteger data types denote values that SQL Server represents exclusively as whole
num bers. The integer data types include t iny int , sm allint , int , and bigint . The data
types differ pr im ar ily in the m agnitude of the num ber t hat t hey can represent ,
but the t iny int data type differs in t hat it cannot represent negat ive values as can
the others. I nteger data types, part icular ly int , are com m only used along with the
IDENTI TY propert y to specify autom at ically increm ent ing colum n values that
serve as the pr im ary key for a table.
The next table lists the integer data types along with br ief sum m aries of their
capabilit ies. Your applicat ions should generally use the sm allest data type
possible. However, use a data type with suff icient range for your needs because
SQL Server rej ects colum n values outside the lim its for a data type. Calculat ions,
such as aggregat ions in views, work different ly for t iny int and sm allint values. I n
these cases, SQL Server autom at ically prom otes the return value to the int value

range. Therefore, t he sum of a set of t iny int colum n values can exceed 255, but
no indiv idual t iny int colum n value can exceed 255.
The t iny int / sm allint prom ot ion policy doesn’t apply t o calculat ions based on int
colum n values; SQL Server doesn’t autom at ically prom ote a return value outside
the int lim its— even if the result is within t he bigint lim its. I nstead, SQL Server
returns an error. I n addit ion, the bigint data type doesn’t work with all funct ions
that the other integer data types can use, and there are special funct ions for
selected tasks, such as count ing instances and returning rows affected by
quer ies, in which the quant it ies exceed the int range to fall in the bigint range.
See the “Using bigint Data” topic in Books Online for m ore detail on the special
rest r ict ions that apply t o the bigint data type.

'DWD�7\SH�
1DPH�

'DWD�7\SH�'HVFULSWLRQ�

t iny int For values in the range 0 through 255. Each t iny int colum n value is 1
byte long.

sm allint For values from -215 (-32,768) t hrough 215-1 (32,767) . Each sm allint
colum n value consum es 2 bytes of storage.

int For values from -231 (-2,147,483,648) t hrough 231-1 (2,147,483,647) .
Each int colum n value requires 4 bytes of storage.

bigint For values from -263 (-9,223,372,036,854,775,808) t hrough 263-1
(9,223,372,036,854,775,807). Each bigint colum n value requires 8
bytes of storage.

Decim al Data

The decim al data category is a single num eric category with two equivalent SQL
Server data types: num eric and decim al. You can use them interchangeably, but
decim al is probably t he m ore com m on data type nam e. Like the integer data
types, the decim al data types precisely represent values. However, decim al data
types differ from integer data types in t hree ways. First , decim al data t ype values
allow for places after t he decim al. (Recall t hat integer data types rest r ict you to
whole num bers.) Second, decim al data type specificat ions perm it a var iable
precision (or total num ber of digits) . The total num ber of digits, which can range
from 1 through 38, includes digits to the r ight and left of t he decim al point . Third,
you can designate a decim al data type for a colum n with var iable scale (or digits
to the r ight of the decim al point) .

Note

The decimal data type in SQL Server 2000 and the Decimal
data type in Visual Basic .NET aren’t the same. The Decimal
data type in Visual Basic can represent num bers with values
from 1 through 28 digits to the r ight and left of the decim al
point . This dist inct ion (1 through 28 vs. 1 through 38) is
important . Unless proper precaut ions are taken, you can
encounter overflow errors as you ext ract colum n values with
a decimal data type from a SQL Server table into your Visual
Basic .NET applicat ion. I f you know the num bers in the SQL
Server table exceed the values that Visual Basic .NET can
represent with its Decim al data type, consider represent ing
the SQL Server decimal data type values with another data

type in Visual Basic .NET, such as Double, which has a range
from -1.79E + 308 through 1.79E + 308.
Designate a decim al category value with decim al(p,s) or num eric(p,s) . The p
value represents the precision; the s value denotes the scale. The precision m ust
be less than or equal t o 38 but greater than or equal to the scale. The scale m ust
be less than or equal t o the precision, but t he scale has to be greater than or
equal to 0. The m axim um data range for decim al t ype values is from -1038 + 1
through 1038 - 1. This range substant ially exceeds the lim its of any integer data
type. The sam e holds t rue for t he two m onetary data types that SQL Server
offers. (We’ll review these short ly.)

Note

Columns with the decimal data type specificat ion can also
serve as an auto- increment ing pr imary key when you assign
an I DENTI TY property to the colum n. Set the scale to 0 for
this applicat ion of the data type.
The length in bytes for t he decim al data type specif icat ion depends on the
precision. The following table sum m arizes the relat ionship between storage
requirem ents and precision for decim al data types.

3UHFLVLRQ�� 6WRUDJH�%\WHV�
1–9 5
10–19 9
20–28 13
29–38 17

Approxim ate Data

All t he prior num eric data types precisely represented data values. This avoids
rounding error . The two approxim ate data types allow you to represent data
values without perfect precision (but ext rem ely close to t he exact value) . I n
exchange for reduced precision requirem ent , t he approxim ate data types offer a
m uch wider range than the previous data types. When you need to represent
num bers beyond the range of the preceding num eric category data types, the
approxim ate data types offer a v iable alt ernat ive (for exam ple, in engineer ing
applicat ions working with very large or sm all values) . Approxim ate data types
also enable your applicat ions to use less storage space when reduced precision is
acceptable for your needs.
The two SQL Server approxim ate data t ypes are real and f loat . The real data type
offers t he sm aller range and precision, but it requires just 4 bytes per data value.
I ts range extends from -3.40E + 38 through 3.40E + 38. The f loat data type
extends from -1.79E + 308 through 1.79E + 308, but each f loat data type value
requires 8 bytes of storage. Therefore, the f loat data type offers increased range
and precision relat ive to the real data t ype, but f loat data type values consum e 4
m ore bytes per colum n value. Both data types follow the I EEE (I nst it ute of
Elect r ical and Elect ronic Engineers) 754 specificat ion for approxim ate data types.
SQL Server uses the round up m ode, which is one of four rounding m odes in the
754 specificat ion.

Monetary Data

SQL Server has two data types for represent ing m onetary data. Both are accurate
to the nearest ten- thousandth of a m onetary unit . The sm allm oney data type has

a range from -214,748.3648 through 214,748.3647. SQL Server requires 4 bytes
of storage for each value with this data type. The m oney data t ype has a range
that starts at -922,337,203,685,477.5808 and runs through
922,337,203,685,477.5807. This data type consum es 8 bytes of storage for each
colum n value. With either data type, you can use a currency sym bol, such as $,
and a decim al point when input t ing values, but you shouldn’t input values with
com m as. I n other words, use $1234.5678 instead of $1,234.5678.
As you can see, t he two m onetary data types are two possible variat ions of the
decim al data type in t erm s of it s precision and range. For exam ple, you can
represent sm allm oney data types with decim al(10,4) . The m oney data type has
decim al(19,4) . When you need to represent m onetary data with other form ats,
use alt ernat ive decim al specificat ions, such as decim al(19,2) or decim al(38,2) .

Date and Tim e Data

SQL Server has two data types for internally represent ing date and t im e values.
These data types differ in precision as well as range. Before div ing into t he details
of each data type, note that SQL Server data types for date and t im e values
always contain both a date and a t im e value. I n addit ion, while SQL Server uses
one of two internal form ats for stor ing date and t im e values, it displays date and
t im e values as st r ings. I n addit ion, you will frequent ly input a new date or t im e
colum n value as a st r ing. When designat ing a date or a t im e value with a st r ing,
you can designate just t he date, j ust the t im e, or both the date and the t im e.
The sm alldatet im e data type has the shorter range of t he two data types for
dates and t im es. This data type includes dates from January 1, 1900, through
June 6, 2079. Within any given day, sm alldatet im e data type values represent
t im e from 12: 00 A.M. (m idnight) t hrough 11: 59 P.M., to the nearest m inute. The
sm alldatet im e data type rounds down to t he nearest m inute for all values of
29.998 seconds or less. Conversely, it rounds up to t he nearest m inute for all
values of 29.999 seconds or m ore. You can designate a datet im e value with a
character st ring to t he nearest one-thousandth of a second, such as 'January 1,
1900 12: 00: 29.998', for im plicit conversion as input to colum ns with a sm all-
datet im e data t ype specificat ion. Each sm alldatet im e colum n value requires 4
bytes of storage— two for t he date and two for the t im e.
The other data type for date and t im e values is datet im e. Values in datet im e
form at can range from January 1, 1753, through Decem ber 31, 9999. As with the
sm alldatet im e data type, the datet im e data represents t im e from m idnight .
However, t he precision is to the nearest 3.33 m illiseconds. Therefore, you can
represent t he first t im e value after m idnight as '00: 00: 00: 003'. SQL Server
rounds datet im e values internally to the nearest m illisecond within it s precision.
For exam ple, t im e values to the nearest m illisecond progress from '00: 00: 00: 000'
to '00: 00: 00: 003' to '00: 00: 00: 007'. The datet im e data type specificat ion
consum es 8 bytes of storage— 4 bytes for t he date and 4 bytes for t he t im e.

Binary Dat a

Binary data represents data in it s nat ive binary form at . For exam ple, a GUI D, or
globally unique ident if ier, appears as a 16-byte binary data st ream . SQL Server
represents each byte with two hexadecim al num bers. The decim al num ber 17, for
exam ple, appears as 11 in hexadecim al form at , which corresponds to 00010001
as a byte. Hexadecim al form at t ing uses the let ters A through F to denote the
decim al values 10 through 15. Therefore, t he hexadecim al num ber 9F t ranslates
to 159 in decim al form at , or 10011111 as the bits for a byte. SQL Server
frequent ly denotes hexadecim al values for input and display with a leading 0x;
that is, a zero followed by a lowercase x. Of course, t he internal representat ion
contains just t he binary representat ion for data.

There are three data types for binary data in SQL Server. When you are working
with data st r ings of 8 KB or less, use eit her binary or varbinary . For longer binary
data st ream s, such as Word docum ents or Excel worksheets in Office 97 or Office
2000, use the im age data type. The following table sum m arizes the three binary
data types.

'DWD�7\SH�
1DPH�

'DWD�7\SH�'HVFULSWLRQ�

binary For f ixed- length binary data up to 8000 bytes in length. Use binary (n)
to specify, w it h n as t he num ber of bytes. The storage size is n bytes.
Appropriate when all the colum n values are the sam e length.

varbinary For var iable- length binary data up to 8000 bytes in length. Use
varbinary (n) to specify, wit h n as the m axim um num ber of bytes. The
storage size for any varbinary colum n value is t he actual size of a bit
st ream in bytes. Appropriate when not all colum n values are the sam e
length.

im age For var iable- length character data that can grow to 231-1
(2,147,483,647) bytes. Use this data type when your binary data
exceeds 8 KB for any colum n values. Alt hough the data type’s nam e is
im age, it accom m odates any binary data, including bitm ap or GI F
im age f iles as well as Word .doc files.

Special System Data Types

Four rem aining system data types com plete the set available for specify ing
colum ns in a table: t im estam p, bit , uniqueident ifier , and sql_var iant . These data
types don’t fit into any one category. This sect ion addresses each of t he data
types indiv idually.
The t im estam p data type is a binary variable t hat t racks the latest addit ion or
revision of a row throughout a database. I t is a sequent ial num ber— som ewhat
like an autonum ber in Access or an integer with an I DENTI TY property set t ing in
SQL Server. However, it pertains to an ent ire database instead of a single table
within a database. Whenever a user adds a new row or revises a value in a row of
a table with a t im estam p colum n, t he t im estam p colum n value increases by 1.
SQL Server represents t his t im estam p value as an 8-byte binary value. I f t he
largest t im estam p value throughout any row in any table of a database is
0x13579BDF, t he next t im estam p value will be 0x13579BE0.

Note

Columns declared with a t imestamp data type don’t contain
datet ime or smalldatet ime values. Microsoft announced its
intent ion to reference the t imestamp data type as the
rowversion data type in future SQL Server versions.
The bit data type is for represent ing True/ False or Yes/ No data. I n SQL Server, a
bit data type with t he value 1 is equivalent t o True or Yes. The bit value 0
corresponds to False or No. You can, opt ionally, m ake a bit data type nullable so
that it can have the value 0, 1, or NULL. Values in bit form at consum e 1 bit , and
SQL Server packs bit data values 8 bits to the byte to conserve space. Therefore,
1 through 8 bit data type colum ns in a row require 1 byte of storage. The ninth
through the sixteenth bit data type colum ns add a second byte of storage for
each row.
The uniqueident if ier data type specif ies a 16-byte GUI D. Since a GUI D is unique
in space and t im e, the uniqueident if ier is a candidate for ident ify ing rows across

m ult iple installat ions of SQL Server, such as by state in t he United States or by
count ry. However, because of it s size, using a uniqueident if ier can slow an
applicat ion and consum e storage disproport ionately. The sever ity of t his
uniqueident if ier weakness escalates with the num ber of rows in a table. Consider
using an int (or even a bigint) colum n with an I DENTI TY propert y along with a
second colum n to denote place. This alt ernat ive approach to uniquely ident ify ing
records at m ult iple locat ions can m ake an applicat ion run faster and consum e less
storage. Also, t he uniqueident if ier doesn’t work well for the full range of SQL
Server funct ions; see the “uniqueident if ier” and “Using uniqueident if ier Data”
topics in Books Online for m ore detail.
A sql_var iant data type specificat ion enables a colum n in a table t o accept a
m ixed collect ion of data values based on any other system data t ype except text ,
ntext , t im estam p, im age, and sql_var iant . All other system data types require t he
values in a colum n to be of one data type. You can’t enter character data into a
colum n with an int data type. With a sql_var iant data type specificat ion, a single
colum n can contain char , int , and datet im e data values all in a single colum n. The
sql_var iant data type nam e der ives it s nam e because of it s sim ilarit y t o the Visual
Basic Variant data type.
The m ixed data type values in a sql_var iant colum n can cause its values to
behave different ly when you’re com par ing sql_variant values with values of
another data type or when you’re sort ing a table by the values in a sql_var iant
colum n. See the “Using sql_variant Data” topic in Books Online for m ore details
on this topic.

'DWD�7\SH�1DPH� 'DWD�7\SH�'HVFULSWLRQ�
t im estam p The t im estam p data type has a binary (8) data form at unless you

m ake it nullable. A nullable t im estam p data type has a
varbinary (8) data form at . SQL Server autom at ically generates
t im estam p values; your applicat ion or your users have no need to
populate a t im estam p colum n.

bit Pr im arily for m odeling at t r ibutes that can have one of two states.
However, t he data type also does perm it NULL values. SQL
Server opt im izes storage of bit data type values so that t he first 8
take up to 1 byte, t he next 8 a second byte, and so on.

uniqueident if ier A 16-byte binary num ber that represents it s value as 32
hexadecim al characters. The form at for displaying the -
hexadecim al characters is xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx. Use the NewI D funct ion to generate a new
uniqueident if ier . You can specify a uniqueident ifier value eit her
with a character st r ing represent ing the 32 hexadecim al
characters or with a binary num ber. However, always use the
NewI D funct ion when you m ust ensure the uniqueness of t he
uniqueident if ier value.

sql_var iant For stor ing m ult iple other k inds of data t ype values in a single
colum n. This SQL Server data type bears a resem blance to the
Visual Basic Variant data type.

Note

Two addit ional SQL Server types do not represent individual
numbers or st r ing values. These are the table and cursor
types. The table type can represent a whole result set of
values, such as a table returned by a user-defined funct ion.
Chapter 5 demonst rates the use of this SQL Server type. The
SQL Server cursor type refers to server- side cursors. Many

developers prefer to avoid this type because it can degrade
database performance.

User- Defined Data Types

User-defined data types enable you to define custom data types based on system
data type and nullabilit y . You and your developer team can then apply t hese
user-defined data types in m ult iple tables throughout a database. The scope of a
user-defined data type is the current database, but you can copy the script
def ining a user-defined database to other databases.
Use the sp_addtype and sp_droptype system stored procedures to add and drop
user-defined data types to and from a database. When you add a user-defined
data type with sp_addtype, specify it s nam e, base data type, and nullabilit y by
posit ion or with param eter nam e assignm ents. After creat ing a user-defined data
type, you can assign it to table colum ns throughout a database. I f you add a
user-defined data type to the m odel database, every new user-def ined database
will have the user-defined data type. This is because SQL Server uses the m odel
database as a start ing point for all user-defined databases. The sp_droptype
system stored procedure can generally rem ove a user-defined data type from a
database, but t his system stored procedure won’t succeed if any tables exist with
colum ns defined by the user-defined data type.

Note

System stored procedures, such as sp_addtype and
sp_droptype, gain focus as a general topic in Chapter 4.
The sp_addtype system stored procedure allows you to specify a user-defined
data type in t erm s of it s base data type. For exam ple, you can designate a postal
code data type with a char(5) or a char(9) base data type. However, users can
st ill enter values other t han num bers in t he postal code character f ields. To
specify const raints t hat apply t o user-defined data types, designate a SQL Server
Rule object and bind the rule to the user-defined data type; use the sp_bindrule
system stored procedure to bind a rule. Then developers can specify new tables
with colum ns specified by user-defined data types that convey the rule. This
approach for apply ing rules bound to user-defined data types works for the
creat ion of new tables but not for t he m odif icat ion of exist ing colum ns in exist ing
tables. For im plem entat ion details of user-defined data types, see the Books
Online topics for sp_addtype, sp_droptype, and sp_bindrule.

Note

Examine the pubs sample database in Enterprise Manager for
several examples of how to apply user-defined data types in
a database.

Script ing Tables

The “Data Types for Tables” sect ion earlier in this chapter described the m ost
fundam ental elem ents of a table. However, it didn’t dem onst rate how to apply
those elem ents to t he const ruct ion of a table. This sect ion int roduces T-SQL
statem ents and syntax rules for creat ing tables. The sect ion also exam ines issues

relat ing to the processing of selected data types and the m odify ing of a table’s
design.

Creat ing a Table

You use the CREATE TABLE statem ent to create a new table. Before invoking the
statem ent , you m ust designate a database to hold your new table. Specify t his
database with t he USE statem ent . The following sam ple script assigns it s new
table, Em ailContacts, to the Chapter02 database; recall that t he “Chapter
Resources” sect ion includes a script for creat ing a fresh copy of t his database.
Within the CREATE TABLE statem ent , you can specify colum n nam es for the table
along with data types and other set t ings for each colum n. The script creates a
table nam ed Em ailContacts with four colum ns nam ed Contact I D, FirstNam e,
LastNam e, and Em ail1 . The Contact I D colum n serves as a prim ary key. The
colum n’s specificat ion includes a nam e (Contact I D) , a data type (int) , and a
specificat ion for it s nullabilit y (NOT NULL) ; and the last keyword designates the
colum n as a pr im ary key. Because the table includes addit ional colum ns, the
colum n declarat ion ends with a com m a.
The rem aining three declarat ions within t he CREATE TABLE statem ent specify
colum ns for holding contact data. Each of t hese declarat ions begins with a colum n
nam e followed by a data type and a nullabilit y assignm ent . A com m a separates
the declarat ion for each colum n. I n cont rast with t he colum n serving as the
prim ary key for t he table, t he three colum ns for stor ing contact data can be null.
This allows a user to create a row for a contact at one t im e and then populate t he
row at a later t im e. SQL Server has a default set t ing for t he nullabilit y of colum ns
that you can configure. The default conf igurat ion is for ANSI com pat ibilit y, which
allows nulls for new colum ns. Nevertheless, it is good pract ice to designate the
nullabilit y of colum ns explicit ly.
--CreateEmailContactsTable_01
--Execute statements after USE from Chapter02 database
USE Chapter02
--Create EmailContacts with three columns.
CREATE TABLE EmailContacts
(
ContactID int Not Null PRIMARY KEY,
FirstName nvarchar(20) NULL,
LastName nvarchar(35) NULL,
Email1 nvarchar (255) NULL
)
GO

The script will work t he first t im e you run it . However, if you t ry to run the script
a second t im e, it will fail wit h a m essage rem inding you that the Em ailContacts
table is already in the database. I n order t o rerun the CREATE TABLE statem ent
successfully, you can condit ionally drop the Em ailContacts table. You need to
drop the table condit ionally because the DROP TABLE statem ent will fail if the
table isn’t already in the database. While you’re edit ing the preceding script , it
m ight be nice to add som e data and then run a sim ple SELECT query t o see how
to insert and ret r ieve data from the table. The next script dem onst rates
techniques for achieving these results.
This next script illust rates broad design issues for running T-SQL script s in Query
Analyzer. For exam ple, the USE statem ent designates a source database to use
for running the statem ent . USE isn’t a T-SQL statem ent ; rather, it is a keyword
for Query Analyzer t hat inst ructs it t o connect to a database on the server for the
current Query Analyzer session. I f the database doesn’t exist on the connect ion,
Query Analyzer returns an error m essage. Not ice also that batches of T-SQL
statem ents are delim ited by the GO keyword. This is a keyword for Query

Analyzer as well. The GO keyword inst ructs Query Analyzer t o interpret and run
the preceding T-SQL statem ents. Posit ion the GO keyword in scripts to ensure
that a set of statem ents will run before you star t another set of statem ents. This
keyword is convenient for isolat ing errors.
After the USE statem ent , the script t ests for the prior existence of t he
Em ailContacts table. I f it does exist in t he current database, t he script invokes a
DROP TABLE statem ent to rem ove the pr ior version of t he table. An I F EXI STS
statem ent based on an I NFORMATI ON_SCHEMA view is a com m on m eans of
test ing for t he existence of a database object . I NFORMATI ON_SCHEMA views
return m etadata about m any classes of SQL Server database objects besides
tables. A subsequent sect ion dwells on this topic m ore specifically.
The CREATE TABLE statem ent is ident ical t o t he preceding T-SQL list ing.
However, in t he context of t his sam ple, you can rerun the script repeatedly
without encounter ing an error m essage about t he object already exist ing. After
creat ing the table, the following list ing populates the table with two rows. I t uses
the I NSERT I NTO statem ent to add rows. Because these statem ents designate
colum n values for all the table’s colum ns in t he order in which they appear in t he
table, t he statem ents can sim ply reference the VALUES keyword followed by the
colum n values for a row.
--CreateEmailContactsTable_02
--Execute statements after USE from Chapter02 database.
USE Chapter02
GO

--Remove prior version of EmailContacts if it exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’EmailContacts’
)
DROP TABLE EmailContacts

--Create EmailContacts with three columns.
CREATE TABLE EmailContacts
(
ContactID int Not Null PRIMARY KEY,
FirstName nvarchar(20) NULL,
LastName nvarchar(35) NULL,
Email1 nvarchar (255) NULL
)
GO

--Populate EmailContacts and run a SELECT query.
INSERT INTO EmailContacts
 VALUES(1,’Rick’, ’Dobson’, ’rickd@cabinc.net’)
INSERT INTO EmailContacts
 VALUES(2,’Virginia’, ’Dobson’, ’virginia@cabinc.net’)
SELECT * FROM EmailContacts
GO

A SELECT statem ent closes the scr ipt . When the SELECT statem ent runs, Query
Analyzer displays the result set in t he Results pane, as shown in Figure 2-1.

Figure 2 -1 . The result set from the script to create, populate, and list
values for the Em ailContacts table.

View ing Metadata

Metadata is the inform at ion about data, such as a database server and it s
objects, including databases, tables, and keys. So far, t his chapter has reviewed
two m ain T-SQL sam ples. One of t hese created a database— Chapter02. The other
created a table— Em ailContacts—within the database. I n turn, t he table has
several colum ns, and one of those colum ns is defined as a prim ary key. I t is oft en
useful to be able t o generate reports that contain inform at ion about the contents
of a database server and it s objects. For exam ple, t he previous sam ple showed
that determ ining whether a table already existed in a database would allow your
applicat ion to avoid an error— t ry ing to create a new table with the sam e nam e as
an exist ing one. SQL Server I NFORMATION_SCHEMA v iews can der ive this k ind of
inform at ion for your applicat ions. This sect ion exam ines this capabilit y by
dem onst rat ing it .
The following T-SQL script includes four batches of statem ents— each term inated
by the GO keyword— that illust rate different uses and form ats for der iv ing
m etadata with INFORMATI ON_SCHEMA v iews. The init ial batch dem onst rates the
syntax for report ing the databases within a connect ion. I n this case, the
connect ion is the one based on your login to Query Analyzer and the m aster
database for t he SQL Server instance. The m aster database is one of the system
databases that SQL Server creates when you install it . This database is vital t o
the proper operat ion of a SQL Server instance. One funct ion of this database is to
t rack inform at ion about all t he databases on a SQL Server instance. The
SCHEMATA v iew of the I NFORMATI ON_SCHEMA returns a high- level sum m ary of
that inform at ion.
The next batch of T-SQL statem ents begins by changing the context for the
statem ents from the m aster database to the Chapter02 database. This batch
returns all the colum ns from the TABLES v iew of t he I NFORMATI ON_SCHEMA for
which the table’s nam e doesn’t begin with either sys or dtp. While users can
create tables with nam es that begin with eit her of t hese character st r ings, SQL
Server uses tables beginning with t hese characters to m anage a database.
Therefore, excluding tables that begin with t hose characters can return
inform at ion about user-defined tables. Of course, if your applicat ion creates any
tables beginning with these pref ixes, t hey won’t appear in the result set for t he
TABLES v iew.

Note

The TABLES v iew for I NFORMATI ON_SCHEMA returns

informat ion about views as well as tables. Specify a
TABLE_TYPE colum n value of VI EW in the WHERE clause for
a SELECT statement to return only v iews.
With the COLUMNS v iew of the I NFORMATI ON_SCHEMA, you can return
inform at ion about colum ns in a database. The third batch illust rates this app-
licat ion. I t also reveals a new syntax for specify ing the database serving as the
source for t he v iew. Not ice that t he specificat ion of t he v iew nam e has three
parts. The first of t hese is the database nam e— Chapter02. Designat ing a
database nam e as the first part rem oves the need to designate a database
context with a USE statem ent . This is because no m at ter what database context
the statem ent executes, it always ext racts inform at ion from the database— that
is, the first part of the I NFORMATI ON_SCHEMA view nam e. The second and third
parts follow the convent ion for t he preceding batches except for t he nam e of t he
specific I NFORMATION_SCHEMA v iew (COLUMNS) . The sam ple also includes a
WHERE clause to reference a part icular table— in part icular, Em ailContacts.
Without t he WHERE clause, t he T-SQL statem ent in the batch will return
inform at ion for all t he colum ns within t he Chapter02 database, including those
from system and user-defined tables.
The final batch shows the I NFORMATI ON_SCHEMA syntax for report ing about the
keys in a database. These include the pr im ary keys, foreign keys, and unique
keys. The inform at ion is really about t he colum ns on which an applicat ion defines
it s keys. As with t he preceding batch, t his sam ple rest r icts the result only to keys
for the Em ailContacts table.
--INFORMATION_SCHEMA_Samples
--List databases on current server.
USE master
SELECT * FROM INFORMATION_SCHEMA.SCHEMATA
GO

--List user-defined tables in Chapter02 database.
USE Chapter02
SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE NOT(SUBSTRING(TABLE_NAME,1,3) = ’sys’
 OR SUBSTRING(TABLE_NAME,1,3) = ’dtp’)
GO

--List all columns in EmailContacts table.
SELECT * FROM Chapter02.INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = ’EmailContacts’
GO

--List data on columns constrained as keys in
--the EmailContacts table.
SELECT * FROM Chapter02.INFORMATION_SCHEMA.KEY_COLUMN_USAGE
WHERE TABLE_NAME = ’EmailContacts’
GO

Figure 2-2 displays an excerpt from the result set for the preceding script . The
return for each batch begins with a new set of colum n headers. The list of
databases includes our user-defined database, Chapter02, along with t he two SQL
Server sam ple databases, pubs and Northwind, as well as the four system
databases. The second header shows just one row for the lone table in
Chapter02. The third header rows reveal t he nam es of the four colum ns within
the Em ailContacts table. This view provides m uch addit ional inform at ion about
each colum n, such as it s nullabilit y, data t ype, and related set t ings, including it s
precision and scale if appropriate. The row for t he last set of colum n headers
provides inform at ion about t he lone key for t he Em ailContacts table. This is the
table’s pr im ary key. Each key has a nam e, which appears in the

CONSTRAI NT_NAME colum n. Because our syntax for t he creat ion of t he table
didn’t specify a nam e for the pr im ary key, t he last row of output in Figure 2-2
shows the system -generated nam e for t he table’s pr im ary key in the
CONSTRAI NT_NAME colum n. A subsequent sam ple in the “Scr ipt ing Keys and
I ndexes” sect ion illust rates the syntax for assigning a specific nam e to a pr im ary
key.

Figure 2 - 2 . Sam ple output from a set of four T-SQL batches illust rat ing
the behavior of I NFORMATI ON_ SCHEMA view s.

INFORMATI ON_SCHEMA offers m any m ore v iews besides those illust rated in the
preceding four batches. For exam ple, you can gather inform at ion about check
const raints for colum n values, table const raints, stored procedures, and user-
def ined funct ions. Refer to t he “I nform at ion Schem a View” topic in Books Online
for an overview of t he I NFORMATI ON_SCHEMA views along with links def ining the
result set for each t ype of view available.

W orking w ith Colum n Data Types

The “Creat ing a Table” sect ion int roduced the CREATE TABLE statem ent syntax
and dem onst rated how to declare typical system data types such as int and
nvarchar . Apply ing this fram ework will enable you to assign the other data types
to colum ns as well. I n spite of the sim plicity of the overall approach, there are
special issues for som e data types, and one data type hasn’t been covered yet .
This sect ion reviews these issues.

Com paring t im estam p and datet im e Data Types

Those who are m igrat ing to SQL Server m ay be confused at f irst by the t im e-
stam p data type and whether it has anything to do with datet im e data (it
doesn’t) . The rowversion alias for t im estam p actually sum m arizes the purpose of

the t im estam p data type m ore precisely. This m ay be one reason why Microsoft
plans to use the rowversion nam e m ore prom inent ly in the future.
The following scr ipt cont rasts the t im estam p and datet im e data types. The
cont rast relies on two tables, t1 and t2 , each with t hree colum ns, col1 , col2 , and
col3. The col1 colum n has an int data type and offers a value for
program m at ically populat ing rows in each table. The col2 and col3 colum ns
populate autom at ically . The data type for col2 is datet im e, but it has a DEFAULT
const raint t hat assigns the current t im e autom at ically . Users and your
applicat ion’s code can override this default value. The t im estam p data type also
autom at ically populates col3 in both tables. However, for this data type, only SQL
Server updates the value. This occurs with t he insert ion of a new row or the
revision of any value in an exist ing row.
After creat ing the t1 and t2 tables, the scr ipt does a couple of operat ions to
cont rast t im estam p and datet im e data types. The script inserts a record into each
table with a delay of 1 second between each insert ion. The WAI TFOR DELAY
statem ent actually suspends the operat ion of SQL Server for t he durat ion of it s
argum ent . Therefore, the insert ion for table t2 can occur m ore than 1 second
after the insert ion for table t1 because SQL Server requires t im e to perform the
operat ion. After running a SELECT query to show the colum n values in tables t1
and t2, t he script next updates the value of col1 in table t2 . Then it reruns the
SELECT query to dem onst rate the im pact of the operat ion on the colum n values
in the sam ple. At t he sam ple’s conclusion, the script rem oves the t1 and t2 tables
from the Chapter02 database.
--CompareTimestampToDatetime
--Execute statements after USE from Chapter02 database.
USE Chapter02

--Create two tables named t1 and t2.
CREATE TABLE t1
(
col1 int,
col2 datetime DEFAULT GETDATE(),
col3 timestamp
)
CREATE TABLE t2
(
col1 int,
col2 datetime DEFAULT GETDATE(),
col3 timestamp
)
GO

--Insert a row in tables t1 and t2 with
--a one-second delay between tables.
INSERT INTO t1 (col1) VALUES (1)
WAITFOR DELAY ’00:00:01’
INSERT INTO t2 (col1) VALUES (1)
GO

--Run queries on tables t1 and t2.
SELECT ’t1’ AS ’Table Name’, * FROM t1
SELECT ’t2’ AS ’Table Name’, * FROM t2
GO

--Update column col1 in table t2.
UPDATE t2 SET col1 = col1 + 2
GO

--Re-run queries on tables t1 and t2.

SELECT ’t1’ AS ’Table Name’, * FROM t1
SELECT ’t2’ AS ’Table Name’, * FROM t2
GO

--Drop tables t1 and t2.
DROP TABLE t1
DROP TABLE t2
GO

Figure 2-3 shows the Results pane from Query Analyzer for t he preceding script .
The col2 value for the second row is 1 second plus a SQL Server clock t ick (3
m illiseconds) behind the col2 value for t he first row. This clock t ick is the t im e
that it takes to com plete the row insert ion for t able t2. The col3 values for t he
first and second rows are displaced by 1. Because the insert ion for table t2
occurred im m ediately after t he one for table t1 , this is appropr iate. I f other
insert ions took place between the init ial insert ion for table t1 and table t2 , the
difference in t he binary value for col3 would be greater . The update of col1 for
table t2 dem onst rates this point .
The second pair of rows in Figure 2-3 also displays the colum n values for tables
t1 and t2 after an update to col1 in table t2 . I n the case of table t1, the col3
value rem ains unaltered. However, the col3 value for table t2 grows by 1 from its
init ial value after t he insert ion. This increased value reflects the im pact of t he
update to col1 in t able t 2 . While t he second pair of rows var ies from the first pair
for col3 in Figure 2-3, t he col2 values are ident ical between the first and second
pair of rows. This is because updat ing values of other colum ns has no im pact on
the datet im e values in col2 , but updat ing any value in a row does im pact the
value of t he t im estam p colum n value in the row.

Note

You can have just one column per table with a t imestam p
data type.

Figure 2 - 3 . Sam ple output contrast ing the behavior of datet im e and
t im estam p data types.

Using sql_ variant Data Type Values

The sql_var iant data type is the only data type that lets you store dif ferent data
types in t he sam e colum n. This capabilit y is useful for storing a collect ion of
values in a colum n in which you don’t know in advance what types of values you’ ll

have. This can ar ise in a situat ion in which you let a user define values on an ad
hoc basis.
Consider a table t hat stores m iscellaneous inform at ion about contacts. Som et im e
your applicat ion m ay need to store a m oney data type, another t im e a user m ay
want t o specify a date, and in yet other cases, your applicat ion m ay need to
designate a var iable- length character value. This kind of scenar io is typical of
situat ions in which your applicat ion needs to character ize elem ents but the
com plete set of elem ents and their at t r ibutes isn’t known at t he t im e that you
develop the applicat ion.
The following scr ipt assigns a set of extended propert ies to a table of contacts
ident if ied by a Contact I D colum n. Not ice that t he CREATE TABLE statem ent uses
three colum ns to character ize the contacts. The m ost im portant colum n is
PropValue, which has a sql_var iant data type. This colum n stores the actual value
that character izes a contact . I n som e cases, the contact character ist ic is a
m onetary value, in other cases it is a date, and in st ill other cases it is a st r ing
value, such as the nam e of a favor it e sport or store. PropI D and PropNam e
describe the characterist ic for t he contact . PropNam e m akes it easy to follow
what t he PropValue colum n values describe without requir ing another table to
decode the PropI D colum n values. A subsequent sam ple will return to the
ContactExtProps table and link it to other tables containing contact and property
nam es. I n addit ion, t hat sam ple will add a pr im ary key to the table. These
refinem ents aren’t necessary to dem onst rate t he behavior of sql_var iant data
types.
The INSERT I NTO statem ents t hat add values to the PropValue colum n use CAST
funct ions to establish sub data types within the sql_var iant colum n. This isn’t
st r ict ly necessary, but t he CAST funct ion confirm s the abilit y of the sql_var iant
data type to accept m ult iple other data types.
--SQL_variantSample
--Execute statements after USE from Chapter02 database.
USE Chapter02
GO

--Remove prior version of ContactExtProps if it exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’ContactExtProps’
)
DROP TABLE ContactExtProps
GO

--Create ContactExtProps with four columns.
CREATE TABLE ContactExtProps
(
ContactID int NOT NULL,
PropID int NOT NULL,
PropName nvarchar(20),
PropValue sql_variant
)
GO

--Populate ContactExtProps with values.
INSERT INTO ContactExtProps
 VALUES(1, 1,’Birthday’, CAST(‘9/9/1944’ AS datetime))
INSERT INTO ContactExtProps
 VALUES(1, 2, ’Salary’, CAST(50000 AS money))
INSERT INTO ContactExtProps
 VALUES(1, 3, ’Bonus’, CAST(30000 AS money))

INSERT INTO ContactExtProps
 VALUES(1, 4, ’Favorite Sport’, ’Boxing’)
INSERT INTO ContactExtProps
 VALUES(2, 1, ’Birthday’, CAST(‘1/1/1950’ AS datetime))
INSERT INTO ContactExtProps
 VALUES(2, 2, ’Salary’, CAST(60000 AS money))
INSERT INTO ContactExtProps
 VALUES(2, 3, ’Bonus’, CAST(40000 AS money))
INSERT INTO ContactExtProps
 VALUES(2, 5, ’Favorite Store’, CAST(‘Tailspin Toys’ AS nvarchar(2
0)))
GO

--Select all records with a Favorite Store property.
SELECT ContactID, PropName, PropValue
FROM ContactExtProps
WHERE PropName = ’Favorite Store’
GO

--Select Salary and Bonus properties and add one to
--money data type for Salary and Bonus properties.
SELECT ContactID, PropName, Cast(PropValue AS money)+1, PropValue
FROM ContactExtProps
WHERE PropID >=2 and PropID <=3
GO

--This SELECT fails because sql_variant doesn’t implicitly
--convert to other data types (for example, money)
SELECT ContactID, PropName, Cast(PropValue AS money), PropValue+1
FROM ContactExtProps
WHERE PropID >=2 and PropID <=3
GO

Three SELECT quer ies at the end of t he preceding script illust rate som e of your
opt ions for ext ract ing data from colum ns declared with a sql_var iant data type.
The first SELECT query includes PropValue, t he sql_var iant data type, in t he
SELECT list for a query, but it uses a colum n defined with t he nvarchar data type
in a WHERE clause. This SELECT query succeeds and returns the nam e of the
favor ite store for any record that has the PropNam e value ’Favor ite Store’.
The second SELECT query uses PropI D, a colum n with an int data type, in the
WHERE clause to ext ract records with inform at ion about salary and bonus for
contacts in the PropValue colum n. This sam ple t ransform s the sql_var iant data
type for PropValue to a m oney data type in the SELECT list . Then it adds 1 to the
t ransform ed value. This addit ion operat ion succeeds because it works with t he
explicit ly converted sql_var iant data type.
The last SELECT query t r ies the sam e addit ion task as the second SELECT query,
but it s SELECT list relies on an im plicit t ransform at ion of the sql_var iant data type
to a data type that supports addit ion. Because SQL Server doesn’t support t his
t ransform at ion for a sql_var iant source data t ype, t he last SELECT query fails.
Figure 2-4 displays the output from the first two successful query statem ents.

Figure 2 - 4 . Not ice that the PropValue colum n, w hich has a sql_ variant
data type, returns values w ith different data type form at s, such as

variable - length character st rings and m oney.

Using Com puted Colum ns in Tables

A com puted colum n adds a v irtual colum n to a t able based on an expression that
draws on one or m ore other colum ns within the table. You can specify a
com puted colum n with a CREATE TABLE (or an ALTER TABLE) statem ent . You can
use a com puted colum n in a SELECT list , a WHERE clause, or an ORDER BY
clause. I n addit ion, com puted colum ns can part icipate in t he definit ion of an index
or prim ary key. You can also use a com puted colum n in the def init ion of a
UNI QUE const raint . When you’re using a com puted colum n to help define a
prim ary key or an index, the expression m ust be determ inist ic. I n other words,
the expression m ust generate the sam e result all t he t im e based on the sam e
input . An expression based on GETDATE isn’t appropriate for a com puted colum n
that will serve as a colum n for an index. This is because the result w ill change
each t im e you open the table.
Despite the wide range of uses for com puted colum ns, t here are several
circum stances in which you cannot use them . For exam ple, you cannot specify
nullabilit y for com puted colum ns. This is because SQL Server autom at ically
determ ines whether a com puted colum n is null based on it s input and the
expression for com bining the com puted colum ns in quest ion. Even non-nullable
inputs can generate null results if an expression generates an underflow or
overf low. I n addit ion, you cannot specify inputs or m odify t he contents of
colum ns with I NSERT I NTO or UPDATE statem ents. Yet another applicat ion that
doesn’t perm it t he use of com puted colum ns is that which def ines FOREI GN KEY
and DEFAULT const raints.
The following scr ipt sam ple illust rates the syntax for specify ing a com puted
colum n and shows an exam ple of how to use it . The CREATE TABLE statem ent
designates three colum ns for t he ProjectedDeliveryDates table. The first colum n is
autoincrem ent ing, with default set t ings for t he I DENTI TY colum n property. The
second colum n has a datet im e data t ype for accept ing order dates. The third
colum n is a com puted colum n. The expression for t he colum n uses the DateAdd
funct ion to com pute a proj ected delivery date based on the table’s OrderDate
colum n.

Note

The I DENTI TY property perm its you to set the seed value
and the step value for an autoincrement ing series. I ts default
seed and step values are both 1. You can specify alternate
seed and step values by adding parentheses after the
keyword. For example, use I DENTI TY(100, 10) to specify a

series that star ts at 100 and progresses in steps of 10.
--ComputedColumnSample
--Execute statements after USE from Chapter02 database.
USE Chapter02
GO

--Remove prior version of ProjectedDeliveryDates if it exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’ProjectedDeliveryDates’
)
DROP TABLE ProjectedDeliveryDates

--Create ProjectedDeliveryDates with three columns.
CREATE TABLE ProjectedDeliveryDates
(
OrderID int IDENTITY Not Null PRIMARY KEY,
OrderDate datetime Not Null,
ProjectedDeliveryDate AS DateAdd(day, 10, OrderDate)
)
GO

--Populate ProjectedDeliveryDates.
INSERT INTO ProjectedDeliveryDates
Values(GetDate())
INSERT INTO ProjectedDeliveryDates
Values(‘9/1/01’)

--Display date and time for projected delivery.
SELECT OrderID, OrderDate, ProjectedDeliveryDate
FROM ProjectedDeliveryDates

--Display just date for projected delivery.
SELECT OrderID, OrderDate,
 LEFT(ProjectedDeliveryDate,12)
 AS ’ProjectedDeliveryDate’
FROM ProjectedDeliveryDates
GO

After insert ing order dates based on either the GETDATE funct ion or a st r ing
represent ing a date, t he script queries the ProjectedDeliveryDates table with two
separate SELECT quer ies. The first SELECT query statem ent dem onst rates the
com puted colum n as part of the list for the statem ent . For this statem ent , t he
Proj ectedDeliveryDate colum n displays both the date and the t im e. However,
your applicat ion m ay require j ust t he date. The second query statem ent shows
how to crop the t im e value out of t he display. Figure 2-5 presents the output
from both SELECT statem ents.

Figure 2 - 5 . This exam ple show s the use of a com puted colum n to display
a projected date for the delivery of an order in either of tw o

representat ions—one that includes a t im e and another that show s only a
date.

Adding Check Const raints

Check const raints are am ong the m ost sim ple of the const raint t ypes available to
database developers and adm inist rators. Basically, a check const raint allows you
to rest r ict the values enter ing a colum n— som ewhat in t he way that data type
specificat ions do. (Users cannot enter a character st r ing into a colum n with an int
data type.) However, check const raints base their rest r ict ion on a Boolean
expression that evaluates to True or False. The const raint expression can draw on
one or m ore colum n values from the table to which it applies. A colum n const raint
applies to an individual colum n, and a table const raint references two or m ore
colum ns. The value False for the expression v iolates the const raint . SQL Server
rej ects the insert ion of a record with a value that violates a const raint . You can
use this behavior t o m aintain the integr ity of t he colum n values in the tables of
your database applicat ions.
The following scr ipt has three batches of statem ents. First the script adds a
colum n check const raint to t he Em ailContacts table init ially generated in the
“Creat ing a Table” sect ion. The first batch also tests the const raint by at tem pt ing
to insert a row with a colum n value that v iolates the const raint . I n the second
batch, the script shows how to disable a const raint . This batch at tem pts to insert
the sam e record that failed in the f irst batch, but this t im e the insert ion succeeds.
The third batch drops the const raint from the Em ailContacts table and deletes the
record added in the second batch.
You can use the ALTER TABLE statem ent t o add a colum n check const raint to a
table, such as Em ailContacts. The ALTER TABLE statem ent perm its the
m odificat ion of a table after it s creat ion. Besides adding check const raints, you
can add other const raints, such as pr im ary or foreign keys, and new colum ns. To
add a const raint , use the ADD keyword followed by CONSTRAI NT. You can
opt ionally assign a const raint nam e. Specify ing a const raint nam e is part icular ly
convenient if your applicat ion has a need to disable or rem ove a const raint . I f you
don’t explicit ly nam e your const raints, SQL Server autom at ically assigns a nam e.
The CHECK keyword specifies the type of const raint . Finally , the expression
t railing the CHECK keyword represents the condit ion for which the check
const raint t ests. I n the sam ple scr ipt , t he const raint evaluates the Em ail1 value
to ensure that it contains the @ sym bol. E-m ail addresses that don’t include this
sym bol are invalid.
--ColumnCheckConstraintSample
USE Chapter02

--Add CHECK constraint to require at
--least one @ in Email1.
ALTER TABLE EmailContacts
ADD CONSTRAINT ch_EmailContacts_Email1_for@
CHECK (CHARINDEX(‘@’,Email1)<>0)

--Test constraint with an Email1 value

--that contains no @; the INSERT statement fails.
INSERT INTO EmailContacts
 VALUES (3,’Karl’, ’Doe1’, ’Doe1.hlcofvirginia.com’)
GO

--Disable the constraint.
ALTER TABLE EmailContacts
NOCHECK CONSTRAINT ch_EmailContacts_Email1_for@

--Test the disabled constraint with an Email1 value
--that contains no @; the INSERT statement succeeds.
INSERT INTO EmailContacts
 VALUES (3,’Karl’, ’Doe1’, ’Doe1.hlcofvirginia.com’)
GO

--Drop the constraint and delete bad Email1 row.
ALTER TABLE EmailContacts
DROP CONSTRAINT ch_EmailContacts_Email1_for@
DELETE FROM EmailContacts
WHERE LastName = ’Doe1’
GO

Script ing Keys and I ndexes

This sect ion dr ills down on techniques for script ing pr im ary keys, foreign keys,
and indexes in your tables. Each topic begins with a br ief descr ipt ion of
background issues before the discussion of a sam ple or two that illust rate typical
uses for t he topic.

Prim ary Keys

Prim ary keys have two especially dist inct ive features. First , each row m ust have a
unique pr im ary key value. Second, no pr im ary key value can be null— even if it is
the only null record in a table. I t is com m on, but not m andatory, t o base pr im ary
keys on a single colum n with an I DENTI TY property set t ing. A pr im ary key can
span m ult iple colum ns.
Each pr im ary key creates an index . An index is a database object t hat supports
fast access to the rows within a table or v iew. Any one SQL Server table can have
up to 250 indexes, but only one of t hese can be clustered. A clustered index
physically orders t he records for a table in storage according to t he index values.
Because a clustered index can speed perform ance so m uch, you should reserve
the clustered index so that it serves your applicat ion’s m ost heavily used lookup
requirem ent . You can m ake either t he index for the pr im ary key or another index
the clustered index for a table. With a standard SQL Server installat ion, a pr im ary
key declarat ion m akes the pr im ary key clustered by default . However, you can
explicit ly declare a prim ary key as nonclustered.
As m ent ioned previously, t he pr im ary key can have its nam e assigned either by
the system or by a user. The following script sam ple re-creates the Em ailContacts
table. I f you check the sam ple in that sect ion, you will observe that the prim ary
key declarat ion doesn’t include a nam e for t he prim ary key. The following script
re-creates the generat ion of t he Em ailContacts table, but this sam ple does
explicit ly nam e the pr im ary key. The sam ple also dem onst rates the use of t he
sp_pkeys system stored procedure— once before dropping the first version of the
Em ailContacts table and a second t im e after creat ing a new version of the table
with a user-defined nam e for the prim ary key. The sp_pkeys system stored
procedure has a result set with a separate row for each colum n in t he prim ary

key. The colum ns of t he result set report such it em s as the database nam e, the
table nam e, and the pr im ary key nam e.
The prim ary key declarat ion in t his sect ion perform s ident ically to the one in the
“Creat ing a Table” sect ion except for t he assignm ent of a nam e to the prim ary
key. I n t his instance, the sam ple uses the CONSTRAI NT keyword. This is opt ional
for a prim ary key, but it s use can rem ind you that the pr im ary key is a m em ber
of t he fam ily of const raints, including check const raints and foreign key
const raints. The nam e for t he pr im ary key appears im m ediately aft er t he
CONSTRAI NT keyword. The following scr ipt also explicit ly declares the prim ary
key as clustered. You can replace the keyword CLUSTERED w it h NONCLUSTERED
to avoid physically ordering the records in t he table according to Contact I D
values.
--CreateEmailContactsTableWithPKName
--Execute statements after USE from Chapter02 database.
USE Chapter02
GO

--Print primary key columns and remove prior version
--of EmailContacts, if the table exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’EmailContacts’
)
 BEGIN
 EXEC sp_pkeys ’EmailContacts’
 DROP TABLE EmailContacts
 END

--Create EmailContacts with three columns while
--explicitly assigning a name to the primary key.
CREATE TABLE EmailContacts
(
ContactID int Not Null
 CONSTRAINT pk_EmailContacts_ContactID PRIMARY KEY CLUSTERED,
FirstName nvarchar(20),
LastName nvarchar(35),
Email1 nvarchar (255)
)
GO

--Populate EmailContacts and run a SELECT query
INSERT INTO EmailContacts
 VALUES(1,’Rick’, ’Dobson’, ’rickd@cabinc.net’)
INSERT INTO EmailContacts
 VALUES(2,’Virginia’, ’Dobson’, ’virginia@cabinc.net’)
SELECT * FROM EmailContacts
GO

--List primary key columns in EmailContacts.
EXEC sp_pkeys ’EmailContacts’

Figure 2-6 shows the output from the preceding script . The results below the f irst
and third colum n headers reveal the output from the sp_pkeys system stored
procedure before and after t he nam ing of the pr im ary key. The first set of colum n
headers shows the system defined nam e for the pr im ary key. The third set of
colum n headers shows the output from the sp_keys stored procedure after t he
assignm ent of a nam e to the pr im ary key. Not ice how the PK_NAME colum n value

in the last row of Figure 2-6 m atches the nam e assigned to t he pr im ary key in the
preceding script .

Figure 2 - 6 . Sam ple output dem onst rat ing pr im ary key nam es assigned by
the system (top row) and by the preceding scr ipt (bot tom row) .

Recall t hat the “Using sql_var iant Data Type Values” sect ion init ially created the
ContactExtProps table. When it was created in t hat sect ion, t he script didn’t
create a pr im ary key for it . I n addit ion, t he ContactExtProps table includes a
colum n, PropID, designed to link to another table that defines nam es to m atch
the PropI D values. The next script creates a table, ExtProps, t hat m atches the
PropI D int values with nam es in a colum n of var iable- length character st r ings.
The script t hen proceeds to use the sp_pkeys system stored procedure to
determ ine whether a pr im ary key colum n is already in the ContactExtProps table.
A value of 0 for @@ROWCOUNT specifies no pr im ary key. I f the value is greater
than 0, t he procedure drops the exist ing pr im ary key. Next t he procedure uses an
ALTER TABLE statem ent to create a new pr im ary key based on two colum ns—
Contact I D and PropI D. This prim ary key desi-gnat ion perm its each contact to
have m ult iple propert ies but no m ore than one set t ing for any one property. The
foreign key sam ple in the next sect ion will dem onst rate how to link t he
ContactExtProps table t o the Em ailContacts and ExtProps tables.
--CreateExtProps
--Execute statements after USE from Chapter02 database.
USE Chapter02
GO

--Remove prior version of ExtProps, if it exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’ExtProps’
)
DROP TABLE ExtProps
GO

--Create ExtProps.
CREATE TABLE ExtProps
(
PropID int,
PropName nvarchar(20),
)

--Populate ExtProps with values.
INSERT INTO ExtProps
 VALUES(1, ’Birthday’)
INSERT INTO ExtProps
 VALUES(2, ’Salary’)
INSERT INTO ExtProps

 VALUES(3, ’Bonus’)
INSERT INTO ExtProps
 VALUES(4, ’Favorite Sport’)
INSERT INTO ExtProps
 VALUES(5, ’Favorite Store’)
GO

--Drop primary key for ContactExtProps.
EXEC sp_pkeys ContactExtProps, dbo, Chapter02
IF @@ROWCOUNT > 0
ALTER TABLE ContactExtProps
DROP CONSTRAINT pk_ContactExtProps_ContactID_PropID
GO

--Add Primary Key based on ContactID and PropID.
ALTER TABLE ContactExtProps
ADD CONSTRAINT pk_ContactExtProps_ContactID_PropID
 PRIMARY KEY NONCLUSTERED
 (
 ContactID,
 PropID
)

--List primary key columns in ContactExtProps.
EXEC sp_pkeys ’ContactExtProps’

The preceding script closes by invoking the sp_pkeys system stored procedure.
The output from the procedure appears in Figure 2-7. Not ice that it contains two
rows— one for each colum n that cont r ibutes to t he pr im ary key for the
ContactExtProps table.

Figure 2 - 7 . Output from the sp_ pkeys syst em stored procedure that
show s a pr im ary key defined on tw o colum ns.

Foreign Keys

Foreign keys are colum n values in one table t hat point to t he pr im ary key or
unique key in another t able. Specifying a foreign key enforces referent ial integr ity
between the two tables. Referent ial integr ity requires all new records added to
the table with t he foreign key to m atch eit her a prim ary or a unique key value in
the other table if it isn’t null. You can opt ionally specify act ions to occur when you
update or rem ove a pr im ary or unique key in t he table on the other end of t he
foreign key relat ionship. Specifically, you can cascade the change from the table
with t he pr im ary or unique key to t he one with t he foreign key. Alt ernat ively, you
can choose no act ion to occur in t he table with t he foreign key as a consequence
of updates to the table with t he pr im ary or unique key.
The following scr ipt adds a couple of foreign keys to the ContactExtProps table.
The first foreign key uses the Contact I D in t he ContactExtProps table to refer to
the prim ary key for the Em ailContacts table. The second foreign key uses the
ContactExtProps table v ia it s PropI D colum n values to refer to the ExtProps table.
Because the ExtProps table doesn’t init ially have a pr im ary or a unique key, the
table cannot part icipate in a foreign key relat ionship. Therefore, t he script first
adds const raints to t he PropI D colum n in ExtProps so that it serves as the table’s
prim ary key. Then it declares the foreign key relat ionship between the

ContactExtProps table and the ExtProps table. Although the first foreign key
doesn’t declare any cascading act ion, t he declarat ion for the second foreign key
specifies cascading updates. The script sam ple illust rates the syntax for
designat ing cascading updates in it s declarat ion. After t he second foreign key
declarat ion, t he script t ests the cascading update behavior by m aking a change to
a PropID value in the ExtProps table and then ver ify ing that t he update cascades
to the corresponding PropI D value in the ContactExtProps table. The script
sam ple concludes by restoring the values and the database design to t heir form er
state before the addit ion of either foreign key. This m akes it possible t o rerun the
script wit hout any m anual setup act ivit y between runs.
You add a foreign key to a table as a const raint . The syntax for perform ing this
task has at least three steps, and it can have m ore if you specify a cascading
act ion. Begin the foreign key declarat ion inside an ALTER TABLE statem ent . After
you open the ALTER TABLE statem ent , t he f irst step is to indicate that you want
to add a const raint with the ADD and CONSTRAINT keywords. You can,
opt ionally, assign a nam e to the foreign key const raint . Next add the FOREIGN
KEY keyword and follow it wit h parentheses containing the nam es of t he colum ns
from the current table part icipat ing in t he relat ionship. Third add REFERENCES as
a keyword. Follow this keyword with t he nam e of the table to which the
relat ionship refers. Then, in parentheses after t he table nam e, add the colum n
nam es from that table t hat part icipate in t he relat ionship. By default , update and
delete act ions don’t cascade from the table with t he unique key or prim ary key to
the table with t he foreign key. However, you can opt ionally add an ON UPDATE or
ON DELETE clause to t he foreign key declarat ion. I nclude in eit her clause
CASCADE to t ransfer t he act ion from the table with t he prim ary or unique key to
the one with the foreign key.
--ForeignKeysSamples
--Beginning of first FOREIGN KEY sample.
USE Chapter02

--Remove FOREIGN KEY constraint if it exists already.
EXEC sp_fkeys @fktable_name = N’ContactExtProps’
IF @@ROWCOUNT > 0
BEGIN
 ALTER TABLE ContactExtProps
 DROP CONSTRAINT ContactExtProps_fkey_ContactID
END

--Then, add a new FOREIGN KEY constraint.
ALTER TABLE ContactExtProps
ADD CONSTRAINT ContactExtProps_fkey_ContactID
FOREIGN KEY (ContactID)
REFERENCES EmailContacts(ContactID)

--Verify addition of new constraint.
EXEC sp_fkeys @fktable_name = N’ContactExtProps’
--End of first FOREIGN KEY sample

--Beginning of second FOREIGN KEY sample.
--Convert PropID in ExtProps to NOT NULL.
ALTER TABLE ExtProps
ALTER COLUMN PropID int NOT NULL
GO

--Then, define a primary key on PropID.
ALTER TABLE ExtProps
ADD CONSTRAINT pk_PropID PRIMARY KEY CLUSTERED (PropID)
GO

ALTER TABLE ContactExtProps
ADD CONSTRAINT ContactExtProps_fkey_PropID
FOREIGN KEY (PropID)
REFERENCES ExtProps(PropID)
ON UPDATE CASCADE

--Verify addition of new constraint.
EXEC sp_fkeys @fktable_name = N’ContactExtProps’
GO

--List ExtProps and ContactExtProps rows before
--update to ExtProps.
SELECT * FROM ExtProps
SELECT * FROM ContactExtProps

--Then, make a change in ExtProps that
--cascades to ContactExtProps.
UPDATE ExtProps
SET PropID = 50 WHERE PropID = 5

--List ExtProps and ContactExtProps rows after
--update to ExtProps.
SELECT * FROM ExtProps
SELECT * FROM ContactExtProps
GO
--End of second FOREIGN KEY sample.

--Do cleanup chores.
--Start to restore by resetting PropID values.
UPDATE ExtProps
SET PropID = 5 WHERE PropID = 50

--Next, drop FOREIGN KEY constraints.
ALTER TABLE ContactExtProps
DROP CONSTRAINT ContactExtProps_fkey_ContactID

ALTER TABLE ContactExtProps
DROP CONSTRAINT ContactExtProps_fkey_PropID

--Then, drop PRIMARY KEY constraint first .
ALTER TABLE ExtProps
DROP CONSTRAINT pk_PropID

--Finally, restore NULL setting for column.
ALTER TABLE ExtProps
ALTER COLUMN PropID int NULL
GO
--End of restore from second FOREIGN KEY sample.

Figure 2-8 shows two excerpts from the preceding script ’s output . The top panel
shows the ExtProps table rows over t he ContactExtProps table rows. This is
before an update of the PropI D value 5 to a new value of 50 in t he ExtProps
table. The bot tom panel shows the sam e two tables after the update of the value
in the ExtProps table. Not ice that t he change to the ExtProps table cascades to
the ContactExtProps table.

Figure 2 - 8 . The top and bottom panels show the ExtProps table over the
ContactExtProps table before and after a change to the ExtProps table.

I ndexes

Many databases can achieve perform ance gains through the addit ion of an index.
I ndexes are great at speeding lookups and sort s. On the other hand, t here are
t im es when the overhead associated with m aintaining an index can slow an
applicat ion. This is part icular ly t rue when one or m ore indexes over lap with a
clustered pr im ary key. Often developers and adm inist rators have to resort to
t im ing runs for typical t asks to determ ine the best configurat ion of indexes for a
database applicat ion. With this in m ind, t he value of being able to add and drop
indexes program m at ically is considerable as you perform your t im ing runs to
discern the opt im al index configurat ion.
The last script in this chapter illust rates several techniques for working with
indexes that you are likely t o f ind useful. The script begins by creat ing a user-
def ined stored procedure, ListUserDefinedI ndexes, that lists the indexes for user-
defined tables in a database. (You’ll read m uch m ore about stored procedures in
Chapter 4.) See Figure 2-9 for sam ple output . This procedure draws on both the
sysobjects and sysindexes tables— two system catalog tables. While you should
generally avoid m anipulat ing system tables, som e advanced developers find it
useful to do so. The Nam e colum n from the sysobjects table (sysobjects.nam e)
returns the table for an index, and the Nam e colum n from the sysindexes table

(sysindexes.nam e) is t he nam e for a specific index in a table (if t here is one) . The
indid colum n presents t he index ident if ier colum n values. An indid value of 1
indicates a clustered index, such as one created with t he CREATE I NDEX
statem ent or one associated with a prim ary key. Values of indid between 2 and
250 are for nonclustered indexes. An indid value of 0 indicates there is no
clustered index for a table. The indid colum n value also conveys inform at ion
about tables containing large data types, such as text , ntext , and im age. See the
“Table and I ndex Archit ecture” t opic in Books Online for addit ional detail.

Note

I nstead of using the ListUserDefinedI ndexes stored
procedure in the scr ipt below, you can use the system stored
procedure sp_helpindex to collect informat ion about indexes.
This system stored procedure works sim ilar ly to sp_pkeys
and sp_fkeys, but it prov ides informat ion for indexes.
However, ListUserDefinedI ndexes gives you exposure to
techniques for work ing with system catalog tables, which are
a r ich source of content about a database’s design.
You can add an index to a table with t he CREATE I NDEX statem ent . The list ing
below init ially dem onst rates the syntax for creat ing an index based on one
colum n. Follow CREATE I NDEX wit h t he nam e of your index. Then follow the
index nam e with an ON clause. I n the ON clause, include the table nam e with t he
colum n or colum ns for t he index. Place the colum n nam e in parentheses after t he
table’s nam e.
The sam ple illust rates the applicat ion of t he CREATE I NDEX syntax twice. The first
use of t he statem ent is for adding an index based on the LastNam e colum n in the
Em ailContacts table. This exam ple dem onst rates how to use the CREATE I NDEX
statem ent as described in the preceding paragraph. A second applicat ion of t he
statem ent shows how to create a unique index based on two colum ns from the
ContactExtProps table— nam ely, Contact I D and PropI D. The syntax for this
exam ple uses the UNI QUE keyword. This keyword is appropriate for a table with a
candidate key because it specifies a second index that is unique for each record
besides the pr im ary key. I n other words, the colum n(s) cont r ibut ing to a unique
index are candidates for the pr im ary key. By default , t he CREATE I NDEX
statem ent generates nonclustered indexes. However, you can insert CLUSTERED
after eit her CREATE or UNI QUE (if it is present) to m ake a clustered index.
Use the DROP I NDEX statem ent t o rem ove a user-defined index (for exam ple,
one you create with the CREATE I NDEX statem ent) . The syntax for t he DROP
INDEX statem ent uses a two-part nam e to designate the index to drop. The first
part is the table nam e, and the second part is t he index nam e. A per iod delim its
the two parts. Our stored procedure lists the indexes for prim ary keys and
system -defined indexes. You can delete the index for a pr im ary key by dropping
the key. I f t he SQL Server set t ings for a server perm it it , you can rem ove the
index for a foreign key direct ly from the sysindexes table. See the “How to set
the allow updates opt ion (Enterpr ise Manager)” and “Error 259” t opics in Books
Online for m ore detail on direct ly m anipulat ing system catalog tables, such as
sysindexes.
--IndexSamples
USE Chapter02
--Create a stored procedure to list for user-defined
--tables object name from sysobjects, and name and
--indid from sysindexes.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’ListUserDefinedIndexes’)
DROP PROCEDURE ListUserDefinedIndexes

GO
CREATE PROCEDURE ListUserDefinedIndexes
AS
SELECT sysobjects.id AS [sysobjects.id],
 sysindexes.id AS [sysindexes.id],
 sysobjects.name AS [sysobjects.name],
 sysindexes.name AS [sysindexes.name], sysindexes.indid
FROM sysobjects INNER JOIN sysindexes
ON sysobjects.id = dbo.sysindexes.id
WHERE (LEFT(sysobjects.name, 3) <> ’sys’)
 AND (sysobjects.name <> N’dtproperties’)
GO

--List indexes data.
EXEC ListUserDefinedIndexes

--Create an Index for LastName in EmailContacts.
CREATE INDEX ind_EmailContacts_LastName
ON EmailContacts(LastName)

--List indexes data.
EXEC ListUserDefinedIndexes

--Remove previously created index.
DROP INDEX EmailContacts.ind_EmailContacts_LastName

--Remove primary key for ContactExtProps based
--on ContactID and PropID.
EXEC sp_pkeys ContactExtProps, dbo, Chapter02
IF @@ROWCOUNT > 0
ALTER TABLE ContactExtProps
DROP CONSTRAINT pk_ContactExtProps_ContactID_PropID
GO

--List indexes data.
EXEC ListUserDefinedIndexes
GO

--Create an Index for LastName in EmailContacts.
CREATE UNIQUE INDEX ind_ContactExtProps_ContactID_PropID
ON ContactExtProps(ContactID, PropID)

--List indexes data.
EXEC ListUserDefinedIndexes
GO

--Attempt to enter a record with duplicate key values for
--ContactID and PropID.
INSERT INTO ContactExtProps Values (1, 1, ’Birthday’, ’9/9/1964’)
GO

--Remove previously created index.
DROP INDEX ContactExtProps.ind_ContactExtProps_ContactID_PropID

--List indexes data.
EXEC ListUserDefinedIndexes
GO

--Insert and then delete record with duplicate values for
--ContactID and PropID columns.
INSERT INTO ContactExtProps Values (1, 1, ’Birthday’, ’9/9/1964’)

DELETE FROM ContactExtProps WHERE PropValue = ’9/9/1964’
GO

Besides syntax issues, t he preceding sam ple script illust rates design issues for
working with indexes, such as test ing the behavior of a unique index. To isolate
the effect of t he index, t he script drops a prim ary key that requires uniqueness on
the sam e two colum ns as the ind_ContactExtProps_Contact I D_PropI D index. The
test for the validity of this unique index is an at tem pt to enter a record with a
duplicate key value. After failing, the script drops the unique index and confirm s
that you can add the record if t he unique index isn’t present ; the script closes by
rem oving the test record.
Figure 2-9 shows an excerpt from the beginning of t he script wit h t he output from
the first two uses of t he ListUserDefinedI ndexes stored procedure. The m ain point
to take away from the output is t hat the first list ing of indexes doesn’t include a
reference to ind_Em ailContacts_LastNam e, but the second one does. I n between
the two runs of the ListUserDefinedI ndexes stored procedure, t he script invokes
the CREATE I NDEX statem ent t o generate the index. The two result sets also
show the indexes for clustered and nonclustered prim ary keys. For exam ple,
pk_Em ailContacts_Contact I D is a clustered pr im ary key; not ice that it s indid
value is 1. The index for the nonclustered pr im ary key,
pk_ContactExtProps_Contact I D_PropI D, has an indid value of 2. Finally, the
_WA_Sys_PropI D_77BFCB91 index is for a foreign key from a preceding sam ple.
SQL Server didn’t rem ove the index when the script dropped the key.

Figure 2 -9 . These tw o result sets ident ify the addit ion of an index,
ind_ Em ailContacts_ Last Nam e, to the Em ailContacts table. By cont rast ing

the first w ith the second list ing, you can see the effect of the CREATE
I NDEX stat em ent for ind_ Em ailContacts_ Last Nam e.

Chapter 3 . Program m ing Data Access
w ith T- SQL
This chapter presents T-SQL program m ing techniques for data access. You can
use these techniques in m any environm ents— in Query Analyzer, encapsulated
within v iews, in stored procedures and user-defined funct ions— and in Visual Basic
.NET. When you finish working through this chapter, you should possess a
foundat ion for ext ract ing precisely t he data you need from a SQL Server database
for any applicat ion.
The object ive of t his chapter is to dem yst ify T-SQL data access techniques so that
you can create T-SQL SELECT statem ents as easily as you used to write DAO and
ADO data access code. Although the chapter assum es you’re working in Query
Analyzer, the techniques you learn will apply equally when you use T-SQL
statem ents in Visual Basic .NET.
The chapter begins by int roducing the SELECT statem ent and describing how to
filt er colum ns and rows from a row source, such as a table. Next the chapter
focuses on techniques for aggregat ing data across a whole row source as well as
specific groups within t he row source. The chapter explores part icular techniques
for m oney and datet im e var iables, and the datet im e topic gains a sect ion of it s
own. The concluding sect ion exam ines ways of com bining row sources with j oins
and subquer ies. I f you have had diff icult y understanding j oins before, spend
som e t im e with the script sam ples in the chapter and the accom panying
com m entary to build your grasp of t his im portant capabilit y.

Note

By the term row source, I refer to a collect ion of rows from a
database. Although this can be a table, it can also be a view
based on one or more tables. In addit ion, a row source can
be the result set generated by a stored procedure or a table-
valued user-defined funct ion.
The T-SQL sam ples for t his chapter are available in an .sql f ile on the com panion
disk. You can use the scripts as start ing points for your own custom
ext rapolat ions of the techniques. You can run all t he sam ples from Query
Analyzer if you have the Northwind and pubs databases installed on a SQL Server
instance to which you can connect .

I nt roduct ion to Data Access w ith T-SQL

Creat ing efficient , speedy, and flex ible data access solut ions for SQL Server data
will inevitably involve program m ing T-SQL. I n part icular, you will require a firm
foundat ion in the design of SELECT statem ents. This sect ion int roduces the
SELECT statem ent by reviewing it s architecture. You’ ll find code sam ples
designed to illust rate t he basic operat ion of t he statem ent ’s m ain elem ents,
including the SELECT list as well as the FROM and WHERE clauses, and you’ll be
int roduced to t he topic of calculated colum ns.

Overview of the SELECT Statem ent

Learning the syntax and clauses for the SELECT statem ent is t he surest way to
guarantee your product ivity with SQL Server. As m ent ioned in t he int roduct ion to
this chapter, you can use the SELECT statem ent in SQL batches for Query
Analyzer, v iews, stored procedures, and user-def ined funct ions. I t is com m on to
use the SELECT statem ent for data access with SQL Server.
A SELECT statem ent can generate a set of values. SQL Server literature calls the
values returned by a SELECT statem ent it s result set . A typical SELECT statem ent
can return a scalar value, a single colum n of values, or a two-dim -ensional array
of values. I n norm al data access scenarios, t he two-d- im ensional array of values
will be the m ost com m on design for a result set .
At a m inim um , a SELECT statem ent includes a SELECT list and a FROM clause.
The list designates the colum ns that populate a result set . You can use the ent r ies
in the SELECT list to f ilt er colum ns and calculate new colum ns based on the row
source for t he SELECT statem ent . The FROM clause designates the row source for
a SELECT statem ent . The row source for a t ypical SELECT statem ent can be a
table, a view, a user-defined funct ion, or even a subquery. This subquery is
sim ply another SELECT statem ent . At a m inim um , a SELECT statem ent used for
data access m ust include a list and a FROM clause argum ent . The FROM clause
m ust appear aft er t he SELECT list . As with other SELECT clauses, you separate
the FROM clause from the SELECT list by a space or a carr iage return.
You won’t always want t o see all t he data from the source specified in the FROM
clause. The SELECT list enables you to specify a subset of the row source’s
colum ns that should be included in t he result set . Sim ilar ly, the WHERE clause
enables you to designate a subset of the rows. The WHERE clause supplies t he
criter ia used to filter rows in the argum ent for a FROM clause. The WHERE clause
is opt ional. I f you don’t use a WHERE clause, t he SELECT statem ent includes all
the rows designated by the FROM clause in it s result set . When you do use a
WHERE clause, be sure to reference colum ns in the FROM clause argum ent . A
general way of denot ing the syntax for a basic SELECT statem ent is:
SELECT
select_list

FROM
row_source

WHERE
criteria_expressions

Ordering Data in the Result Set

The rows in a relat ional data source don’t have any special order. However, you’ ll
often want the result set from a SELECT statem ent to be arranged a certain
way— for exam ple, in alphabet ical or num eric order based on one or m ore
colum ns. You can achieve this with t he ORDER BY clause. The colum ns you
designate to use for t he ordering can or iginate with t he row source in t he FROM
clause, or t hey can be calculated colum ns. You can designate ascending (ASC) or
descending (DESC) sort orders for any colum n in an ORDER BY clause. Ascending
order is t he default . That m eans you have to specify an order only when you
require a descending order. The ORDER BY clause should always com e after all
other SELECT statem ent clauses except for t he COMPUTE and COMPUTE BY
clauses (which I ’ ll describe short ly) .

Grouping Data in the Result Set

Just as you’ ll probably want t o arrange data in a result set in a certain way, you’ll
often want to group data to m ake it m ore useful. With the GROUP BY clause, you
can group sets of rows in a result set . This clause is especially useful when you
want t o apply an aggregate funct ion to one or m ore colum ns in a row source.
Aggregate funct ions are useful for developing sum m ary stat ist ics, such as the
count , sum , or average of colum n values by group. The result sets generated with
the GROUP BY clause support business decision m aking. For exam ple, you can
use the clause to develop total sales by region of the count ry or by product
category.
The GROUP BY clause works hand- in-hand with the HAVI NG clause. The HAVING
clause enables you to f ilter groups in the sam e way that the WHERE clause
perm its you to filt er rows. The GROUP BY and HAVI NG clauses belong after the
FROM and WHERE clauses in a SELECT statem ent . Just as with t he WHERE
clause, the HAVI NG clause is opt ional. I f you do include it , posit ion it aft er the
GROUP BY clause. (Later in the chapter, I provide a sam ple script that uses
HAVI NG.)

Generat ing Sum m ary Values w ith COMPUTE and COMPUTE BY

I n addit ion to m aking a result set m ore useful by order ing and grouping, you’ ll
som et im es find that a sum m ary of t he data is j ust as im portant as the data it self.
That ’s when you m ight decide to use the COMPUTE and COMPUTE BY clauses to
generate not only detail (t he rows in the result set) but also sum m ary values
(aggregate totals and subtotals) .
You’ ll recall that the GROUP BY clause returns a single result set . I n cont rast ,
COMPUTE and COMPUTE BY generate m ult iple result sets. With the COMPUTE BY
clause, a SELECT statem ent prepares a separate result set for t he rows in each
group and another collect ion of result sets with the sum m ary stat ist ics for each
group. The COMPUTE BY clause designates aggregate funct ions, colum ns for t heir
applicat ion, and grouping colum ns all in one clause.
The COMPUTE clause can generate two result sets— one containing all t he rows in
the row source for a SELECT statem ent and a second result set with sum m ary
stat ist ics for t he full set of rows. The COMPUTE clause creates grand total
stat ist ics, but the COMPUTE BY clause creates subtotal stat ist ics for each group.

Note

The COMPUTE BY and COMPUTE clauses cont rast with other
techniques for prepar ing totals and subtotals, such as the
ROLLUP and CUBE operators. For more detail on these
operators, see the Books Online topics “Summ arizing Data
Using ROLLUP” and “Sum marizing Data Using CUBE.”
You can use the GROUP BY and COMPUTE BY clauses in t he sam e SELECT
statem ent . When you use the two clauses together, the COMPUTE BY sum m ary
stat ist ics apply to t he groups of rows specified in t he GROUP BY clause. Apply ing
the COMPUTE BY clause without t he GROUP BY clause perm its the COMPUTE BY
clause to generate results for indiv idual rows designated by the FROM clause.
Whenever you designate eit her the COMPUTE BY or COMPUTE clause, it should
always appear as the last clause in the SELECT statem ent . When you use both,
the COMPUTE clause belongs after the COMPUTE BY clause.
I provide m ore detail on ordering, grouping, and aggregat ing result set s later in
this chapter.

Specifying Colum ns and Row s

You use the SELECT statem ent to return a result set or sets from a row source.
However, you won’t always want t o return all colum ns and rows in the row
source. SELECT offers you various ways of f ilter ing out what you don’t want .

Returning All Colum ns

The m ost elem entary SELECT statem ent is that which designates the return of all
colum ns from each row within a row source. There are two different ways to do
this. The m ost fam iliar uses an aster isk (*) to denote all the colum ns in a row
source. For exam ple, if you wanted to create a result set with all the colum n
values for each row in t he Custom ers table, you could use the following code:
--SelectAllColumns
--Select all columns from all rows.
USE Northwind
SELECT *
FROM Customers

Not ice that the USE keyword specifies the Northwind database as the database
context for t he statem ent . Unless you explicit ly designate otherwise, your SELECT
statem ent will apply to the current database. Subsequent sam ples will illust rate
how to override this default select ion.

Note

The USE keyword is an inst ruct ion to Query Analyzer. This
keyword is not a part of T-SQL. You set the database context
different ly for other SQL Server clients.
There is another, less com m on, approach to returning all colum ns that achieves
the sam e result as using an aster isk: you can separately denote each colum n
nam e in the Custom ers table. The following code shows the f irst couple of colum n
nam es, an ellipsis, and the last nam e from the Custom ers table in t he Northwind
database. (Note that SQL Server syntax doesn’t allow an ellipsis; it ’s used here
with a few colum n nam es to represent t he full list of Custom ers colum ns.)
USE Northwind
SELECT CustomerID, CompanyName, ..., Fax
FROM Customers

The two different approaches will generate equivalent results for t he standard
Custom ers table in the Northwind sam ple database. However, in som e
circum stances they can return divergent result sets. I f you add a new colum n to
the Custom ers table, t he init ial sam ple will return the new colum n along with t he
old. On the other hand, the second sam ple that lists the indiv idual colum ns will
om it the new colum n because its nam e isn’t in t he SELECT list . So which
approach is best? The answer depends on your needs. I n general, evaluate very
carefully whether you need all the colum ns from a row source. You can speed an
applicat ion’s perform ance by choosing j ust the colum ns that an applicat ion t ruly
requires.

Returning a Subset of Colum ns

You can filt er out unwanted colum ns in m any different ways. The following
sam ple returns values for all rows in the Custom ers table, but only from the
Count ry , City , and Com panyNam e colum ns. Because there are 91 custom ers in
the Northwind database, this result set has three colum ns and 91 rows— one for
each row in the table.
--SelectSomeColumns

--Select some columns from all rows.
SELECT Country, City, CompanyName
FROM Customers

You m ay have not iced that unlike the previous code sam ple, this one doesn’t
include a specific reference to the Northwind database. That ’s because Query
Analyzer will cont inue to use Northwind unt il you specify a different database with
a new USE statem ent . All t he rem aining sam ples in this chapter assum e that the
database is Northwind.

Note

The elements in a SELECT list and the argument in a FROM
clause are examples of ident ifiers for database objects. SQL
Server has precise rules for nam ing objects and using object
names as well as a r ich collect ion of Books Online topics for
describing them. For example, see the topic “Using
Ident if iers” for a delineat ion of the four rules for regular
ident ifiers. When dealing with objects that contain ident ifiers
with embedded spaces, such as the Order Details table, you
can often appropr iately refer to them by enclosing their
ident ifiers in brackets or single quotat ion marks— for
example, FROM [Order Details] .

Returning a Subset of Row s

Just as you can lim it which colum ns are returned, you also can lim it which rows
are in t he result set . The following script returns Count ry , City , and
Com panyNam e colum n values for a subset of the rows in the Custom ers table.
The expression in t he WHERE clause denotes the precise subset— nam ely, t hose
custom ers from a count ry beginning with eit her the let t er B or C. That f ilter ing is
done by using the SUBSTRI NG funct ion to exam ine just the first character in each
Count ry colum n value. I will show you a sim pler way to express this in a
subsequent sam ple, but you’ ll likely f ind this exposure to the SUBSTRI NG funct ion
useful.
Any legit im ate expression works in a WHERE clause. Your expression can apply t o
the values for any colum n designated by the row source in the FROM clause.
The code also dem onst rates the use of t he ORDER BY clause. Because of t he two
argum ents in t he clause, the result set appears in alphabet ical order by count ry.
Within each count ry, the cit ies are, in t urn, sorted in alphabet ical order.
--SomeColumnsFromSomeRows
--Select some columns from some rows.
SELECT Country, City, CompanyName
FROM Customers
WHERE SUBSTRING(Country,1,1)<=‘C’ and LEFT(Country,1)>‘A’
ORDER BY Country, City

The result set from the SELECT statem ent contains 14 rows, instead of the 91
rows in t he preceding sam ple. This difference isn’t signif icant for a single user.
However, if m any users repeatedly run a query that returns less than one-sixth
as m any rows, your overall network perform ance will im prove.
The following sam ple repeats the code from the previous one but also prints the
num ber of rows returned, using a custom form at . By default , SQL Server will
report t he num ber of rows affected, which is the num ber of rows in a result set
for a SELECT statem ent . The sam ple turns off t he default m essage with t he SET

NOCOUNT ON statem ent . Then it declares a local st r ing var iable— @strRows—for
it s custom report about the num ber of rows returned. The @@ROWCOUNT global
variable returns the num ber of records affected by the last T-SQL statem ent .
Because this funct ion returns an integer, a CAST funct ion is used to convert t he
num eric value returned by @@ROWCOUNT t o character data. The character data
is then concatenated with a st r ing that inform s the user how m any rows are in
the result set , which the PRI NT statem ent sends to t he Messages Pane in Query
Analyzer.
--CustomCount
--Select some columns from some rows
--with custom count of rows affected.
SET NOCOUNT ON
Declare @strRows nvarchar(50)
SELECT Country, City, CompanyName
FROM Customers
WHERE SUBSTRING(Country,1,1)<=‘C’ and SUBSTRING(Country,1,1)>‘A’
ORDER BY Country, City
SET @strRows = ’Rows returned = ’ + Cast(@@ROWCOUNT AS nvarchar)
PRINT @strRows
SET NOCOUNT OFF

Using the LI KE Operator w ith W ildcards

Many developers and end users creat ing T-SQL statements for data
access will use the LI KE operator to specify a pat tern match. This
operator appears in SELECT statements within the WHERE clause.
The LI KE operator typically works with one of three wildcard
parameters— % , _, and ^ . The % param eter represents any set of
0 or more characters. You can use it at the beginning or end of a
search st r ing. The _ param eter designates a single character in a
search st r ing. You can posit ion the _ parameter at the beginning or
end of a search st r ing or within a search st r ing. The ^ parameter
specifies that return values not m atch a pat tern. This parameter
always appears in a search st r ing within square brackets. You can
apply it to an individual character or a range of characters. Square
brackets can denote a pat tern range with or without the ^
parameter.
The following code demonstrates the use of the % parameter to
return all rows in the Customers table of the Northwind database
with U as the first let ter of their Count ry column value. The return
set includes rows with the Count ry column values USA and UK.
--Return rows with Country values beginning with U.
SELECT CompanyName, Country
FROM Customers
WHERE Country LIKE ’U%’

By applying the _ parameter in the argument for a LI KE operator, a
SELECT statem ent can return just rows that contain USA instead of
UK. The ’U_A’ argument fails to match rows with the Count ry
colum n value UK.
--

Return rows with Country values beginning with U followed
--
by any character, the letter A and any other characters.
SELECT CompanyName, Country
FROM Customers
WHERE Country LIKE ’U_A’

Using the LI KE Operator with Wildcards (cont inued)
With the ^ operator in square brackets, we can return all rows
from the Customers table except those that star t their Country
colum n value with U.
--
Return rows with Country values that don’t begin with U.
SELECT CompanyName, Country
FROM Customers
WHERE Country LIKE ’[^U]%’

Using the square brackets to denote a range can simplify some
expressions. For example, you can return rows from the Customers
table that have Count ry colum n values beginning with either B or C
with the square brackets and the LI KE operator . The following
SELECT statem ent shows the syntax.
--Return rows with Country values beginning with B or C.
SELECT CompanyName, Country
FROM Customers
WHERE Country LIKE ’[B-C]%’

Calculated Colum ns

A calculated colum n is one that doesn’t appear within the row source for a
SELECT statem ent . I nstead, you specify t he calculated colum n with an expression
inside the SELECT statem ent . Because norm alized tables aren’t supposed to
contain colum ns that depend on other colum ns in t he sam e table, you will often
need to develop calculated colum ns when working with proper ly designed
databases. For exam ple, you can com pute extended pr ice in t erm s of quant ity ,
price, and discount for the line item s in a table of order details. I n addit ion, you
can com pute how late a shipm ent or a paym ent is by com put ing the difference
between dates.
The following sam ple illust rates how to specify a calculated colum n as well as how
to use the CAST funct ion to t ransform the data type for a calculated result . The
script lists four regular colum ns from the Order Details table in t he Northwind
database and also a couple of calculated colum ns that com pute extended pr ice.
The calculated colum ns each m ult iply one regular colum n value by another t o
com pute extended pr ice, but t hey differ in form at t ing. Alt hough Quant ity is a
sm allint data type and UnitPr ice is a m oney data type, Quantity*UnitPrice
returns a result w ith a m oney data type. However, m ult iply ing by (1-Discount)
converts the data type for t he expression to a real data type. Without any
conversion, t he extended pr ice will appear in scient if ic notat ion (with an E in t he
result) . The sam ple shows how to convert the result to eit her a m oney data type
or a decim al data type with two places after t he decim al point . Both of these
conversions preserve the extended price result as a num eric value.

Note

See the “Data Type Precedence” topic in Books Online for an
int roduct ion to how SQL Server returns results when there is
a calculat ion between column values with different data
types.
--AddCalculatedColumn
--Add a calculated column to the result set formatted
--to two different numeric formats.
SELECT OrderID, Quantity, UnitPrice, Discount,
 CAST(Quantity*UnitPrice*(1-
Discount) AS money) AS ’Price as money’,
 CAST(Quantity*UnitPrice*(1-
Discount) AS dec(9,2)) AS ’Price as dec(9,2)’
FROM [Order Details]

Figure 3-1 displays an excerpt from the result set for the preceding script . The
two colum ns on the r ight show the outcom e from the two CAST funct ions. The
label to t he r ight of each CAST funct ion appears as the colum n heading in t he
result set excerpt . The CAST funct ion that converts extended price to m oney
shows four places to t he r ight of t he decim al point . This is the scale for the
m oney data type. The CAST funct ion that t ransform s the extended pr ice into a
decim al data t ype shows just two places after t he decim al point . This is consistent
with t he dec(9,2) data t ype specified in t he CAST funct ion.

Figure 3 - 1 . An excerpt show ing the result of tw o different CAST funct ions
for a real data type.

The next sam ple illust rates how to com pute and report the difference between
two datet im e values. The T-SQL batch uses the DATEDI FF funct ion to com pute
the difference between two local var iables. While t his sam ple isn’t explicit ly for
colum n values, t he sam e techniques apply to calculated colum n values. (See the
“Perform ing Date Ar ithm et ic” sect ion for details that sp-ecif ically pertain to
colum n values.) The GETDATE funct ion returns a current date and t im e. The
batch deposits the current date and t im e into two different local var iables—
@dtStart at the top of t he batch and @dtEnd in the next - t o- last statem ent . The
DATEDI FF funct ion com putes the difference between these two local variables.
The DATEDI FF funct ion enables you to ext ract the difference between datet im e
values in any of several units. Using m s as the first argum ent ext racts the
difference in m illiseconds. You can use a procedure like this one for a quick
snapshot of t he t im e it t akes to run som e T-SQL statem ents. Other, m ore
com prehensive, perform ance m easures are available from SQL Server; see, for
exam ple, “Query Window Stat ist ics Pane” in Books Online for m ore detail.

Note

A local var iable in T-SQL operates like a memory var iable in
Visual Basic. Chapter 3 provides explicit coverage of T-SQL
local variables.
--ComputeWithDatediff
--Demonstrates use of DATEDIFF function to compute
--a difference in milliseconds.
DECLARE @dtStart datetime
DECLARE @dtEnd datetime
DECLARE @intOrderID int
SET @intOrderID = 10700
SET @dtStart = GETDATE()
SELECT OrderID, Quantity, UnitPrice, Discount,
 CAST(Quantity*UnitPrice*(1-
Discount) AS money) AS ’Price as money’,
 CAST(Quantity*UnitPrice*(1-
Discount) AS dec(9,2))’Price as dec(9,2)’
FROM [Order Details]
WHERE OrderID < @intOrderID
SET @dtEnd = GETDATE()
SELECT DATEDIFF(ms, @dtStart, @dtEnd) ’Time to run (ms)’

Aggregat ing and Grouping Row s

T-SQL aggregate funct ions can apply to all the rows in a result set or j ust subsets
of t hem , such as those ident if ied with a GROUP BY clause. For exam ple, you can
count the num ber of overall rows in a row source, or you can count t he rows by
count ry (or by any other value on which you group rows) . You can choose to
return aggregate values and the rows they sum m arize, or just t he aggregate
values.

Sum m ary of Aggregate Funct ions

Table 3-1 it em izes the aggregate funct ions by list ing their nam es with a short
descript ion. The purpose of m any of these funct ions is im plied by their nam e. For
further details about funct ionalit y and syntax, search Books Online for a topic
with t he funct ion nam e.

7DEOH������6XPPDU\�RI�7�64/�$JJUHJDWH�)XQFWLRQV�
1DPH� 'HVFULSWLRQ�

AVG Returns an average
BI NARY
CHECKSUM

Can return the binary check sum for a row

CHECKSUM Com putes a checksum for use in const ruct ing hash indexes
CHECKSUM AGG Perform s a checksum com putat ion for a group
COUNT Counts the it em s in a group or overall row source; returns an

int value
COUNT BI G Like Count funct ion but returns a bigint value
GROUPI NG For use with CUBE and ROLLUP operators
MAX Returns m axim um value in a colum n
MI N Returns m inim um value in a colum n
SUM Returns sum of values in a colum n

STDEV Com putes standard deviat ion for t he sam ple of values in a
colum n

STDEVP Com putes standard deviat ion for t he populat ion of values from
which a colum n sam ples

VAR Com putes var iance for t he sam ple of values in a colum n
VARP Com putes var iance for t he populat ion of values from which a

colum n sam ples

Aggregat ing W ithout Grouping

Like som e of the other aggregate funct ions, t he COUNT funct ion has m ult iple
form s. For exam ple, COUNT(*) returns the num ber of values in a row source,
including null and duplicate values. The WHERE clause can const rain t he range of
rows over which COUNT(*) com putes a result . I n t he next sam ple, t he row source
includes all custom ers from a count ry start ing with the let ter B or C. Because the
Custom ers table in the Northwind database has a pr im ary key, t he rows are all
unique. This SELECT statem ent returns a scalar value of 14, which is the num ber
of rows in t he Custom ers table m eet ing the cr it er ion expression in t he WHERE
clause. Not ice that like an earlier sam ple in this chapter, t his code lim it s count r ies
to those start ing with the let t er B or C but does so using LEFT and I N rather t han
SUBSTRI NG. You can use eit her m ethod, but this one requires a lit t le less typing.
--CountRows
--Count all rows meeting a criterion.
SELECT Count(*)
FROM Customers
WHERE LEFT(Country,1) IN (‘B’,’C’)

You can use the COUNT funct ion to return just t he num ber of non-null values
within a colum n by replacing the aster isk with t he nam e of a specific colum n. Any
rows with null values for a specific colum n in t he row source for t he query won’t
be tallied as part of the return value for t he COUNT funct ion. Changing the
asterisk t o a specific colum n nam e— Count ry—won’t change the result in t he
previous sam ple because there aren’t any null values in t he Count ry colum n. But
you can change the result by using the DI STI NCT keyword as a predicate to the
specific colum n. Posit ion the keyword inside the parentheses t railing the funct ion.
The following scr ipt illust rates this syntax. The query statem ent returns the value
3 because there are only three dist inct count r ies in the Custom ers table start ing
with t he let ter B or C— Belgium , Brazil, and Canada.
--CountIncidences
--Count distinct incidences.
SELECT Count(DISTINCT Country)
FROM Customers
WHERE LEFT(Country,1) IN (‘B’,’C’)

Aggregat ing w ith Grouping

I t is com m on to use aggregate funct ions when grouping on one or m ore colum ns.
For instance, instead of just com put ing the total count of custom ers, you can
der ive m ore detailed inform at ion by com put ing the count of custom ers by city
and count ry. One approach to perform ing this t ype of calculat ion uses a GROUP
BY clause in a SELECT statem ent . When you add a GROUP BY clause, t his, in
turn, places rest r ict ions on the ent r ies in a SELECT list . I t is typical to have j ust
two types of ent r ies in t he list— aggregate funct ions, such as COUNT and SUM, for
specific colum ns; and colum ns that appear in t he GROUP BY clause.

The colum ns in t he GROUP BY clause determ ine the span over which an
aggregate funct ion com putes. By adding Count ry to t he GROUP BY clause and
including Count ry and COUNT(Custom erI D) in t he list for a SELECT statem ent ,
you can com pute the count of custom ers by count ry. The GROUP BY clause can
take m ult iple colum ns as argum ents. Therefore, adding City t o both the GROUP
BY clause and the SELECT list tells t he COUNT funct ion to count the custom ers by
cit ies within count ry. The following script illust rates this approach for custom ers
who com e from count r ies beginning with t he let t er B or C.
--CountCustomers
--Count column value instances meeting a criterion
--that is grouped and ordered by two columns.
SELECT Country, City, Count(CustomerID) ’# of Customers’
FROM Customers
WHERE LEFT(Country,1) IN (‘B’,’C’)
GROUP BY Country, City
ORDER BY Country, City

The result set from the preceding script (see Figure 3-2) shows how the 14
custom ers from count r ies beginning with B or C are dist r ibuted by count ry and
city. I t shows custom ers in nine cit ies within three count r ies. The m ost custom ers
in any city are in São Paulo, Brazil. The closing ORDER BY clause arranges the
rows in t he result set alphabet ically by city within count ry.

Figure 3 - 2 . A result set show ing grouping by city w ithin count ry for a
count of custom ers.

The result set for t he preceding scr ipt counts the custom ers by city, but it doesn’t
break out results separately by group or provide any subtotals for the num ber of
cit ies within each count ry. You can use the COMPUTE BY and COMPUTE clauses of
a SELECT statem ent t o generate results like these. The following script shows
how to use the COMPUTE BY clause to split t he results by count ry and add a
count of the num ber of cit ies within each count ry. A COMPUTE BY clause requires
a m atching ORDER BY clause; both clauses m ust specify the sam e colum n nam e
as an argum ent . I n t his sam ple, not ice that Count ry appears in the COMPUTE BY
and ORDER BY clauses. The final COMPUTE clause adds a count of t he total
num ber of cit ies across all count r ies in t he collect ion of result sets for t he SELECT
statem ent .
--CountCustomersInSpecifiedCountries
--Count column value instances meeting a criterion that is
--grouped and ordered by two columns and subtotaled by
--one column.
SELECT Country, City, Count(CustomerID) AS ’# of Customers’
FROM Customers
WHERE LEFT(Country,1) IN (‘B’,’C’)
GROUP BY Country, City

ORDER BY Country
COMPUTE Count(City) BY Country
COMPUTE Count(City)

The script generates seven result sets t hat appear in a single Results Pane within
Query Analyzer, as shown in Figure 3-3. A separate colum n header denotes the
beginning of each result set . The top result set shows the count of custom ers by
city within Belgium . The second result set displays a count of t he num ber of cit ies
in Belgium . The next two pairs of result sets provide com parable inform at ion for
custom ers from Brazil and Canada. The final result set shows the total count of
cit ies across the preceding result sets for each count ry.

Figure 3 - 3 . A collect ion of result sets dem onst rat ing the operat ion of the
COMPUTE BY and COMPUTE clauses.

The next exam ple returns to a m ore basic applicat ion of t he GROUP BY clause,
but this script dem onst rates the aggregat ion of a calculated colum n— nam ely,
extended pr ice based on the Quant ity , UnitPr ice, and Discount colum ns in the
Order Details table. Because the script groups by OrderID colum n values, the
result set displays the total extended pr ice for all t he it em s within each order.
This script groups by OrderI D, and it also aggregates by OrderI D. The count of a
single OrderI D colum n value within an order returns the num ber of line item s for
an order. The sum of the expression for extended pr ice provides the total
extended pr ice for an order. This is t he f irst sam ple script in t his book that
illust rates the syntax for the HAVI NG clause. I n this instance, the clause rest r icts

the ent r ies in t he result set to orders with a t otal extended pr ice of m ore than
$11,000. The final ORDER BY clause in t he script is necessary to arrange the rows
in descending order based on total extended pr ice.
--CountAndSum
--Count one real column (OrderID) and SUM one calculated column
--to get total Extended Price for each order.
--Format money data type as characters for display.
SELECT OrderID, COUNT(OrderID) ’Line items’,
 ’$’ +
 CONVERT(varchar,CAST(SUM(Quantity*UnitPrice*(1-
Discount)) AS money),1)
 AS ’Extended Price’
FROM [Order Details]
GROUP BY OrderID
HAVING SUM(Quantity*UnitPrice*(1-Discount)) > 11000
ORDER BY SUM(Quantity*UnitPrice*(1-Discount)) DESC

Not ice the use of a CAST funct ion nested within a CONVERT funct ion. The CAST
funct ion t ransform s the real t otal extended pr ice for an order into a m oney value.
The CONVERT funct ion represents the m oney value as a character st r ing
form at ted for currency with com m a delim iters between every three digits to t he
left of t he decim al point and j ust two digits to t he r ight of t he decim al point . A
st r ing expression adds a leading currency sign. The CONVERT funct ion offers
three different styles for render ing currency as a character value. The third
argum ent for the CONVERT funct ion designates the style. The following table
sum m arizes the effect of each possible value for the third argum ent . The default
value is 0.

&219(57�6W\OH�$UJXPHQW�
9DOXHV�IRU�5HQGHULQJ�0RQH\��

6W\OH�$UJXPHQW�)RUPDW�(IIHFWV�

0 No com m as, but j ust two digits to the r ight of t he
decim al point

1 Com m as separat ing every t hree digits t o the left of t he
decim al point and j ust two digits to t he r ight of the
decim al point

2 No com m as, and four digit s to t he r ight of t he decim al
point

Processing Dates

Dates are different from other data types, and processing them can be t r icky. For
one thing, SQL Server t ypically saves date values in a num eric form at with eit her
a datet im e or a sm alldatet im e data t ype. For another, dates represent a calendar
in which the total days per m onth aren’t consistent from one m onth to the next .
Also, you can group dates by day, week, m onth, quarter, and year. Fortunately,
SQL Server offers som e highly useful funct ions to sim plify the use of dates that
don’t apply t o other data types. This sect ion explores som e of t hese funct ions and
other techniques that can help you process dates with SQL Server.

Count ing by Year and Month

I t is com m on to need to aggregate data by year and m onth. This sect ion provides
four code sam ples that dem onst rate how to do it . I n part icular , t he scr ipt tackles

the problem of count ing the orders per per iod of t im e, such as by year or by
m onth within a year.

Count ing by Year

The first sam ple generates a result set t hat accum ulates the num ber of orders by
year. I t takes just t hree lines to do this. The first is a SELECT statem ent with a
list that includes two ent r ies. The first ent ry is the DATEPART funct ion for t he
OrderDate from the Orders table. The DATEPART funct ion returns an integer t hat
reflects a part of a datet im e value, such as the m onth num ber for a date. The
funct ion takes two argum ents. The first argum ent denotes the date part to
ext ract . The sam ple uses yyyy to ext ract t he year as a four-digit num ber. The
second argum ent is the actual datet im e value. This can be an expression or a
colum n value. The sam ple references the OrderDate colum n value from the
Orders table. I n order t o accum ulate a quant ity by year, t he T-SQL sam ple
includes the sam e DATEPART funct ion as the argum ent for a GROUP BY clause.
The second list ent ry is a COUNT funct ion. The funct ion uses OrderI D as it s
argum ent to count t he num ber of orders within a year.
--CountOrdersByYear
--Count one column by year date part.
SELECT DATEPART(yyyy, OrderDate), COUNT(OrderID)
FROM Orders
GROUP BY DATEPART(yyyy, OrderDate)

The DATEPART funct ion is ext rem ely flex ible. I t can ext ract any of 11 different
date parts from a datet im e value. You can also use the DATEPART funct ion with
sm alldatet im e values, but the funct ion cannot ext ract m illiseconds for
sm alldatet im e values because the data type doesn’t support t his level of
precision. The funct ion offers m ult iple argum ents for specify ing which date parts
to ext ract . At a m inim um , you can designate date parts by their nam e or t heir
abbreviat ion. Many date parts give you the choice of two abbreviat ions for
referencing them . You can use the DATEPART funct ion with one of it s parts to
replace the Year , Month, and Day funct ions. Table 3-2 shows the possible date
part argum ents available for the DATEPART funct ion.

7DEOH��������$UJXPHQWV�IRU�WKH�'$7(3$57�)XQFWLRQ�
'DWH�3DUW�1DPH� 'DWH�3DUW�$EEUHYLDWLRQ�

year yy, yyyy
quarter qq, q
m onth m m , m
dayofyear dy, y
day dd, d
week wk, ww
weekday dw
hour hh
m inute m i, n
second ss, s
m illisecond m s

Count ing by Month

Developing a result set that returns the num ber of orders by m onth within year
builds on the techniques that you learned previously. I t is just a m at ter of put t ing
the elem ents together correct ly. You include three it em s in the list for t he SELECT

statem ent t o return the year, m onth, and count of orders in a t im e per iod.
Specify the Orders table as the argum ent for t he FROM clause. I n the GROUP BY
clause, use a DATEPART funct ion statem ent to return the year followed by a
com m a and a DATEPART funct ion to return the m onth, like this:
GROUP BY DATEPART(yyyy, OrderDate), DATEPART(mm,OrderDate)

Because we want the result rows ordered by m onth within year, t he SELECT
statem ent requires an ORDER BY clause with the sam e argum ents as the GROUP
BY clause.
The following scr ipt shows the SELECT list item s. The first two it em s in the list
m atch the argum ents for the GROUP BY clause. The last SELECT list argum ent is
the aggregate funct ion, COUNT, t hat counts the num ber of orders per date unit .
This sam ple design is very general. You can use any other aggregate funct ion or
m ore aggregate funct ions than those in the sam ple. For exam ple, you can add a
DATEPART funct ion to count orders by week within year instead of or in addit ion
to m onth within year.
--CountOrdersByYearAndMonth
--Count one column by year and month date parts of another.
SELECT DATEPART(yyyy, OrderDate) AS ’Year’,
 DATEPART(mm,OrderDate) AS ’Month’,
 COUNT(OrderID) AS ’Orders’
FROM Orders
GROUP BY DATEPART(yyyy, OrderDate), DATEPART(mm,OrderDate)
ORDER BY DATEPART(yyyy, OrderDate), DATEPART(mm,OrderDate)

Figure 3-4 shows an excerpt of the results from the script . Not ice that m onths are
represented by their num ber. They are sorted within year, which also happens to
be a num ber. At least som e of your clients are bound to request t he replacem ent
of t he m onth num bers with nam es.

Figure 3 - 4 . An excerpt from a result set that displays the num ber of
orders by m onth w ithin year.

The next script illust rates an approach to generat ing the report in Figure 3-4, but
with nam es instead of num bers to designate m onths. You can use the DATENAME
funct ion to ext ract a m onth nam e as a character st r ing from a date. The
DATENAME funct ion takes two argum ents— just like t he DATEPART funct ion. Both
funct ions use the sam e codes to represent date parts, and the two also use a
datet im e value as the second argum ent . (You can use a sm alldatet im e value as
well.) I n t he case of a m onth date part , t he DATENAME funct ion provides the

m onth’s full nam e, such as January or February, instead of a num ber, such as 1
or 2.
--ShowMonthNames
--Count one column by year and month date parts of another
--column while showing month names instead of month numbers.
SELECT DATEPART(yyyy, OrderDate) AS Year,
 DATENAME(mm, OrderDate) AS Month,
 COUNT(OrderID) AS Orders
FROM Orders
GROUP BY DATEPART(yyyy, OrderDate),
 DATENAME(mm, OrderDate)
ORDER BY DATEPART(yyyy, OrderDate)

However, t here’s a problem . The scr ipt sorts the result set by m onth nam e, but
the alphabet ical order of the m onths doesn’t correspond to t heir t em poral order.
That ’s why the m onths in t he result set are arranged alphabet ically within each
year rather than chronologically. One solut ion to this problem is to set up a one-
to-one correspondence between the m onth nam es returned by the DATENAME
funct ion and the m onth num bers returned by the DATEPART funct ion.
The following scr ipt shows an approach to m apping m onth nam es to m onth
num bers that relies on only t he SELECT list it em s along with t he GROUP BY and
ORDER BY clauses. The SELECT list contains three term s: t he year returned by
the DATEPART funct ion, the m onth nam e returned by the DATENAME funct ion,
and the COUNT funct ion to com pute the num ber of orders by year and m onth.
(Any other aggregate funct ion would work as well.) Because the DATENAME
funct ion appears in t he SELECT list , it m ust also be an argum ent for the GROUP
BY clause. The t r ick is to place the DATENAME funct ion in t he GROUP BY clause in
between the first DATEPART funct ion for year and a second DATEPART funct ion
for m onth. Because m onth nam es m ap perfect ly to m onth num bers, t he two
GROUP BY argum ents after the DATEPART for year group the rows in an ident ical
way. The DATENAME argum ent for m onth has to appear in t he GROUP BY clause
because you need it in t he SELECT list . I n addit ion, t he DATEPART funct ion that
returns a m onth’s num ber in t he GROUP BY clause is also necessary because the
ORDER BY clause requires it as it s second argum ent . The output from the
following scr ipt m atches the output in Figure 3-4 except t hat t he second colum n
shows m onth nam es instead of m onth num bers.
--ShowMonthNamesChronologically
--Count one column by year and month date parts of another
--column while showing month names instead of month numbers.
--Order months by names chronologically, not numerically.
SELECT DATEPART(yyyy, OrderDate) AS Year,
 DATENAME(mm, OrderDate) AS Month,
 COUNT(OrderID) AS Orders
FROM Orders
GROUP BY DATEPART(yyyy, OrderDate),
 DATENAME(mm, OrderDate),
 DATEPART(mm, OrderDate)
ORDER BY DATEPART(yyyy, OrderDate), DATEPART(mm, OrderDate)

Perform ing Date Arithm et ic

The “Calculated Colum ns” sect ion dem onst rated how to take advantage of SQL
datet im e local var iables to com pute the difference between two datet im e values.
That illust rates date ar it hm et ic. This sect ion dr ills down m ore deeply into the
topic.
Let ’s start out with a sam ple that screens orders to find those with an est im ated
arr ival date that is later than the required date for t he order. These are late

orders because they arr ive at t he custom er after the required date. The SELECT
list for t he sam ple includes OrderI D and three datet im e colum ns: OrderDate,
RequiredDate, and ShippedDate. Because the t im e of day that an order ships is
im m aterial, the three datet im e colum ns are in LEFT funct ions that st r ip off j ust
the first 11 characters for display. This perm its the display of t he dates in three
parts: a t hree-character part for the m onth, up to two digits for the display of the
day num ber in t he m onth, and a four-digit f ield for the year. A single blank
character delim its the first part from the second part and the second part from
the third part .
The WHERE clause for t he following SELECT statem ent perform s the date
arit hm et ic. The expression for t he clause returns all rows from the Orders tables
whose RequiredDate is less than ShippedDate plus 3. Values in datet im e form at
represent one day with an integer value of 1. By adding 3 to t he ShippedDate
colum n value, t he WHERE clause expression com putes a proj ected arr ival date
that is three days after the order ships. I f the projected arr ival date is greater
than the RequiredDate colum n value, t he order is late. The SELECT statem ent
includes only late orders in it s result set .
--ListLateOrders
--List just date portion of datetime column values
--with a criterion based on day offset between two columns.
SELECT OrderID, Left(OrderDate,11) ’OrderDate’,
 Left(RequiredDate,11) ’RequiredDate’,
 Left(ShippedDate,11) ’ShippedDate’
FROM Orders
WHERE RequiredDate < ShippedDate + 3

The result set from the preceding script is useful for get t ing a basic grasp of late
orders, but all it does is list the orders. The v iewer of the result set is responsible
for com put ing the num ber of days that an order is late as well as finding those
orders t hat m issed the required date by a wide m argin. The following script
rem edies both of these weaknesses. The rem edy fashions a solut ion based on
date ar it hm et ic.
The sam ple’s ar ithm et ic with datet im e values relies on the DATEADD and
DATEDI FF funct ions. I t uses these two system funct ions to com pute the num ber
of days that an order is late. With t he DATEADD funct ion, t he following script
adds 3 days to ShippedDate to com pute a proj ected arr ival date. The script
com putes the num ber of days an order is late by depending on two expressions.
First the WHERE clause expression f ilt ers for just those rows in which the
proj ected arr ival date value is greater than the RequiredDate colum n value. The
orders on these rows from the Orders table are late. Second the script com putes
the num ber of days that an order is late. The expression for com put ing this nests
the expression for the projected arr ival date value inside a DATEDI FF funct ion
with t he RequiredDate colum n value. DATEDI FF explicit ly references days as the
m et r ic for com put ing the difference between the two values. This DATEDI FF
funct ion appears in t he SELECT list and in the ORDER BY clause. The SELECT list
for this DATEDI FF funct ion includes in t he result set the num ber of days that an
order is late; the nam e of t his calculated colum n is Days Late. The ORDER BY
clause includes the DESC keyword so that SQL Server will sort the result set with
the latest orders listed first .
--CalculateDaysLate
--Demonstrates uses of DATEDIFF for Days Late calculation
--and DATEADD for day offset in criterion expression.
SELECT OrderID, Left(OrderDate,11) ’OrderDate’,
 Left(RequiredDate,11) ’RequiredDate’,
 Left(ShippedDate,11) ’ShippedDate’,
 DATEDIFF(day,RequiredDate,DATEADD(day, 3, ShippedDate)) ’Days Lat
e’
FROM Orders

WHERE RequiredDate < DATEADD(day, 3, ShippedDate)
ORDER BY DATEDIFF(day,RequiredDate,DATEADD(day, 3, ShippedDate)) DESC

The last sam ple script in t his sect ion illust rates how to aggregate a calculated
value and then group it by quarter within year. The sam ple also shows the syntax
for f ilter ing groups defined by a GROUP BY clause with a HAVI NG clause.
The script does it s aggregat ing with a SUM funct ion defined on the DATEDI FF
expression for com put ing the num ber of days an order is late. This SUM funct ion
requires a GROUP BY clause. The one in the sam ple specifies an order’s year and
quarter as grouping colum n values. Two separate DATEPART funct ions der ive the
year and quarter for an OrderDate. The SELECT list contains three it em s— the two
DATEPART funct ions for the year and quarter and the SUM funct ion for the
num ber of days late. A HAVI NG clause includes two separate expressions to filt er
groups in t he result set . First , only groups with a year value greater than 1996
can belong to t he result set . Second, the HAVI NG clause excludes the group
corresponding to t he second quarter of 1998. The SELECT statem ent ’s final line is
an ORDER BY clause that ensures rows appear in order by quarter within year.
--DaysLatePerQuarter
--
Demo Sum aggregate function of DATEDIFF with GROUP BY and HAVING clau
ses.
SELECT DATEPART(yyyy, OrderDate) AS ’Year’,
 DATEPART(q, OrderDate) AS ’Quarter’,
 SUM(DATEDIFF(d, RequiredDate, DATEADD(day, 3, ShippedDate))) AS ’
Days Late’
FROM Orders
WHERE (DATEDIFF(d, RequiredDate, DATEADD(day, 3, ShippedDate)) > 0)
GROUP BY DATEPART(yyyy, OrderDate), DATEPART(q, OrderDate)
HAVING DATEPART(yyyy, OrderDate) > 1996 AND
 NOT(DATEPART(yyyy, OrderDate) = 1998 AND DATEPART(q, OrderDate) =
 2)
ORDER BY DATEPART(yyyy, OrderDate), DATEPART(q, OrderDate)

Joins and Subqueries

Joins are a powerful technique for com bining two or m ore row sources in a single
SELECT statem ent . This sect ion int roduces joins with a review of T-SQL
techniques for creat ing inner j oins between two tables. Then it goes on to explore
other form ulat ions for inner joins and other kinds of joins. The sect ion closes with
a couple of sam ples dem onst rat ing ways of form ulat ing SELECT statem ents with
subquer ies. This approach is a way of m aking SELECT statem ents dynam ic
because the subquery can return the m ost current value to t he SELECT statem ent
referencing it .

An I nner Join Betw een Tw o Tables

By using an inner join, your database solut ions can refer sim ultaneously to t he
content from two different row sources. So far, t he sam ples in t his chapter have
focused on just one table. For exam ple, som e sam ples used the Order Details
table to develop an expression for extended pr ice. Other sam ples worked with t he
days that an order was late. These sam ples used the Orders table. No sam ple
processed content from both the Orders and Order Details tables in a single
solut ion. I nner j oins enable this type of funct ionalit y. An inner j oin m ost typically
m erges two tables when their values m atch on a com m on field, such as a prim ary
key from one table and its m atching foreign key in another table.

The first j oin sam ple lists two colum ns from two different tables— the Orders and
Order Details tables. The SELECT statem ent returns the OrderI D colum n from the
Orders table and the Product I D colum n from the Order Details table. The OrderI D
colum n appears in both tables. Therefore, t he SELECT statem ent m ust use a table
qualif ier t o indicate from which table t o ext ract the OrderI D colum n values. The
JOI N keyword in t he FROM clause designates the two tables cont r ibut ing colum n
values to t he result set from the SELECT statem ent . The ON keyword points to
the colum ns within each table on which to join t he tables.
--JoinColumns
--Join columns from two tables.
SELECT Orders.OrderID, ProductID
FROM Orders JOIN [Order Details]
ON (Orders.OrderID = [Order Details].OrderID)

The next sam ple uses the OrderI D colum n values from the Orders table to m erge
its content with m atching records based on OrderI D in t he Order Details table. An
inner join im plem ents the m erge. As a result of the m erge, a single SELECT
statem ent can access content from both tables. The result set for t he SELECT
statem ent returns both the Days Late calculated colum n from the Orders table
and the Ext . Pr ice calculated colum n from the Order Details table.
You can specify an inner j oin with either the FROM clause or t he WHERE clause of
a SELECT statem ent . The following sam ple dem onst rates the syntax for the FROM
clause. Within the FROM clause, posit ion the JOI N keyword between the two row
sources part icipat ing in the inner j oin. I t is im m ater ial which table is on the left
and r ight sides of t he JOI N keyword. You can opt ionally replace JOI N w ith I NNER
JOI N. Your FROM clause also requires an ON keyword. The argum ent for the ON
keyword expresses how to m erge the rows from the two sources for the join. The
ON argum ent expression will oft en denote an equivalence between two colum n
nam es, one from each of the row sources part icipat ing in the join. The ON
keyword expression dictates which colum ns to com pare and how to com pare
them between the two row sources. Not ice that the expression includes a table
nam e qualifier for the colum n nam e. This is one way to dist inguish the source for
a colum n. I t is vitally im portant throughout a SELECT statem ent with a join t o
indicate the source for a colum n when the colum n has the sam e nam e for the row
source on either side of the JOIN keyword. I f the colum n doesn’t have the sam e
nam e in both row sources, the designat ion of a table nam e qualif ier is opt ional.
The sam ple script inst ructs SQL Server t o m atch OrderI D colum n values from the
Orders table with OrderI D colum n values from the Order Details table. The result
set contains j ust those rows from the Order Details table with m atching OrderI D
values from the Orders table. Because a single order can spread across m ult iple
rows in t he Order Details table, colum n values from the Orders table repeat for
each of t he m ult iple rows within an order.
As with any SELECT statem ent , t he SELECT list specifies the colum n nam es for
the result set . The sam ple includes a m ix of real and calculated colum ns. OrderID
from the Orders table is a real colum n. All t he other colum ns are calculated. The
colum ns with t he nam es OrderDate, RequiredDate, and ShippedDate m erely
apply a LEFT funct ion to ext ract the date port ion of a datet im e value. The
colum ns with t he nam es Days Late and Ext . Pr ice invoke m ore sophist icated
expressions to calculate their colum n values. The last colum n, Ext . Pr ice,
references the Order Details table. The WHERE clause filt ers for orders proj ected
to arr ive after the RequiredDate value. The ORDER BY clause keeps the line it em
rows for an order t ogether. Because the OrderI D colum n is in both row sources
for the j oin, it is necessary to use a table nam e qualif ier for t he colum n nam e.
--DaysLateUsingJoin
--List results from two tables based on day offset criterion.
SELECT Orders.OrderID, LEFT(Orders.OrderDate,11) AS ’OrderDate’,
 LEFT(Orders.RequiredDate,11) AS ’RequiredDate’,
 LEFT(Orders.ShippedDate,11) AS ’ShippedDate’,

 DATEDIFF(day,RequiredDate,DATEADD(day, 3, ShippedDate)) ’Days Lat
e’,
 CAST([Order Details].Quantity*[Order Details].UnitPrice*
 (1-[Order Details].Discount) AS dec(9,2)) AS ’Ext. Price’
FROM Orders JOIN [Order Details]
ON (Orders.OrderID = [Order Details].OrderID)
WHERE RequiredDate < DATEADD(day, 3, ShippedDate)
ORDER BY [Order Details].OrderID

Figure 3-5 displays an excerpt from the result set for the preceding script . The
OrderI D colum n is from both row sources. The OrderI D colum n value repeats for
each line it em within an order. The OrderDate, RequiredDate, ShippedDate, and
Days Late colum ns are from the Orders table. The values in t hese colum ns repeat
across the m ult iple rows within an order. Within t he excerpt , the Ext . Pr ice
colum n values are unique for each row in t he result set . The scr ipt calculates
these colum n values based on three colum ns in the Order Details table.

Figure 3 - 5 . An excerpt from a result set that displays content from tw o
row sources.

Using Aliases W ithin an I nner Join

Because SELECT statem ents can get long and difficult to read with table nam e
qualif iers, it is com m on to use aliases. An alias is an alternat ive nam e for a table
that you specify within your SELECT statem ent . Use the alias as a short nicknam e
for the or iginal table nam e. You can specify your alias within t he FROM clause
im m ediately after specifying a table by it s nam e. However, you can use an alias
anywhere throughout a SELECT statem ent , such as in the SELECT list or t he
ORDER BY clause.
The following sam ple illust rates a join for t he t it les and t it leauthor tables from the
pubs database. The FROM clause designates the alias t for the t it les table and ta
for the t it leauthor table. You can also see the use of t hese aliases in t he SELECT
list and ORDER BY clauses in t his excerpt from the script on the following page.
SELECT ta.au_id, t.title, t.ytd_sales, t.price
FROM pubs..titles t JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id)
ORDER BY ta.au_id

The sam ple also illust rates the syntax for referr ing to a row source outside the
current database context . Recall that all t he sam ples throughout this chapter use
the Northwind database, and they rely on an a USE statem ent from the second
sam ple to specify t he database connect ion for t he sam ple. The following sam ple

has the sam e database context , but it uses three-part nam es to reference a row
source in another database— the pubs database. The first part is t he database
nam e, and the second part is the row source owner’s nam e. When the owner ’s
nam e is dbo (as in the current instance) , you can leave the second part null
(which m eans you end up with two consecut ive per iods) . The third part is the row
source nam e. I n this sam ple, t hat is eit her t it les or t it leauthor .
There is one other special feature about the sam ple. I t includes T-SQL code to
print t o t he Messages Pane the num ber of rows in t he result set . An earlier
sam ple in t he “Specify ing Colum ns and Rows” sect ion describes the approach
applied in t he sam ple below. The reason for explicit ly count ing the rows is to
com pare the num ber of rows in t his result set , 25, with a subsequent sam ple that
uses a different k ind of join.
--InnerJoinWithAliases
--Inner join between authors titles and titleauthor.
--Returns 25 matching rows from both tables.
SET NOCOUNT ON
Declare @strRows nvarchar(50)
SELECT ta.au_id, t.title, t.ytd_sales, t.price
FROM pubs..titles t JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id)
ORDER BY ta.au_id
SET @strRows = ’Rows returned = ’ + Cast(@@ROWCOUNT AS nvarchar)
PRINT @strRows
SET NOCOUNT OFF

An I nner Join Betw een Three Tables

I t is often necessary to m erge the results of m ore than two row sources in a
single SELECT statem ent . However, you can j oin only two row sources at a t im e.
The workaround to t his predicam ent is to use a joined row source as one of t he
row sources for a new join. This sect ion dem onst rates how to im plem ent this logic
for the j oining of t hree tables from the pubs database. This k ind of j oin is
part icular ly appropr iate for m odeling a pair of tables in a m any- to-m any
relat ionship with a j unct ion table between them . The general approach to dev-
eloping joins in t his sect ion is applicable for m ore than three row sources. See the
T-SQL scr ipt for the I nvoices view in t he Northwind database for a sam ple script
that joins six tables.

Note

You can use Enterpr ise Manager to view the scr ipt for a
database object . For m ore informat ion on Enterprise
Manager and other SQL Server 2000 tools, see Books Online.
The special syntax for a three-table j oin is in the FROM clause of your SELECT
statem ent . Add tables to the FROM clause in the order that you want t hem to
join— start ing from the ext rem e left table. Join this table to one of your rem aining
two tables. Use the syntax previously presented for joining two tables. After the
argum ent for the ON keyword, add a second instance of t he JOI N keyword
followed by the nam e of the third table. Next add a second instance of t he ON
keyword that specifies how to join t he third table with the j oined first and second
tables. After specify ing the FROM clause as described, you are free to refer t o
colum ns from any of the three tables. You can even create calculated colum ns
that draw on colum ns from two or t hree tables.
The FROM clause in t he following scr ipt dem onst rates how st raight forward it is to
join t hree tables. This sam ple script j oins the t it les table with the t it leauthor

table. Then the scr ipt m erges the joined t it les and t it leauthor tables with t he
authors table. The script illust rates the syntax for j oining the three tables as well
as the use of colum ns from all t hree tables in the SELECT list .
--InnerJoinWithThreeTables
--List results from three tables.
SELECT aut.au_fname, aut.au_lname, t.title, t.ytd_sales,
 t.royalty, ta.royaltyper
FROM pubs..titles t JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id) JOIN pubs..authors aut
ON (ta.au_id = aut.au_id)

I n addit ion to list ing colum ns from all t hree tables, you can use the join to
com pute calculated colum ns with inputs from two or m ore tables. The following
script illust rates this design feature with a calculated colum n for royalt y paid to
an author for a t it le. The calculated colum n draws on ytd_sales and royalty from
the t it les table and royaltyper from the t it leauthor table. Both royalt y and
royalt yper represent percentages as integers. Therefore, t he calculated field
div ides the product for all t hree colum ns by 10,000.
--JoinWithCalculatedColumn
--List results from three tables, including a calculated column
--based on two tables.
SELECT aut.au_fname, aut.au_lname, t.title,
 CAST(t.ytd_sales * t.royalty * ta.royaltyper AS money)/10000,
 t.advance
FROM pubs..titles t JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id) JOIN pubs..authors aut
ON (ta.au_id = aut.au_id)
ORDER BY t.title, aut.au_lname, aut.au_fname

Outer Joins

An outer join cont rasts with an inner j oin by adding in all the rows from a row
source whether or not t he row sat isfies an expression for the ON keyword. There
are three types of outer joins: a left outer join, a r ight outer j oin, and a full outer
join. When perform ing one of these outer j oins, replace JOI N or I NNER JOI N wit h
an appropr iate alternat ive term , such as LEFT OUTER JOI N, RI GHT OUTER JOI N,
or FULL OUTER JOI N. With a left outer join, all t he rows from the row source on
the left side of t he LEFT OUTER JOI N keyword phrase appear in t he result set
whether or not they sat isfy the expression in t he argum ent for the ON keyword. A
right outer join works sim ilar ly to a left outer join, but it adds in all the rows from
the row source on the right of RI GHT OUTER JOI N. A full outer join adds in all the
rows from row sources on both sides of FULL OUTER JOI N. Aside from the
keyword phrase nam e, the syntax for t he three types of outer j oins is the sam e
as for an inner j oin.
The following sam ple dem onst rates the syntax for a left outer j oin between the
t it les table and the t it leauthor table in t he pubs database. Not ice that the syntax
exact ly follows the preceding inner j oin sam ple between these tables except for
the replacem ent of t he JOI N keyword by the LEFT OUTER JOI N keyword phrase.
I n addit ion, the result set for this SELECT statem ent includes 26 rows instead of
the 25 rows in the preceding sam ple. The ext ra row is from a book t it le that
doesn’t have an author designated for it . The preceding SELECT statem ent
screened out this ext ra row because the t it les t able t it le_id colum n value had no
m atch in t he t it leauthor table. However, because the t it les table is on the left side
of t he LEFT OUTER JOI N, the join forces in t he row from the t it les table, alt hough
it has no corresponding t it le_id colum n value in the t it leauthor table.
--LeftOuterJoin
--Left outer join between authors titles and titleauthor.

--Returns 26 rows (25 matching rows + 1 non-matching row
--from the titles table).
SET NOCOUNT ON
Declare @strRows nvarchar(50)
SELECT ta.au_id, t.title, t.ytd_sales, t.price
FROM pubs..titles t LEFT OUTER JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id)
ORDER BY ta.au_id
SET @strRows = ’Rows returned = ’ + Cast(@@ROWCOUNT AS nvarchar)
PRINT @strRows
SET NOCOUNT OFF

One pract ical use for left and r ight outer joins is that of list ing rows on one side of
a join without a m atching row on the other side. For exam ple, we can use an
adaptat ion of t he preceding sam ple to list t he specific row in t he t it les table that
has no m atching t it le_id colum n value in the t it leauthor table. The following script
dem onst rates the syntax for t he solut ion. Not ice that the basis for t he solut ion is
a WHERE clause that screens for a null value from the table without t he m atching
row.
--RowsWithNoMatch
--Find rows in the left table without a match in the right table.
SELECT ta.au_id, t.title, t.ytd_sales, t.price
FROM pubs..titles t LEFT OUTER JOIN pubs..titleauthor ta
ON (t.title_id = ta.title_id)
WHERE ta.au_id IS NULL

Self Joins and Cross Joins

Two special k inds of j oins, which serve cont rast ing purposes, are self j oins and
cross joins. A self j oin m erges a table with it self. Use a self j oin when you need to
relate the values in one colum n to t he values in another colum n of t he sam e
table. A cross join creates a result set that com bines colum n values from all t he
rows in one row source with colum n values from all t he rows in a second row
source. This is different from an outer j oin because a cross j oin doesn’t create any
null values in it s result set . You will t ypically use this k ind of join when at least
one of your row sources is very sm all, such as a scalar value or a row source with
just a couple of rows.
Within the context of t he Northwind database, the classic situat ion calling for the
applicat ion of a self j oin is the task of returning the nam es of the m anagers from
the Em ployees table. This table contains a separate row for each em ployee, with
two sets of colum ns that cont r ibute to t he task. The first set includes the
Em ployeeI D, FirstNam e, and LastNam e colum ns. The second set includes a single
colum n, ReportsTo. The ReportsTo colum n contains the Em ployeeI D value for t he
m anager t o whom an em ployee report s. You can find the m anager nam es by
m erging the ReportsTo colum n values in t he second set with t he Em ployeeI D
values in t he first set . The FirstNam e and LastNam e colum n values for t he
m atching records are the m anager nam es. Manager nam es will repeat for as
m any direct reports as they have. Therefore, adding a DI STI NCT predicate to the
SELECT statem ent rem oves the duplicates.
The syntax for a self j oin is the sam e as for an inner join. However, the sam e row
source appears on both sides of the JOI N keyword. With a self j oin, the use of
aliases is m andatory. I t is through the aliases that you designate the left and
right row sources. The following sam ple shows the T-SQL for f inding the
m anagers from the Em ployees table. Not ice that the expression for t he ON
keyword m atches the ReportsTo colum n values to t he Em ployeeI D colum n values.
The DI STI NCT predicate after SELECT rem oves the m ult iple instances of m anager
nam es from the result set .

--SelfJoin
--Self join to find managers in Employees table.
SELECT DISTINCT em.ReportsTo, e.FirstName, e.LastName
FROM Employees em JOIN Employees e
ON (em.ReportsTo = e.EmployeeID)

The cross join does have its own keyword phrase to denote it s j oin t ype. (Not
surprisingly, the keyword phrase is CROSS JOI N.) The syntax is dist inct ive as
well. This is because the FROM clause doesn’t need the ON keyword to specify
colum ns for com par ing between the two row sources. A cross join autom at ically
m erges all the rows from one source with each row from the other source; in
other words, it generates one row for each possible pair ing of rows from the two
sources. That m eans it ’s im portant t hat at least one of t he row sources have just
one row or very few rows. A cross join of two tables with j ust 10,000 rows each
generates a result set with 100,000,000 rows! You can lim it t he size of t he result
set through WHERE clause argum ents that rest r ict the rows part icipat ing in t he
cross join from eit her t he left or t he r ight row source.
The following sam ple shows a sim ple cross join that m erges Com panyNam e
colum n values from each row in the Shippers table with OrderI D colum n values
from the Orders table t hat are less than or equal t o 10,249. Only two OrderI D
values m atch this condit ion, and there are j ust three rows in the Shippers table,
so the result set for t he cross join contains only six rows. The syntax for the cross
join appears below, and Figure 3-6 shows the result set .
--CrossJoin
--Cross join selected rows from one table with all
--selected rows from a second table based on a
--WHERE clause.
SELECT OrderID, CompanyName
FROM Orders CROSS JOIN Shippers
WHERE OrderID <= 10249

Figure 3 - 6 . The result set from a cross join of Com panyNam e from the
Shippers table w ith tw o OrderI D values from the Orders table.

Subqueries

A subquery is m erely a SELECT statem ent nested in another SELECT statem ent .
Som et im es the SQL literature calls the nested SELECT statem ent t he inner query
and the container for t he nested SELECT query the outer query. You can nest
quer ies at m ore than two levels, but t here are m em ory and com plexity lim its for
parsing statem ents that you m ight incur before reaching the specified lim it of 32
levels of nest ing. You can use m any of the standard SELECT statem ent features in
a subquery, but t here are som e rest r ict ions; see “Subquery Fundam entals” and
“Subquery Rules” in Books Online for t he details. This sect ion will illust rate a
couple of approaches that do work.

Before div ing into t he specifics of t he syntax, it is im portant to understand a
couple of points about subqueries. First , for m ost SELECT statem ents t hat use a
subquery, there’s alm ost always an alt ernat ive that doesn’t require a subquery.
Frequent ly a j oin will provide the sam e funct ionalit y. I n any event , SQL Server
searches for t he fastest way to execute the query no m at ter how you state the
query. Second there are two basic kinds of subquer ies. The first of t hese is a
stand-alone SELECT statem ent t hat executes once inside another query. The
second subquery type is a SELECT statem ent that SQL Server m ust execute once
for each row in t he outer query. This type of inner query is known as a correlated
subquery. A correlated subquery can degrade perform ance if SQL Server cannot
find an alt ernat ive to com put ing two SELECT statem ents for each row in t he row
source for t he outer query.
The following scr ipt illust rates a subquery form ulat ion for f inding the nam es of
the m anagers in t he Northwind database. The inner query finds the Em ployeeI D
for the two m anagers— but it doesn’t return their nam es. The outer query returns
the FirstNam e and LastNam e colum n values for the Em ployeeI D values returned
by the inner query.
--SubqueryForManagers
--Subquery to find managers in Employees table.
SELECT FirstName, LastName
FROM Employees
WHERE EmployeeID IN
 (SELECT DISTINCT ReportsTo FROM Employees)

The self j oin sam ple in t he preceding sect ion illust rates an alt ernat ive form ulat ion
for returning the nam es of com pany m anagers. Because the inner query executes
just once in the form ulat ion in t his sect ion, there is no part icular disadvantage to
the subquery form ulat ion. Also, there is no perform ance penalty with either
opt ion. Look at both designs, and consider which one m akes the m ost sense to
you.
The next sam ple dem onst rates the applicat ion of a correlated subquery. The
outer SELECT statem ent returns the OrderI D colum n value as well as t he num ber
of line it em s and the total extended price for all orders with m ore than four line
item s. This outer query com putes the extended price for each line and groups the
line it em s for each order. The inner query com putes the num ber of line item s in
the current order for the outer query, and the outer query takes this result and
com pares it w it h 4 t o determ ine whether it should include or exclude the order.
As you can see, t he outer query m ust recom pute the inner query for each row in
it s result set .
--CorrelatedSubquery
--Correlated subquery to filter on an aggregated column value.
SELECT OrderID, COUNT(OrderID) ’Line items’,
 ’$’ +
 CONVERT(varchar,CAST(SUM(Quantity*UnitPrice*(1-
Discount)) AS money),1)
FROM [Order Details] odout
WHERE (SELECT COUNT(OrderID) FROM [Order Details] odin
 WHERE odin.OrderID = odout.OrderID) > 4
GROUP BY OrderID
ORDER BY COUNT(OrderID)

Alternat ively, we could replace the inner query with a HAVI NG clause, as shown
in the following script . Correlated subquer ies usually carry a perform ance penalty,
so you have to evaluate carefully whether any benefit der ived from the correlated
subquery is worth t he penalty. When you are form ulat ing ad hoc quer ies for use a
lim ited num ber of t im es, correlated quer ies m ay m ake sense if the subquery
form ulat ion is easier for you to state t han other, m ore eff icient , approaches.
--CorrelatedSubqueryWithHaving

--HAVING clause alternative to the preceding
--correlated subquery sample.
SELECT OrderID, COUNT(OrderID) ’Line items’,
 ’$’ +
 CONVERT(varchar,CAST(SUM(Quantity*UnitPrice*(1-
Discount)) AS money),1)
FROM [Order Details]
GROUP BY OrderID
HAVING COUNT(OrderID) > 4
ORDER BY COUNT(OrderID)

Chapter 4 . Program m ing View s and
Stored Procedures
The preceding chapter int roduced you to program m ing data access with T-SQL.
This chapter builds on and goes beyond the int roduct ion in two explicit ways:
First it int roduces v iews by descr ibing their uses with various types of row
sources. Second it int roduces you to stored procedures by reviewing their uses
and the statem ents for creat ing and alt ering them , and by focusing on the use of
param eters and local variables that are often found in stored procedures.
A view is a container for a single SELECT statem ent . Your SQL Server applicat ions
can refer to t he v iew nam e as a shortcut to t he SELECT statem ent within the
view. I n this chapter, you will learn the syntax for creat ing and using v iews.
Special at tent ion goes to creat ing views for data on rem ote servers and for data
in other database form ats, such as Access and any ODBC data source.
Stored procedures are com piled sets of T-SQL statem ents. After int roducing the
syntax for creat ing stored procedures, the chapter drills down on the syntax for
m anipulat ing param eters and return status values, program m ing the insert ion
and delet ion of rows as well as the updat ing of colum n values in row sources, and
the return of condit ional result sets from a stored procedure.
The resources for t his chapter include a database, Chapter04, with com pleted
versions of t he sam ple views and stored procedures discussed as well as T-SQL
scripts for creat ing the views and stored procedures from scratch. Unless
explicit ly stated, all scripts should be run from the Chapter04 database. See the
“Chapter Resources” sect ion in Chapter 2 for m ore detail on at taching database
files to a server and creat ing a new blank database from which you can invoke
the scripts. The chapter also references other com m only available databases,
including the SQL Server Northwind database, t he pubs database, and the Access
Northwind database. The first two databases are installed with SQL Server; the
third database is installed with Access. For the references to rem ote servers, you
will need an instance of SQL Server running on two different com puters or two
instances of SQL Server running on the sam e com puter.

I nt roduct ion to View s

A SQL Server v iew is a virtual table. As with a t able, you can use a v iew in m any
ways, but unlike a table, a v iew doesn’t actually store rows of data. I nstead, what
it stores is a SELECT statem ent , such as one of those covered in Chapter 2. The
result set of the SELECT statem ent const itutes the data available through a v iew.
The FROM clause of the view’s SELECT statem ent can reference other v iews as
well as base tables.

Uses for View s

You can use v iews as a way of insulat ing users from the database design in t he
schem a of a custom applicat ion. This benefit m akes your applicat ions m ore robust
in the face of ongoing requirem ents to update schem a designs. The
INFORMATI ON_SCHEMA views discussed in several sect ions throughout Chapter 2
illust rate t his use for v iews. This approach to exposing data perm its your custom
solut ions to change an applicat ion’s schem a but st ill provide the sam e inform at ion
to the end users of an applicat ion. All you need is to update the view so that it
selects the sam e data as before the schem a change.

You also can use v iews to secure eit her t he rows or t he colum ns from a base
table. With t he SELECT list and the WHERE clause for a v iew’s SELECT statem ent ,
you can filt er data from a base table. I n other words, a v iew perm its you to
expose a subset of a row source. For exam ple, you could base a Visual Basic .Net
applicat ion on a v iew instead of a table if you wanted to rest r ict the access of t he
applicat ion users to j ust rows that m atch the cr iteria in t he WHERE clause. This
approach “secures” t he rows filt ered out of the view. I nstead of f ilter ing rows with
a WHERE clause, you can exclude selected colum ns with sensit ive data from a
SELECT list , such as colum ns for salary and bonus. Again, by excluding data, you
“secure” t he data from those without author ity to v iew it .
A view is part icular ly valuable for com bining the data for two or m ore base tables
into a single row source. The various join clauses enable this capabilit y very
flex ibly. You can also use a UNI ON operator to com bine the data from two or
m ore tables. A UNI ON operator cont rasts with join clauses by concatenat ing one
row source after another. Join clauses st it ch row sources together side by side.

Note

See “Combining Results with UNION” in Books Online as a
star t ing point for m ore coverage of UNI ON queries.
Using the OPENROWSET funct ion allows access to rem ote, heterogeneous data
sources through a v iew. This funct ion perm its you to access non-SQL Server data
from SQL Server v iews. I n addit ion, you can return data and even join data from
other com puters. The OPENROWSET funct ion depends on an OLE DB provider for
connect ing to a data source; the provider determ ines the t ype of funct ionalit y
available from the source. This funct ion is part icularly appropr iate for ad hoc
quer ies. The OPENROWSET funct ion works with whatever usernam e and
password your applicat ion supplies it .
Alternat ives to the OPENROWSET funct ion include the OPENDATASOURCE
funct ion and linked servers. Books Online recom m ends linked servers for
frequent ly used connect ions to data sources outside the scope of t he act ive SQL
Server instance. (See the “Rem arks” sect ion of t he “OPENDATASOURCE” topic.)
Adm inister ing a linked server requires a login t hat belongs to t he sysadm in or
setupadm in f ixed server role.
Another purpose for a v iew is the representat ion of aggregat ions from a base
table. A view can count or sum colum n values in a base table overall or by
groups. This capabilit y of present ing data sum m aries confirm s a v iew as a -
decision-support tool. Because views encapsulate SELECT statem ents for reuse,
you can add new views to a database based on T-SQL quer ies developed by, or in
coordinat ion with, t he end users of an applicat ion. This feature m akes views
desirable for extending the funct ionalit y of applicat ions in ways that you know
have user appeal.
I t is im portant that you grasp the not ion of a v iew as a virt ual table because this
conveys som e powerful clues about the needs they can fulf ill in a custom solut ion.
Your applicat ions can insert , update, and delete data through a view. These
capabilit ies depend on the character ist ics of t he v iew. For exam ple, you can
perform insert / update/ delete funct ions for v iews of a single base table but not for
views that expose aggregates of a base table. The “Rem arks” sect ion of the
“CREATE VI EW” topic in Books Online details rules for t he m odificat ion of the row
source behind a v iew.
You can index views to speed their perform ance— just as you can with tables.
I ndexed v iews deliver benefits when you’re working with very large tables. See
the “Creat ing an I ndexed View” topic in Books Online for a start ing point for
learning m ore about indexed v iews.
Part it ioned v iews represent a m eans of segm ent ing a table over m ult iple
com puters each running SQL Server; you aggregate the part it ions of a v iew with

UNI ON operators. Through part it ioned v iews, a view on each server with a
segm ent can browse, add, update, and delete rows in t he whole table (across all
servers) . Part it ioned v iews are a robust way of working with very large
databases. See the “Creat ing a Part it ioned View” topic in Books Online for help
with preparing part it ioned v iews.

Statem ents for Creat ing and Alter ing View s

You can generate and m odify v iews with t he T-SQL CREATE VI EW and ALTER
VI EW statem ents. I n it s m ost basic form , a CREATE VI EW statem ent specifies a
nam e for the v iew and a SELECT statem ent t o designate it s result set . Posit ion
the v iew’s nam e after a space delim iter following the CREATE VIEW keyword
phrase. Then use the AS keyword to separate the v iew’s nam e from its SELECT
statem ent . For exam ple, you can create a new view with t his syntax:
CREATE VIEW
view_name

AS
SELECT
list_of_columns

FROM
base_table_name

View nam es are standard SQL Server ident if iers. Therefore, t hey m ust follow the
rules for all object ident ifiers. Refer to the “Using I dent if iers” t opic in Books
Online for a sum m ary of the rules for specify ing ident if iers. I n addit ion, user-
def ined v iews are objects like other system and user-def ined SQL Server objects.
Because SQL Server objects share a com m on nam espace, you m ay care to use
pref ixes to reflect the type of object and avoid nam e conflicts. For exam ple, t his
chapter uses the vew prefix for all user-defined views.
Just as with tables and other database objects, you cannot create a new view
with t he sam e nam e as an exist ing v iew. You m ust rem ove the pr ior version of
the v iew before creat ing a new view with the sam e nam e as an exist ing one in a
database. The DROP VI EW statem ent supports the rem oval of an exist ing v iew. A
couple of I NFORMATI ON_SCHEMA v iews return the nam es of the v iews in a
database. This chapter dem onst rates the use of these v iews.
You can invoke the ALTER VI EW statem ent to change an exist ing v iew without
delet ing it totally. The ALTER VI EW statem ent preserves perm issions set on a
view and doesn’t alt er t he dependency of an I NSTEAD OF t r igger or a stored
procedure on a view.

Restr ict ions on SELECT Statem ents for View s

While you do have access to m ost of t he SELECT statem ent funct ionalit y, t here
are som e design lim itat ions as well as som e differences in behavior for SELECT
statem ents in v iews. For exam ple, a SELECT statem ent in a v iew cannot contain a
COMPUTE or COMPUTE BY clause because either clause can return m ult iple result
sets. Views m ust always return a single result set . I n t his way, a v iew em ulates a
table. The single result set from a v iew can serve as a table in m any other T-SQL
statem ents.
You cannot use an ORDER BY clause by it self in the SELECT statem ent for a v iew.
The Books Online docum entat ion at several points m akes this assert ion without
bother ing to note an im portant case that perm it s the use of an ORDER BY clause
inside the SELECT statem ent for a v iew. I n t his special case, you use the TOP

predicate inside the SELECT statem ent . Subsequent sam ples will dem onst rate t he
syntax for this.
The WI TH CHECK OPTI ON clause is a special clause that applies to SELECT
statem ents inside v iews. This clause can rest r ict a user’s abilit y t o insert new
records through a view or m odify the values in the result set t hat a view exposes.
The WI TH CHECK OPTI ON clause requires that all m odificat ions to the row source
for a v iew com ply with crit er ia statem ents in t he SELECT statem ent for a v iew.

View At t r ibutes

Three v iew at t r ibutes help to refine the funct ionalit y t hat a v iew provides. A
view’s at t r ibute specif icat ion can appear following it s nam e in a CREATE VI EW or
ALTER VI EW statem ent . Use WI TH as a keyword before the at t r ibute nam e.
Using the ENCRYPTI ON at t r ibute encrypts the SELECT statem ent for the v iew.
Users get t he sam e result set for an encrypted or unencrypted view, but the
encrypted v iew protects the T-SQL statem ent for the v iew. I f you need to m odify
a v iew in the future, save outside the database an unencrypted version of t he
view’s CREATE VI EW statem ent . You can do this with Query Analyzer by saving
the unencrypted T-SQL statem ent t hat was used for creat ing the encrypted v iew.
The SCHEMABI NDI NG v iew at t r ibute integrates a v iew with it s row sources so
that you cannot rem ove or change a row source for a v iew in a way that will
m odify t he result set . To specify t he SCHEMABI NDI NG at t r ibute for a view, you
m ust designate all underly ing row sources for t he v iew with a two-part nam ing
convent ion that designates the owner nam e and the nam e for t he row source. I f
you create indexes for a view, you m ust also designate the SCHEMABI NDI NG
at t ribute for t he v iew.

Note

The SELECT statem ent for a v iew with SCHEMABI NDI NG
cannot include a SELECT list with * in it if it is an indexed
view.
The VI EW_METADATA at t r ibute is t he third at t r ibute for a v iew. Specify this
at t ribute for v iews that are intended for use with SQL Server 2000 Meta Data
Services. You can invoke these serv ices from either Enterpr ise Manager or a
special stand-alone Microsoft Managem ent Console snap- in. Meta Data Services is
a specialized topic outside the scope of this book. See the “Meta Data Services
Overview” topic in Books Online for an int roduct ion to t he uses for Meta Data
Services.

Creat ing and Using View s

As explained ear lier , creat ing a v iew perm its you to expose a subset of a row
source through the v iew. The SELECT statem ent for a v iew determ ines the subset
that a v iew returns. Nest ing a SELECT statem ent in a CREATE VI EW statem ent
generates a new view with a result set determ ined by the SELECT statem ent . This
sect ion illust rates typical syntax convent ions for the CREATE VI EW statem ent . I t
also presents som e special requirem ents for SELECT statem ents nested in
CREATE VI EW statem ents.

Creat ing and Select ing from a View

To create a v iew, you m ust have an init ial row source. This row source can reside
in the current database or in another database to which your v iew can connect .
The m ost st raight forward solut ion is to use a row source in t he current database.
The following scr ipt creates a row source as a table nam ed Em ailContacts in the
database for t his chapter and then populates the table with a couple of rows.
Next , aft er dropping the view if it already exists, the script creates a v iew based
on the table. Finally, a SELECT statem ent provides a result set based on the v iew.
The port ion of the script creat ing and populat ing the table is excerpted from
Chapter 2 with a m inor adaptat ion for it s use in the database for this chapter.
After the I NSERT I NTO statem ents, t he script displays new code specific to v iews.
Before invoking the CREATE VI EW statem ent , t he script uses the
INFORMATI ON_SCHEMA.VI EWS v iew to ver ify whether a v iew already exists with
the nam e for t he new view. I f t he v iew does exist , the script drops the prior
version. You can also use the I NFORMATI ON_SCHEMA.TABLES v iew for the sam e
purpose.
After ensuring that t he nam e for the new view won’t conflict wit h an exist ing one,
the script invokes the CREATE VI EW statem ent . This statem ent dem onst rates the
syntax for nam ing a v iew. Not ice the vew prefix . While t his prefix isn’t st r ict ly
necessary, recall that nam es for views and tables occupy the sam e nam espace.
Therefore, you m ust specify a view’s nam e dist inct ly from a table serv ing as the
view’s row source. Because the Em ailContacts table resides in t he sam e database
as the view and its owner is the dbo user, you can use a one-part nam e that
sim ply references the table’s nam e in t he FROM clause of the v iew’s SELECT
statem ent . After t he creat ion of the v iew, the script invokes a new SELECT
statem ent t o return the view’s result set . Not ice that t he FROM clause in t he
concluding SELECT statem ent refers to t he v iew’s nam e, vewEm ailContacts.
--CreatevewEmailContacts
USE Chapter04
GO

--Remove prior version of EmailContacts if it exists.
IF EXISTS
 (
 SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = ’EmailContacts’
)
DROP TABLE EmailContacts

--Create EmailContacts with three columns.
CREATE TABLE EmailContacts
(
ContactID int Not Null PRIMARY KEY,
FirstName nvarchar(20) NULL,
LastName nvarchar(35) NULL,
Email1 nvarchar (255) NULL
)
GO

--Populate EmailContacts.
INSERT INTO EmailContacts
 VALUES(1,’Rick’, ’Dobson’, ’rickd@cabinc.net’)
INSERT INTO EmailContacts
 VALUES(2,’Virginia’, ’Dobson’, ’virginia@cabinc.net’)
GO

--Drop prior version of view if it exists.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewEmailContacts’)

 DROP VIEW vewEmailContacts
GO

--Create view to select all columns for
--all rows from the EmailContacts table.
CREATE VIEW vewEmailContacts
AS
SELECT *
FROM EmailContacts
GO

--Select all columns for all rows from
--the vewEmailContacts view.
SELECT *
FROM vewEmailContacts

Contrast ing Unencrypted and Encrypted View s

With m inor extensions, the preceding sam ple can serve as a tem plate for t he
creat ion of any v iew. The following script illust rates one of these extensions. I t
creates a view in t he Chapter04 database that has the Shippers table in the
Northwind database as it s base table. While the row source for a v iew can reside
in another database, the CREATE VI EW statem ent can create a v iew only in t he
current database. Sim ilarly, t he DROP VI EW statem ent can rem ove a view only
from the current database.
An easy way to reference a row source from another SQL Server database is to
use a three-part nam e. The first part refers to t he alternate database nam e,
Northwind in t his case. The second part designates the owner of t he object
providing the row source. When the row source owner is the default dbo user,
you can om it it s explicit designat ion (as in the following script) . The third nam e
part denotes the nam e of t he database object providing the row source for a
view. Figure 4-1 shows the result set from the SELECT statem ent based on the
vewShippers v iew. Not ice that it m atches the values in the Northwind..Shippers
table, which is the source for the vewShippers v iew.
Not ice that unlike the first code sam ple, t his one doesn’t include a specific
reference to t he Chapter04 database. That ’s because Query Analyzer will cont inue
to use Chapter04 unt il you specify a different database with a new USE
statem ent .
--CreatevewShippers
--Search for, and remove if found, the
--vewShippers view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewShippers’)
 DROP VIEW vewShippers
GO

--Create a new version of the vewShippers
--view in the Chapter04 database from the
--Shippers table in the Northwind database.
CREATE VIEW vewShippers
AS
SELECT *
FROM Northwind..Shippers
GO

--Select all rows and columns from the
--vewShippers view in Chapter04.
SELECT * FROM vewShippers

Figure 4 -1 . The result set from a view based on the Shippers table in the
Northw ind database.

The ENCRYPTI ON at t r ibute isn’t set by default . Set t ing encrypt ion doesn’t change
the result set from a SELECT statem ent . I nstead, it encodes the T-SQL for a
view’s def init ion. You can verify t his by t ry ing to display the script for a view. The
VI EW_DEFI NI TI ON colum n for the I NFORMATI ON_SCHEMA.VI EWS v iew returns
the script for a v iew on each of it s rows.
The following scr ipt dem onst rates the syntax for invoking the ENCRYPTI ON
at t ribute. The script also dem onst rates the syntax for returning the script t hat
def ines a view. This script includes all com m ents as well as t he operat ional T-SQL
statem ents for creat ing the v iew; these statem ents include the CREATE VI EW
statem ent for generat ing a new view and the SELECT statem ent for defining a
view’s result set . I n t his case, the SELECT statem ent is ident ical to the one in t he
preceding v iew. However, t he CREATE VI EW statem ent includes the WI TH
ENCRYPTI ON clause that encodes the T-SQL for the v iew. After creat ing the v iew,
the script perform s a sim ple SELECT query to ver ify t he contents of t he view’s
result set . The f inal port ion of the script creates another result set with t he
def init ion for each user-defined v iew in the current database, which is Chapter04
in the sam ple. Om it t ing all rows beginning with “sys” for their TABLE_NAME
colum n value in the I NFORMATI ON_SCHEMA.VI EWS v iew excludes all system
views from the f inal result set .
--CreatevewShippersEncrypted
--Search for, and remove if found, the
--vewShippersEncrypted view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewShippersEncrypted’)
 DROP VIEW vewShippersEncrypted
GO

--Create a new version of the vewShippersEncrypted
--view in the Chapter04 database from the
--Shippers table in the Northwind database.
CREATE VIEW vewShippersEncrypted
WITH ENCRYPTION
AS
SELECT *
FROM Northwind..Shippers
GO

--Select all rows and columns from the
--vewShippersEncrypted view in Chapter04.
SELECT * FROM vewShippersEncrypted

--List user-defined view names in Chapter04 database
--along with their scripts.
SELECT TABLE_NAME, VIEW_DEFINITION
FROM INFORMATION_SCHEMA.VIEWS
WHERE LEFT(TABLE_NAME,3) <> ’sys’

Figure 4-2 shows an excerpt from the result sets for t he preceding scripts. This
excerpt is from the Results pane of Query Analyzer with a Results To Grids
set t ing. The top result set shows the sam e three rows as in Figure 4-1. This
confirm s that encrypt ing a v iew doesn’t alter t he result from its SELECT
statem ent . The second result set in Figure 4-2 displays the nam es of t he three
views created to this point in the chapter. Next to each v iew nam e is the
beginning of the script for t he v iew. Because the scripts start w ith com m ents, t he
VI EW_DEFI NI TI ON colum n values start w ith t hese com m ents. With a Results To
Text set t ing for the Results pane, you can exam ine the whole script for each v iew
except vewShippersEncrypted. The WITH ENCRYPTI ON clause in t he CREATE
VI EW statem ent for this view secures it s script so that t he VIEW_DEFI NI TI ON
colum n of the I NFORMATI ON_SCHEMA.VI EWS v iew cannot expose the T-SQL that
generates the view.

Figure 4 - 2 . An excerpt show ing the result set from an encrypted view as
w ell as the VI EW _ DEFI NI TI ON colum n values from the

I NFORMATI ON_ SCHEMA.VI EW S view for three view s in a database.

Sort ing and Grouping W ithin a View

The SELECT statem ent t hat def ines a v iew has generally t he sam e syntax as that
within a stand-alone script . For exam ple, grouping rows to aggregate a colum n
value works the sam e in both stand-alone scripts and those inside v iews.
Sim ilar ly , t he I N keyword in a WHERE clause works the sam e as well.
I n cont rast , the ORDER BY clause in a SELECT statem ent requires slight ly
different syntax inside a view than it does outside a view. I n part icular, ORDER
BY inside a v iew requires the TOP predicate aft er the SELECT keyword. The TOP
predicate, in t urn, requires an argum ent to designate how m any records to
return. I f you want all the rows from a source, follow TOP w it h 100 PERCENT. You
can designate any other percentage as well as a num ber for any num ber of rows.
Trailing TOP w it h t he num ber 10 without the PERCENT keyword returns the first
10 rows in t he result set . When you use an ORDER BY clause, t hose rows will be
the highest or lowest colum n values on a sort dim ension depending on the sort
order. The syntax for designat ing a sort order in an ORDER BY clause is the sam e
in a SELECT statem ent in or out of a v iew.
The following scr ipt shows the creat ion and return of values from a v iew that
groups and sorts colum n values. The SELECT statem ent for the v iew also includes
a crit er ion that f ilters exclusively for count r ies beginning with the let ter B or C.
Chapter 3 included a sim ilar stand-alone script for count ing the num ber of
custom ers by city within count ry. The SELECT statem ent in t he following script is
dist inct because of it s use of the TOP predicate. While t he TOP predicate will work
in a stand-alone scr ipt , it isn’t necessary.
--CreatevewCustomersInCountryCity
--Search for, and remove if found, the
--vewCustomersInCountryCity view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewCustomersInCountryCity’)

 DROP VIEW vewCustomersInCountryCity
GO

--Create a new version of the vewCustomersInCountryCity
--view in the Chapter04 database.
--To use ORDER BY clause in view you need TOP predicate
--with modifier of 100 PERCENT.
CREATE VIEW vewCustomersInCountryCity
AS
SELECT TOP 100 PERCENT Country, City,
 Count(CustomerID) ’# of Customers’
FROM Northwind..Customers
WHERE LEFT(Country,1) IN (‘B’,’C’)
GROUP BY Country, City
ORDER BY Country, City
GO

--Select all rows and columns from the
--vewCustomersInCountryCity view in Chapter04.
SELECT * FROM vewCustomersInCountryCity

View s for Rem ote and Heterogeneous Sources

I t is often necessary to view data residing on another SQL Server instance or
even in another type of database form at . T-SQL provides several approaches to
sat isfying these k inds of requirem ents. The OPENROWSET funct ion is a flex ible
approach because it can accom m odate ad hoc quer ies as well as those perform ed
on a regular basis. As m ent ioned previously, Books Online recom m ends that you
use linked servers when it is necessary to query a rem ote or heterogeneous
source on a regular basis. However, you can invoke the OPENROWSET funct ion
for a user id that doesn’t have m em bership in t he sysadm in or setupadm in fixed
server roles. The OPENROWSET funct ion depends only on the perm issions for the
user id passed to the other data source. This sect ion presents a ser ies of
OPENROWSET sam ples designed to help you understand rem ote data access.

Creat ing a View for Another SQL Server I nstance

One typical requirem ent is to v iew a SQL Server row source, such as a table, on
another server. You can use the OPENROWSET funct ion to perform this task, with
argum ents that specify a provider, other elem ents of a connect ion st r ing, and a
SELECT statem ent . The OPENROWSET funct ion can serve as an argum ent for the
FROM clause of a SELECT statem ent . This outer SELECT statem ent , in t urn, m ust
reside in a CREATE VIEW statem ent when your goal is to create a v iew in t he
current database that exposes a row source in another database.
When the inner SELECT statem ent— the one in t he call t o the OPENROWSET
funct ion— points at another SQL Server instance, the provider for the funct ion
should be SQLOLEDB. Next you can denote the rem aining elem ents of t he
connect ion st r ing for t he other server in t he following order: t he server instance
nam e, a SQL Server login for the server, and a password for t he login. Follow the
provider nam e by a com m a, but use a sem icolon for a delim iter aft er t he server
nam e and login nam e. A com m a separates the password from the SELECT
statem ent .
The following scr ipt creates a v iew on one SQL Server running SQL Server 2000
that points at a table on the cabxli server running the MSDE version com pat ible
with SQL Server 7. You need two instances of SQL Server t o evaluate this script ,

but you can nam e the instances anything you want . Just change the references to
cabxli to t he nam e of a SQL Server instance to which you can connect . By the
way, t he table is t he authors table in t he pubs database; MSDE doesn’t rout inely
install w ith the pubs database. Because cabxli is an internal test server running
Windows 98, t he server is available with sa and an em pty password. Product ion
servers should always have a password for the sa login if you aren’t forcing
Windows authent icat ion. The SELECT statem ent references the authors table in
the pubs database on the cabxli server. The ORDER BY clause along with t he TOP
predicate sorts the result set by author f irst nam e within author last nam e.
The outer SELECT statem ent takes the OPENROWSET funct ion as the argum ent
for it s FROM clause. The SELECT list for t he outer SELECT statem ent lists the
authors by first nam e, last nam e, and phone num ber, in t hat order.
--CreatevewAuthorsSortedOnCabxli
--Search for, and remove if found, the
--vewAuthorsSortedOnCabxli view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewAuthorsSortedOnCabxli’)
 DROP VIEW vewAuthorsSortedOnCabxli
GO

--Create a new version of the vewAuthorsSortedOnCabxli
--view in the Chapter04 database from the
--Shippers table in the Northwind database.
CREATE VIEW vewAuthorsSortedOnCabxli
AS
SELECT au_fname, au_lname, phone
FROM OPENROWSET(‘SQLOLEDB’,’cabxli’;’sa’;’’,
 ’SELECT TOP 100 PERCENT * FROM pubs..authors ORDER BY au_lname, a
u_fname’)
GO

--Select all rows and columns from the
--vewAuthorsSortedOnCabxli view in Chapter04.
SELECT * FROM vewAuthorsSortedOnCabxli
GO

Creat ing a View for an Access Database

I t isn’t uncom m on to need to upgrade Access applicat ions for the use of an
Access database via a SQL Server solut ion. While you can perform a full-scale
upsizing, it is possible t hat t he OPENROWSET funct ion can dram at ically reduce
the effort of working with Access data from SQL Server. That ’s because the
funct ion perm its a SQL Server solut ion to v iew Access data without the need of
t ransport ing the data from Access to SQL Server. Therefore, you save the
conversion effort . I n addit ion, your clients avoid the disrupt ion that could ar ise if
their fam iliar Access solut ion were unavailable because you replaced it wit h a SQL
Server applicat ion. At the sam e t im e, new applicat ions can expose data from the
Access database. So long as you don’t expect to exper ience bot t lenecks related to
the capacity of the Access database, this approach bears considerat ion. I n any
event , the approach supports the easy availabilit y of Access data from SQL
Server v iews.
You can use an OPENROWSET funct ion to connect with an Access database m uch
like you use the funct ion to connect with a SQL Server database on another SQL
Server instance. The OPENROWSET funct ion is the argum ent for t he FROM clause
of a SELECT statem ent . When connect ing to an Access database, you m ust
specify t he Jet data provider followed by the path to the Access database file, a
login nam e, and a password. The OPENROWSET funct ion also has it s own SELECT

statem ent t hat specifies the row source in t he Access database as well as any
special set t ings, such as a WHERE clause.
The following scr ipt dem onst rates a connect ion to an Access database file on the
current com puter. The path points to t he default installat ion of t he Northwind
sam ple database for Access 2002. The connect ion st r ing specifies a login by the
adm in user with an em pty password. This is norm al for an unsecured Access
database file, such as the Access Northwind sam ple. The SELECT statem ent inside
the OPENROWSET funct ion call designates the return of all rows with a Count ry
colum n value of USA. When designat ing a st r ing in t his instance, the norm al
syntax is to enclose the st r ing argum ent , USA, wit h a pair of single quotat ion
m arks. However, wit hin the OPENROWSET funct ion, single quotat ion m arks are
already used around the SELECT statem ent , so it ’s necessary to use two single
quotat ion m arks on each side of USA. I n t he following script , t he outer SELECT
statem ent displays all the colum ns from the inner SELECT statem ent .
--CreatevewUSACustomersFromAccess
--Search for, and remove if found, the
--vewUSACustomersFromAccess view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewUSACustomersFromAccess’)
 DROP VIEW vewUSACustomersFromAccess
GO

--Create a new version of the vewUSACustomersFromAccess
--view in the Chapter04 database from the Customers table
--in the Access Northwind database. (You should install the
--Northwind sample if it isn’t already installed. Also, you
--may need to change the path to Northwind.)
CREATE VIEW vewUSACustomersFromAccess
AS
SELECT *
FROM OPENROWSET(
 ’Microsoft.Jet.OLEDB.4.0’,
 ’c:\Program Files\Microsoft Office\Office10\Samples\Northwind.mdb
’;
 ’admin’;’’,
 ’SELECT * FROM Customers WHERE Country=‘‘USA’’’)
GO

--Select all rows and columns from the
--vewUSACustomersFromAccess view in Chapter04.
SELECT * FROM vewUSACustomersFromAccess
GO

Creat ing a View for an ODBC Row Source

Viewing an ODBC data source m ay be the ult im ate in f lex ibilit y because ODBC
drivers are available for so m any different types of databases. I n addit ion, t he
MSDASQL provider, which is installed with Microsoft Data Access Com ponents,
offers a standard interface to ODBC data sources. The OPENROWSET funct ion
through its SELECT statem ent lets your applicat ions choose a specific row source
within a data source or even filter a row source to der ive a new custom source for
an applicat ion.
Using the OPENROWSET funct ion to connect with a row source in an ODBC data
source bears a st rong resem blance to using the funct ion to connect with SQL
Server and Jet row sources. The m ain differences are in the connect ion st ring
specificat ions. First you m ust designate the MSDASQL provider instead of t he

SQLOLEDB or Jet provider. Second you specify connect ion st r ing elem ents that
are appropr iate for the data source to which you want t o connect .
The following scr ipt shows the syntax for an applicat ion of the OPENROWSET
funct ion with t he MSDASQL provider for an ODBC data source. I n fact , the sam ple
connects to a SQL Server data source with t he ODBC dr iver, but the general
syntax issues are the sam e as for any data source. This sam ple requires two
instances of SQL Server. For exam ple, t he connect ion st r ing elem ents point t o t he
cab2000 server running a SQL Server database. You can replace the reference to
cab2000 with the nam e of any other instance of SQL Server on your network. The
user id and password are, respect ively, sa and password. The inner SELECT
statem ent for t he OPENROWSET funct ion chooses all t he rows from the Orders
table in the Northwind database whose OrderDate is in 1998. A WHERE clause
and a DATEPART funct ion part icipate in t he designat ion of an appropr iate cr iter ion
for the SELECT statem ent . The outer SELECT statem ent returns all colum ns from
the Orders table.
--Createvew1998OrdersOnCab2000
--Search for, and remove if found, the
--vew1998OrdersOnCab2000 view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vew1998OrdersOnCab2000’)
 DROP VIEW vew1998OrdersOnCab2000
GO

--Create a new version of the vew1998OrdersOnCab2000
--view in the Chapter04 database from the Orders table
--in the Northwind database on the Cab2000 server.
CREATE VIEW vew1998OrdersOnCab2000
AS
SELECT *
FROM OPENROWSET(‘MSDASQL’,
 ’DRIVER={SQL Server};SERVER=cab2000;UID=sa;PWD=password’,
 ’SELECT *
 FROM Northwind..Orders
 WHERE DATEPART(yyyy, OrderDate) = 1998’)
GO

--Select all rows and columns from the
--vew1998OrdersOnCab2000 view in Chapter04.
SELECT * FROM vew1998OrdersOnCab2000

Joining Row Sources for a View

The value of being able to process rem ote and heterogeneous data sources
m ult iplies when you can join two row sources from different servers or different
databases. There are at least two approaches to this task. The first one is to
create a SELECT statem ent that contains a JOI N operator. I n this approach, each
side of t he j oin has it s own explicit OPENROWSET funct ion. The other approach is
to create two new views, each based on it s own OPENROWSET funct ion. Then you
can create a new, third, view that j oins the two views. Either approach em powers
an applicat ion to process concurrent ly row sources from different database
servers in different database form ats!
The following scr ipt shows the syntax for t he first approach. Like several of t he
previous OPENROWSET funct ion sam ples, this one requires two instances of SQL
Server. The scr ipt j oins rows from the Orders table in a SQL Server database with
rows from the Custom ers table in an Access database f ile. The OPENROWSET
funct ion declarat ions follow the syntax of previous sam ples that used the
funct ions separately as the source for a view. This script sam ple joins the

Custom ers rows with the Orders rows based on their Custom erI D colum n values.
An advantage of nest ing the two OPENROWSET funct ions as the argum ent for the
FROM clause of the outer SELECT statem ent is t hat your applicat ion doesn’t
require separate v iews for each row source object that gets joined. This saves
your applicat ion from opening the v iews.
--CreatevewAccessCustomersCab2000Orders
--Search for, and remove if found, the
--vewAccessCustomersCab2000Orders view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewAccessCustomersCab2000Orders’)
 DROP VIEW vewAccessCustomersCab2000Orders
GO

--Create the vewAccessCustomersCab2000Orders view
--in the Chapter04 database from the
--OPENROWSET of CustomersFromAccess and
--OPENROWSET of 1998OrdersOnCab2000.
CREATE VIEW vewAccessCustomersCab2000Orders
AS
SELECT TOP 100 PERCENT c.CompanyName, c.ContactName, c.Phone,
 o.OrderID, LEFT(o.OrderDate, 11) ’Order Date’
FROM OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,
 ’C:\Program Files\Microsoft Office\Office10\Samples\Northwind.mdb
’;
 ’admin’;’’,
 ’SELECT *
 FROM Customers
 WHERE Country=‘‘USA’’’) AS c JOIN
 OPENROWSET(‘MSDASQL’,
 ’DRIVER={SQL Server};SERVER=cab2000;UID=sa;PWD=password’,
 ’SELECT *
 FROM Northwind.dbo.Orders
 WHERE DATEPART(yyyy, OrderDate) = 1998’)
 AS o
 ON c.CustomerID = o.CustomerID
ORDER BY c.CompanyName, o.OrderID
GO

--Select all rows and columns from the
--vewAccessCustomersCab2000Orders view in Chapter04.
SELECT * FROM vewAccessCustomersCab2000Orders

The next script shows the syntax for t he alternat ive approach to j oining two
heterogeneous data sources. Again, you need two SQL Server instances to run
the sam ple. This alternat ive joins two previously created v iews. I n this instance,
each v iew is from a pr ior sam ple in t his chapter. I n addit ion, t he two v iews
correspond to t he SELECT statem ents for each of t he nested OPENROWSET
funct ions in the pr ior sam ple. Therefore, the result is ident ical for the next script
and the prior scr ipt . However, t he code for t he next script is dram at ically sim pler.
By segm ent ing the two OPENROWSET funct ions into separate v iews, t he second
approach m akes it easier to debug the syntax. On the other hand, with this
approach your applicat ion requires the addit ional overhead of m anaging two
separate v iews. This includes creat ing, m aintaining, and opening the v iews.
--Createvew2JoinedViews
--Search for, and remove if found, the
--vew2JoinedViews view in the Chapter04 database.
IF EXISTS (SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vew2JoinedViews’)
 DROP VIEW vew2JoinedViews
GO

--Create a new version of the vew2JoinedViews
--view in the Chapter04 database from
--two other previously existing views.
CREATE VIEW vew2JoinedViews
AS
Select TOP 100 PERCENT c.CompanyName, c.ContactName, c.Phone,
 o.OrderID, LEFT(o.OrderDate, 11) ’Order Date’
FROM vewUSACustomersFromAccess c JOIN vew1998OrdersOnCab2000 o
 ON (c.CustomerID = o.CustomerID)
ORDER BY c.CompanyName, o.OrderID
GO

--Select all rows and columns from the
--vew2JoinedViews view in Chapter04.
SELECT *
FROM vew2JoinedViews
GO

I nt roduct ion to Stored Procedures

Stored procedures are com piled batches of T-SQL statem ents. The batch of
statem ents can contain near ly all the T-SQL statem ent types. While a stored
procedure can return a result set the sam e way a v iew does, stored procedures
are m ore powerful in several respects. A v iew is a v irt ual table; a stored
procedure is m ore like a procedure in Visual Basic. You can pass it param eters,
and it can return values through its result set , output param eters, and return
status values. I n fact , stored procedures can return m ult iple result sets, while
views are lim ited to a single result sim ilar to a t able.

Uses for Stored Procedures

Stored procedures have four m ain uses. First , t hey can return one or m ore result
sets. You can program a stored procedure to return m ult iple result sets as easily
as including m ult iple SELECT statem ents within a single stored procedure.
Another way stored procedures can return result sets is via output param eters.
An output param eter is a scalar value. A scalar value is a single value, such as a
st r ing or an integer, t hat isn’t a part of a rowset . While a result set can contain a
scalar value, result sets norm ally contain sets of values. Output param eters
provide an eff icient m eans for stored procedures to return scalar values. Stored
procedures can also return integer values that indicate how a stored procedure
term inates. SQL Server docum entat ion refers to these return values as return
status values. When a stored procedure can follow any of several internal
processing paths, return status values can indicate to a calling rout ine which path
a stored procedure pursued.
A second m aj or use of stored procedures is t he processing of input param eters.
These param eters enable your applicat ions to cont rol dynam ically t he things that
a stored procedure returns. Not all T-SQL statem ents take param eters. I n these
circum stances, you can com bine the use of param eters with cont rol-of- f low
statem ents, such as I F…ELSE statem ents, to determ ine what a stored procedure
returns. One com m on use for param eters is in t he WHERE clause of SELECT
statem ents. By using input param eter values as crit er ion values for WHERE
clause expressions, your applicat ions can dynam ically cont rol a stored
procedure’s result set . When users set t he param eter values, you enable users to
cont rol an applicat ion dynam ically at run t im e.

A third m ajor use for stored procedures is the m anagem ent of
insert / update/ delete operat ions for row sources. I n this context , a stored
procedure provides value to an applicat ion without returning a result set , a
param eter value, or a return status value. The procedure sim ply m odifies a row
source. Because stored procedures can set param eters based on user input and
the procedures can use param eters for insert / update/ delete operat ions, users can
cont rol the m odificat ions to a row source at run t im e.
Fourth, you will learn how to use stored procedures as program s im plem ented
with a batch of T-SQL statem ents. This fourth use under lies and extends the
other three uses for stored procedures. These statem ents can include SELECT
statem ents, other statem ents for insert / update/ delete operat ions, and cont rol-of-
flow statem ents, such as I F…ELSE statem ents. I n addit ion, you can specify any of
four t ypes of values— local variables, global var iables, param eters, and return
status values— to cont rol t he dynam ic behavior of a stored procedure and how it
com m unicates with it s calling procedure.

Note

See the “Cont rol-of-Flow” topic in Books Online for a good
star t ing point that helps you to learn about t radit ional
programming techniques for stored procedures. Another
especially useful Books Online topic for learning about stored
procedure programm ing is “Programming Stored
Procedures.”

Reusing T- SQL Statem ents w ith Stored Procedures

One of t he m ajor advantages of stored procedures is that t hey can package T-
SQL statem ents for reuse. Four T-SQL statem ents help you m anage these blocks
of code. Two statem ents, CREATE PROCEDURE and ALTER PROCEDURE, enable
the definit ion and ref inem ent of the code within a stored procedure. With t he
DROP PROCEDURE statem ent , you can rem ove a stored procedure from a
database. The EXECUTE statem ent perm its you to run a stored procedure.
The CREATE PROCEDURE statem ent lets you create a stored procedure. You can
abbreviate t his statem ent as CREATE PROC. Follow the statem ent nam e with t he
nam e for your stored procedure. SQL Server has a r ich collect ion of system
stored procedures, which typically start w ith sp_. Chapter 2 includes exam ples of
how to use system stored procedures with tables. System stored procedures are
available for m anaging every aspect of SQL Server perform ance and
adm inist rat ion. To avoid conflicts with system stored procedures, avoid start ing
your own user-defined stored procedures with t he sp_ prefix. This chapter uses
udp as a prefix for user-defined stored procedures. Like view nam es, stored
procedures should follow the standard rules for SQL Server ident if iers.
The CREATE PROC statem ents typically have three or four m ain elem ents. First ,
CREATE PROC declares the stored procedure and assigns a nam e to it . Second,
you can specify one or m ore param eters for t he procedure. The param eter
declarat ions are opt ional. Third, the AS keyword serves as a t ransit ional word
between the declarat ion elem ents and the T-SQL code (the fourth elem ent) t hat
enables a stored procedure to perform a task. The following tem plate illust rates
how to arrange these stored procedure elem ents.
CREATE PROC
procedurename
Parameter specifications

AS

T-SQL code

After you create a stored procedure, you can change its code in at least two
different ways. First , you can invoke the DROP PROCEDURE (or DROP PROC)
statem ent t o rem ove the pr ior version and then invoke a new CREATE PROC
statem ent with t he sam e nam e as the rem oved procedure. To delete an exist ing
stored procedure with the DROP PROC statem ent , sim ply follow the keyword
phrase with the nam e of the stored procedure that you want to rem ove. With t his
approach, you wipe out any perm issions assigned to users for the dropped stored
procedure. Alt ernat ively, you can invoke the ALTER PROCEDURE (or ALTER PROC)
statem ent . This allows you to respecify the param eters and the code within a
stored procedure while it m aintains any perm ission set t ings for t he stored
procedure that you m odify. Except for t he keyword declar ing it , t he ALTER PROC
statem ent has the sam e form at as the CREATE PROC statem ent .
Your applicat ions can use the EXECUTE (or EXEC) statem ent to invoke a stored
procedure init ially created with a CREATE PROC statem ent . I n it s m ost basic
representat ion, follow the EXEC keyword with t he nam e of the stored procedure
that you want to run. The syntax for t he EXEC statem ent perm its you to assign
values for input param eters as well as accept output param eter and return status
values. I n addit ion, t he EXEC statem ent can also return one or m ore result sets—
depending on the T-SQL code that populates the stored procedure. This chapter
includes num erous sam ples that illust rate t he syntax for invoking stored
procedures with the EXEC statem ent .

Using Param eters, Local Var iables, and Global Var iables

Although param eters, local variables, and global var iables can, of course, be used
elsewhere, using them with stored procedures especially enhances the value of
the procedures in an applicat ion. There are two basic kinds of param eters— input
param eters and output param eters. Param eter nam es m ust begin with the @
sym bol. The rem ainder of a param eter’s nam e m ust follow the standard SQL
Server ident if ier convent ions. Param eters have data types that correspond to
those for table colum n values. (See Chapter 3.)
I nput param eters perm it you to custom ize the operat ion of a stored procedure at
run t im e. For exam ple, you can use input param eters to specify t he colum n
values for a stored procedure that adds a new row to a row source. The CREATE
PROC and ALTER PROC statem ents perm it you to assign default values for input
param eters. These default values allow a stored procedure to use a param eter
without t est ing for a null value even if t he user om its the specificat ion of a
param eter when invoking the stored procedure.
Output param eters represent values developed from within a stored procedure.
These can be values com puted by the procedure or SQL Server. A stored
procedure can pass back as an output param eter the I DENTI TY value for a new
row in a table so that another stored procedure can use the output param eter as
a foreign key value for a new row in a related table. I n t his scenar io, t he output
param eter value from one stored procedure serves as the input param eter value
for a second one.
A local var iable is a m em ory var iable t hat you assign for use inside a stored
procedure. Use the DECLARE keyword for designat ing local var iables and the SET
keyword for assigning values to a local var iable. You can also assign a value to a
local var iable with a SELECT statem ent t hat returns a scalar value, such as the
count of the num ber of rows in a table. The scope of a local variable is the stored
procedure that declares the var iable.
Like param eters, local variable ident if iers m ust begin with t he @ sym bol. The
rem ainder of the local variable nam e m ust follow standard SQL Server ident if ier

convent ions. The DECLARE statem ent for a local var iable m ust include a data
type for the var iable. You can use any data type except for t ext , ntext , and
im age. A local var iable’s data type specif icat ion determ ines the type of content
that the var iable can hold. Local var iables can be used in expressions and as
argum ents for cont rol-of- f low statem ents to cont rol the operat ion of a stored
procedure. Local var iables can work in coordinat ion with param eters by accept ing
values from param eters and passing values to t hem .
Developers fam iliar with SQL Server versions pr ior t o 7.0 m ay be fam iliar with the
term global var iables. SQL Server 2000 refers t o these global var iables as
funct ions. A global var iable funct ion nam e starts with @@. These global var iable
funct ions return values to stored procedures that contain system inform at ion. You
can display the full list of 33 @@ var iable funct ions from the I ndex tab in Books
Online by enter ing @@ as the keyword. This chapter illust rates the use of t he
@@ROWCOUNT funct ion, which returns the num ber of rows affected by the last
T-SQL statem ent . Other @@ funct ions that I regular ly f ind part icular ly convenient
include @@I DENTI TY, @@ERROR, and @@DBTS. These three funct ions return
the last I DENTI TY value inserted, the error num ber associated with the last T-SQL
statem ent , and the current t im estam p value within a database.

Creat ing and Using Stored Procedures

The purpose of t his sect ion is to int roduce you to syntax for creat ing and using
stored procedures. This sect ion shows you t ypical ways of apply ing the CREATE
PROC statem ent . I n addit ion, you learn com m on ways of specify ing the EXEC
statem ent t o run a stored procedure. The sect ion illust rates techniques for
designat ing input param eters when you create a stored procedure as well as
ways of specify ing input param eter values when you run a stored procedure.

Dynam ically Select ing from a Row Source

One of t he m ain advantages of stored procedures com pared with v iews is that
stored procedures perm it t he use of param eters. Both views and stored
procedures can invoke SELECT statem ents. However, stored procedures let you
assign values to param eters in WHERE clause expressions at run t im e. This
capabilit y m eans your applicat ions can take input from users to designate which
rows a stored procedure returns in it s result set . With v iews, you would have to
preprogram a different view for each set of rows you wanted.
The following scr ipt has three batches of T-SQL code. The first batch rem oves any
prior version of the udpListShippersRow in the current database. The first batch
uses the INFORMATI ON_SCHEMA.ROUTI NES view to search for an exist ing stored
procedure with t he nam e udpListShippersRow . I f one already exists with t hat
nam e, t he batch invokes the DROP PROCEDURE statem ent t o rem ove it .
The second batch invokes the CREATE PROC statem ent t o create a new stored
procedure nam ed udpListShippersRow . This procedure takes a single param eter
nam ed @RowI D w it h an int data type. The procedure uses the param eter to
specify t he ShipperI D colum n value for t he row it returns; see the WHERE clause
for the syntax of how to do this. The basic SELECT statem ent returns all the
colum ns from the Shippers table in t he Northwind database. You can tell from the
syntax that this is the SQL Server version of the database. (Not ice the FROM
clause argum ent .) All t he rem aining stored procedure sam ples use just SQL
Server databases.
The final batch consists of a single EXEC statem ent . The statem ent runs the
stored procedure created in t he previous batch and designates a value for the

RowI D param eter. Failing to specify a RowI D param eter value causes the
procedure to fail wit h an error m essage. Designat ing a nonexistent ShipperI D
colum n value with RowI D produces an em pty result set . On the other hand,
specify ing any of t he exist ing ShipperI D colum n values causes the procedure to
generate a result set with all t he colum ns for that row in the Shippers table.
--CreateudpListShippersRow
--Delete previous version of udpListShippersRow
--stored procedure if it exists.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpListShippersRow’)
 DROP PROCEDURE udpListShippersRow
GO

--Create udpListShippersRow with an
--input parameter to specify a row.
CREATE PROC udpListShippersRow
@RowID int
AS
SELECT *
FROM Northwind..Shippers
WHERE ShipperID = @RowID
GO

--Run udpListShippersRow with an
--input parameter of 2.
EXEC udpListShippersRow 2

Returning a Sorted Result Set

Even a basic SELECT statem ent can y ield benefits when it is m ade available from
a stored procedure. For exam ple, t he use of t he ORDER BY clause in a v iew
requires the concurrent use of t he TOP predicate. While t his is certainly not
com plicated, it is just one m ore thing you have to rem em ber t o get r ight . The
syntax for using the ORDER BY clause in a stored procedure is just like that in a
stand-alone T-SQL script . I n other words, you don’t need a TOP predicate for your
SELECT statem ent .
The following scr ipt shows the ORDER BY clause within a SELECT statem ent that
determ ines the result set from a stored procedure. The SELECT statem ent
generates a result set based on the Shippers table, with t he rows sorted by
Com panyNam e colum n values. This returns the rows in a different order than the
default one based on the ShipperI D colum n values. The scr ipt again relies on a
three-part st rategy. The first part rem oves an old version of the
udpShippersSortedByCom panyNam e stored procedure. The second part invokes
the CREATE PROC statem ent to add the new stored procedure. The third part
runs the newly created stored procedure with the EXEC statem ent . Because this
stored procedure doesn’t take any param eters, you can j ust follow the EXEC
keyword with the nam e of t he stored procedure. There is no need for anything
else after the EXEC keyword.
--CreateudpShippersSortedByCompanyName
--Delete previous version of udpShippersSortedByCompanyName
--stored procedure if it exists.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpShippersSortedByCompanyName’)
 DROP PROCEDURE udpShippersSortedByCompanyName

GO

--Create udpShippersSortedByCompanyName with an
--input parameter to specify a row.
CREATE PROC udpShippersSortedByCompanyName
AS
SELECT *
FROM Northwind..Shippers
ORDER BY CompanyName
GO

--Run udpShippersSortedByCompanyName.
EXEC udpShippersSortedByCompanyName
GO

Returning the Script for a View

Stored procedures are an ext rem ely flex ible tool. You can use SELECT statem ents
in the full range of cases that use v iews and stand-alone T-SQL statem ents. For
exam ple, you can query I NFORMATI ON_SCHEMA views to uncover inform at ion
about t he objects in a database. An advantage of a stored procedure is that the
T-SQL it contains is com piled. A stand-alone T-SQL statem ent m ust be com piled
before SQL Server can use it . Therefore, t he stored procedure can run the sam e
T-SQL code faster.

Note

The sp_executesql system stored procedure offers some of
the benefits of stored procedures for stand-alone T-SQL
SELECT statem ents.
The following scr ipt dem onst rates the use of a stored procedure to query the
INFORMATI ON_SCHEMA.VI EWS v iew. The result set for t his v iew contains a row
for each v iew in t he current database. The v iew’s VI EW_DEFI NI TI ON colum n
returns the T-SQL script defining a v iew. The TABLE_NAME colum n returns the
nam e for a v iew.
The stored procedure accepts a param eter that designates a v iew’s nam e. The
stored procedure’s SELECT statem ent passes the T-SQL scr ipt for a v iew to a local
variable, @strDefinit ion . The local variable accepts the value in the
VI EW_DEFI NI TI ON colum n value for the row with a TABLE_NAME colum n value
equal to t he param eter passed to the stored procedure. Then a PRI NT statem ent
displays the contents of the local var iable in t he Messages pane.
The stored procedure’s approach works for v iews with up to 8000 characters from
the default code page for the com puter on which you developed the stored
procedure. This is because the varchar data type for the @strDefinit ion local
variable has a m axim um length of 8000 characters in t he default code page for a
com puter. I f you expect your v iew scripts to have m ore characters or your
applicat ion runs on com puters using m ult iple code pages, you need another
approach for stor ing the view’s T-SQL script . For exam ple, you can use an output
param eter instead of a local var iable. Assign a t ext or an ntext data t ype to the
param eter. When using the output param eter approach, you can pr int the script
in the calling rout ine for the stored procedure. Recall that a t ext data t ype can
hold up to 231-1 characters, and a data type value can hold up to 230-1
characters.
Users can alter t he return value that appears in the Messages pane by changing
the nam e of the v iew passed to the stored procedure. The EXEC statem ent to
invoke the stored procedure encloses the param eter in single quotat ion m arks.

This is because the stored procedure assigns a varchar data type to the
param eter stor ing a view’s nam e.
--CreateudpScriptForView
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpScriptForView’)
 DROP PROCEDURE udpScriptForView
GO

--Create stored procedure to print definition
--for a view in the current database.
CREATE PROC udpScriptForView
@vewName varchar(128)
AS
DECLARE @strDefinition varchar(8000)
SET @strDefinition = (SELECT VIEW_DEFINITION
FROM INFORMATION_SCHEMA.VIEWS
WHERE TABLE_NAME = @vewName)
PRINT @strDefinition
GO

--Run stored procedure and pass view name.
EXEC udpScriptForView ’vewShippers’
GO

Processing Stored Procedure Outputs

One of t he tasks that stored procedures serve especially well is get t ing data back
to a calling procedure. Stored procedures can achieve this goal in several ways.
First , t hey perm it t he t ransfer of data back to t he calling procedure in t he form of
result sets. You can return m ult iple result sets from a single stored procedure.
Second, a stored procedure can return scalar values v ia output param eters.
Third, code calling a stored procedure can process return status values. I n any
one applicat ion, you can concurrent ly use any com binat ion of these three
processes for returning values. This sect ion elaborates on them and dem onst rates
the syntax for im plem ent ing each.

Returning Tw o Result Sets from a Stored Procedure

I t ’s sim ple to return m ult iple result sets from a single stored procedure: just
include a separate SELECT statem ent for each result set t hat you want a stored
procedure to return. I n cont rast , v iews can have only a single SELECT statem ent .
Once you start using m ult iple SELECT statem ents in a stored procedure, you’ ll
find that it has considerably m ore flex ibilit y than returning rows from a table or
view.
The following scr ipt creates a stored procedure with two result sets. The first
result set contains a row with the nam e and creat ion date for each user-defined
stored procedure in a database. Recall that t he database context for t hese
sam ples is Chapter04. (You can set the context with a USE statem ent .) To return
just the user-defined stored procedures from the
INFORMATI ON_SCHEMA.ROUTI NES v iew, you need two cr it er ia expressions. One
expression selects just rows with a ROUTI NE_TYPE colum n value of PROCEDURE.
This expression filt ers out any user-defined funct ions. The second expression

rem oves any rows with a ROUTI NE_NAME colum n value that begins with dt_.
Because SQL Server uses dt_ as a prefix for t he stored procedures that it creates
in a database, this expression leaves only user-def ined stored procedures.
The second SELECT statem ent returns the value of t he @@ROWCOUNT funct ion.
This funct ion is always the value of records affected by the last T-SQL statem ent .
I n this case, the last one returns the nam es and creat ion dates of the user-
def ined stored procedures in a database, so the second SELECT statem ent
returns the num ber of user-defined stored procedures in t he current database
context .
--CreateudpReturn2ResultSets
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpReturn2ResultSets’)
 DROP PROCEDURE udpReturn2ResultSets
GO

--Create stored procedure to return one result
--set for listing stored procedure names and dates
--and another with the count of the stored procedures.
CREATE PROC udpReturn2ResultSets
AS
SELECT ROUTINE_NAME, CREATED
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 LEFT(ROUTINE_NAME,3) <> ’dt_’
ORDER BY CREATED DESC
SELECT @@ROWCOUNT ’Number of stored procedures’
GO

--Run stored procedure that returns two result sets.
EXEC udpReturn2ResultSets
GO

Figure 4-3 shows the output from running the udpReturn2ResultSets stored
procedure. (This is the output from the preceding script .) Not ice that t he top
result set contains ROUTI NE_NAME and CREATED colum n values. This result has
a row for each user-def ined stored procedure. The last row includes the nam e and
creat ion date for the eleventh stored procedure. The second result set contains a
num ber t hat is the count of t he num ber of user-defined stored procedures— 11.

Figure 4 - 3 . The return from a user-defined stored procedure that
specifies tw o result sets.

Returning One Result Set and One Param eter Value

The preceding sam ple uses a SELECT statem ent to return a scalar value, nam ely
the current value for @@ROWCOUNT. By enter ing the @@ROWCOUNT global
variable funct ion in a SELECT statem ent , the sam ple returns the current value of
@@ROWCOUNT in a result set . The next sam ple illust rates how to return the
@@ROWCOUNT value as an output param eter from a stored procedure. This
involves a special declarat ion for t he param eter inside the stored procedure as
well as an assignm ent expression in the EXEC statem ent to ret r ieve the value for
the output param eter. I n t he T-SQL code that calls t he stored procedure, you
need to t ransfer t he output param eter t o a local var iable for use locally. I n
addit ion, t he EXEC statem ent m ust explicit ly designate the output param eter.
The following code shows the exact syntax for returning @@ROWCOUNT as an
output param eter. First not ice the line im m ediately aft er the CREATE PROC
statem ent :
@NumberOfRows int OUTPUT

This line declares the param eter. Not ice that it ends with t he keyword OUTPUT.
This keyword designates the @Num berOfRows param eter as an output
param eter. Later in the stored procedure, a SET statem ent assigns the current
value of @@ROWCOUNT to t he @Num berOfRows param eter, like this:
SET @NumberOfRows = (SELECT @@ROWCOUNT)

This stored procedure diverges from the preceding one by explicit ly invoking the
SET NOCOUNT statem ent with the value ON. This statem ent suppresses the
autom at ic SQL Server m essage about the num ber of rows affected, which
happens to be the value of @@ROWCOUNT. At t he conclusion of the stored
procedure, the sam ple invokes the SET NOCOUNT statem ent a second t im e with
the set t ing OFF. This second invocat ion of t he SET NOCOUNT statem ent restores
the default behavior of print ing the rows affected by a T-SQL statem ent .
Using a param eter returned by a stored procedure also requires special syntax.
First you need a local variable t o accept the output param eter value. This is
because you cannot work direct ly with t he output param eter in t he code that calls
the stored procedure. The sam ple code declares a local variable nam ed
@ReturnedParam Value to store the output param eter value locally. Second you
need an assignm ent statem ent . This statem ent m ust end with the OUTPUT
keyword. I n addit ion, the local var iable m ust be on the r ight side of t he equal

sign, and the output param eter should appear on the left side. Third the output
param eter returns an int data type value. However, t he Print statem ent that
reports the num ber of stored procedures requires a character data t ype, nam ely
varchar . Therefore, the code applies the CAST funct ion to t he local variable
storing the output param eter value; the funct ion represents the integer value as
a st r ing. The expression for @strForPr inter com bines a st r ing constant with t he
CAST funct ion value. The PRI NT statem ent takes @strForPr inter as it s argum ent
to pr int t he num ber of stored procedures with a br ief descr ipt ive label.
--CreateudpReturn1ResultSet1Parameter
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpReturn1ResultSet1Parameter’)
 DROP PROCEDURE udpReturn1ResultSet1Parameter
GO

--Create stored procedure to return one result
--set for listing stored procedure names and dates along
--with another containing the count of the stored procedures.
CREATE PROC udpReturn1ResultSet1Parameter
@NumberOfRows int OUTPUT
AS
SET NOCOUNT ON
SELECT ROUTINE_NAME, CREATED
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 LEFT(ROUTINE_NAME,3) <> ’dt_’
ORDER BY CREATED DESC
SET @NumberOfRows = (SELECT @@ROWCOUNT)
SET NOCOUNT OFF
GO

--Run stored procedure that returns two result sets.
DECLARE @ReturnedParamValue int
DECLARE @strForPrinter varchar(100)
EXEC udpReturn1ResultSet1Parameter
 @NumberOfRows = @ReturnedParamValue OUTPUT
SET @strForPrinter = ’Number of stored procs: ’ +
 Cast(@ReturnedParamValue AS varchar(3))
PRINT @strForPrinter
GO

Returning One St r ing Param eter

The code you use to return a st r ing value as an output param eter is essent ially
the sam e code you use to return a num ber value. The m ain dist inct ion is the
declarat ion of the data t ype for t he param eter.
The following scr ipt returns the nam e of the oldest user-defined stored procedure
in a database. I t passes back the nam e of the stored procedure v ia an output
param eter nam ed @strNam eOfOldestSProc. Not ice that the output param eter
declarat ion uses a varchar data type that is consistent with t he m axim um length
of a SQL Server ident if ier . I f your applicat ion runs in m ult iple locat ions that use
different code pages, you m ay want to use an nvarchar rather than a varchar
data type specificat ion for t he param eter.
I n this case, the technique for f inding the stored procedure is as interest ing as
the technique for declaring the output param eter. The SET ROWCOUNT statem ent
tells SQL Server t o stop processing a statem ent after t he designated num ber of

records. The ORDER BY clause in t he SELECT statem ent sorts the stored
procedures so that the nam e of the oldest stored procedure appears first .
Therefore, stopping after processing the first row returns the oldest stored
procedure.
The technique for processing an output param eter in t he calling rout ine is about
the sam e whether the output param eter has an int or a varchar data type. This
part icular sam ple appears slight ly sim pler t han the preceding one m ost ly because
it doesn’t label the return value that is pr inted in t he Messages pane. Because the
local var iable for holding the output param eter is already a st ring, there is no
need to convert it so that it can be used as an argum ent for the PRI NT statem ent .
--CreateudpReturn1StringParameter
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpReturn1StringParameter’)
 DROP PROCEDURE udpReturn1StringParameter
GO

--Create stored procedure to return one
--parameter with a string value.
CREATE PROC udpReturn1StringParameter
@strNameOfOldestSProc varchar(128) OUTPUT
AS
SET ROWCOUNT 1
SET @strNameOfOldestSProc = (SELECT TOP 1 ROUTINE_NAME
FROM INFORMATION_SCHEMA.ROUTINES
WHERE LEFT(ROUTINE_NAME,3) <> ’dt_’
 AND ROUTINE_TYPE = ’PROCEDURE’
ORDER BY CREATED)
GO

--Run stored procedure that returns one string parameter.
DECLARE @ReturnedParamValue varchar(128)
EXEC udpReturn1StringParameter
 @strNameOfOldestSProc = @ReturnedParamValue OUTPUT
PRINT @ReturnedParamValue
GO

W orking w ith Return Status Values

Stored procedures considered to this point in t he chapter proceed in a st raight
line from the first to the last statem ent in t he procedure. However, t his isn’t a
requirem ent . Cont rol-of- f low statem ents, such as the I F…ELSE statem ent , m ake it
possible for a stored procedure to execute condit ionally. You can end the
processing within a stored procedure with one or m ore RETURN statem ents at the
end of each of several paths through the code. Each RETURN statem ent can pass
back an int data type value to t he calling procedure as it closes the stored
procedure. Alt hough you can have m ult iple RETURN statem ents with different
return status values, any one invocat ion of a stored procedure can return just one
return status value. This m akes it possible for code invoking a stored procedure
to know precisely at which line the stored procedure closed.
The following code sam ple creates a stored procedure that searches for a stored
procedure by a nam e in a database. I f the search finds a stored procedure with
the target nam e, the return status value is 1. Otherwise, the return status value
is 0. I t is com m on to set return status values with a RETURN statem ent inside an
IF…ELSE statem ent (alt hough this sam ple’s design is ext raordinar ily sim ple) .

The calling T-SQL code for t he stored procedure in t he following sam ple causes
the procedure to search for either of two nam es: udpListShippersRow or SP1 .
Make sure your database has a stored procedure nam ed udpListShippersRow and
that your database doesn’t have a stored procedure nam ed SP1. I f you have been
doing the sam ples in t he order that t hey appear in this chapter, your Chapter04
database will have a stored procedure nam ed udpListShippersRow . This lets you
use the sam ple T-SQL code that calls t he stored procedure to ver ify that the
return status values reflect the presence or absence of a stored procedure. The
calling T-SQL code for t he stored procedure displays the return status value in a
result set that contains either 0 or 1. These values m atch each of the return
status values set in t he stored procedure.
The syntax for capturing a return status value in a calling procedure deviates
slight ly from that for an output param eter. I n both cases, you need a local
variable to represent the value returned from the stored procedure. However, to
capture the return status value, you use an assignm ent expression that sets the
stored procedure equal to the local var iable for the return status value. This
assignm ent expression is actually integrated into t he call of t he stored procedure
as an argum ent for an EXEC statem ent .
I n the sam ple, a local variable specifies t he value for t he procedure to pass to the
stored procedure. As the code appears, t he calling code passes the nam e
udpListShippersRow . However, you can com m ent out (with two leading hyphens)
the assignm ent statem ent for the @strProcNam e local var iable and rem ove the
hyphens from the assignm ent statem ent that sets the local variable t o SP1. This
t ransit ion will cause the return status value to switch from 1 to 0.
--CreateudpReturnStatusValue
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpReturnStatusValue’)
 DROP PROCEDURE udpReturnStatusValue
GO

--Create stored procedure to pass back
--a return status value of 0 or 1.
CREATE PROC udpReturnStatusValue
@strName varchar(123)
AS
SELECT ROUTINE_NAME
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_NAME = @strName AND ROUTINE_TYPE = ’PROCEDURE’
IF @@ROWCOUNT = 0
 RETURN 0
ELSE
 RETURN 1
GO

--Pass a procedure name to udpReturnStatusValue.
DECLARE @strProcName varchar(128)
DECLARE @return_status int

--Use the following SET statement for a 1.
SET @strProcName = ’udpListShippersRow’

--Use the following SET statement for a 0.
--SET @strProcName = ’SP1’

EXEC @return_status = udpReturnStatusValue @strProcName
SELECT @return_status AS ’Return Status’

I nsert ing, Updat ing, and Delet ing Row s

Data m anipulat ion is another area in which stored procedures shine— unlike
views, which cannot execute the I NSERT I NTO, UPDATE, or DELETE statem ent .
The capabilit y of taking param eters as argum ents with these statem ents perm its
a single stored procedure to m odify a database in different ways at run t im e
based on user input . This sect ion has two m ain goals. First it int roduces the
syntax for the SQL Server data m anipulat ion statem ents within a stored
procedure. Second it illust rates how to perform data m anipulat ion with param eter
values for stored procedures.

Alter ing a Stored Procedure for Data Manipulat ion

The syntax for insert ing, updat ing, and delet ing rows from a row source is
st raight forward. The sam ple for this sect ion separately illust rates how to perform
each task for a table in the local database. I n order to keep the sam ple easy to
understand, t he insert / update/ delete code uses constants to work with specific
values for a specific row.
I n addit ion to clar ify ing the syntax for perform ing the task, the sam ple
dem onst rates how to alt er an exist ing stored procedure to perform a different
funct ion. Recall t hat alter ing a stored procedure with the ALTER PROC statem ent
allows you to preserve the perm issions assigned for t he stored procedure. I f you
drop and re-create a stored procedure, any user perm issions for the old version
of t he stored procedure are lost unless you reassign them to the new version of
the stored procedure. I don’t necessar ily recom m end you alter a single stored
procedure that you m odify for each of three different funct ions in product ion
system s. The sam ple design has the tutor ial value of reinforcing your
understanding of the technique for alt er ing a stored procedure.
The sam ple reuses the sam e stored procedure for t hree tasks successively. First
the script starts to create a new copy of the udpI nsertUpdateDeleteSam ples
stored procedure by rem oving any exist ing version of t he object from the
database. Then the script invokes the CREATE PROC statem ent to m ake a fresh
version of the stored procedure with the code to add a record to t he
Em ailContacts table. (See the “Creat ing and Select ing from a View” sect ion earlier
in this chapter for t he sam ple code to create and init ially populate this t able.) The
stored procedure adds a new record to the table for Tony Hill.
The stored procedure dem onst rates the use of the I NSERT I NTO statem ent for
adding a new row to t he Em ailContacts table, like t his:
CREATE PROC udpInsertUpdateDeleteSamples
AS
INSERT INTO vewEmailContacts
(ContactID, FirstName, LastName, Email1)
VALUES (3, ’Tony’, ’Hill’, ’tony@cabinc.net’)
GO

The statem ent can work direct ly with tables, but the sam ple illust rates it s
capabilit y of working with a v iew— nam ely, vewEm ailContacts. An ear lier sam ple
in this chapter created this v iew. The I NTO keyword is opt ional. I n other words,
you can specify I NSERT wit h or without I NTO. Not ice the list of colum n nam es in
parentheses following the I NTO keyword and the v iew nam e. The syntax rules for
the statem ent require t his list when you are insert ing values for som e but not all
colum ns or you are insert ing colum n values in a dif ferent order t han the one in
which they appear in t he row source. Because the sam ple assigns a value to each

colum n in the order that the colum ns appear in the table, t he list isn’t m andatory.
However, including the list is a good pract ice because it m akes it clear which
values the statem ent assigns to indiv idual colum ns. The VALUES keyword is
m andatory. This keyword m arks the start of the values for t he new row. I nclude
the values that you want to add within parentheses.

Note

There are several interest ing adaptat ions of the I NSERT I NTO
or I NSERT statement . For example, you shouldn’t specify
colum n values for columns with an I DENTI TY property or
computed colum ns because SQL Server automat ically
determ ines the values for these columns. I n addit ion, you
can t ransfer data from one table to another by using a
SELECT clause within an I NSERT I NTO statement . See the
“INSERT” topic in Books Online for the precise syntax to
implement this. When you combine this feature with the
OPENROWSET funct ion or another means of select ing rows
from a heterogeneous or remote data source, the I NSERT
I NTO statement provides a conduit for t ransferr ing data
between databases.
The init ial version of t he Em ailContacts table has just two rows, for Rick Dobson
and Virginia Dobson. I nvoking the stored procedure with an EXEC statem ent adds
a third row. The sam ple script runs the EXEC statem ent for the stored procedure
and then perform s a SELECT statem ent t hat returns all rows from the
Em ailContacts table. The result set from the SELECT statem ent confirm s the
addit ion of t he new row to t he table.
After insert ing a new row, the sam ple script progresses by invoking the ALTER
PROC statem ent :
ALTER PROC udpInsertUpdateDeleteSamples
AS
UPDATE vewEmailContacts
SET FirstName = ’Anthony’, Email1 = ’anthony@cabinc.net’
WHERE ContactID = 3
GO

This statem ent m odifies the syntax for the udpI nsertUpdateDeleteSam ples stored
procedures from an insert procedure to an update procedure. The new version of
the stored procedure changes the FirstNam e and Em ail1 colum n values for the
row added with t he I NSERT I NTO dem onst rat ion.
The syntax for t he UPDATE statem ent reveals how to change two colum n values
within a single UPDATE statem ent . Start by following the UPDATE keyword with
the nam e of a table or v iew that points at a table with colum n values you want t o
update. To use a v iew in t his way (as the sam ple does) , the v iew m ust perm it
updat ing of it s underly ing colum n values. After the UPDATE keyword and its
target row source, you can start a new line with t he SET keyword. Each update
for a colum n value requires an assignm ent statem ent with the new value for the
colum n. Delim it successive assignm ent statem ents with com m as. The WHERE
clause is part icularly cr it ical w ith UPDATE and DELETE statem ents because it
specifies to which row(s) t o apply t he statem ent . I n the script below, using the
WHERE clause expression ContactID = 3 indicates that the UPDATE statem ent
applies to j ust the row for Tony Hill, who has a Contact ID colum n value of 3.
After altering the stored procedure, you m ust run it for the change to have an
effect . The EXEC statem ent achieves this. A SELECT statem ent conf irm s that t he

update occurred. The row for Tony Hill includes new values for it s FirstNam e and
Em ail1 colum ns.
The last part of t he sam ple script shows how to alter a stored procedure for t he
addit ion of a DELETE statem ent . This statem ent doesn’t require a list , as is
com m on with the SELECT statem ent . That ’s because the DELETE statem ent
rem oves one or m ore rows at a t im e; t he statem ent doesn’t operate on indiv idual
colum ns within a row. The FROM clause in the sam ple denotes the row source
from which to rem ove rows. The WHERE clause is cr it ical. Use your WHERE clause
expression to designate which rows to rem ove from the row source. Without a
WHERE clause, the DELETE statem ent rem oves all rows from its row source.

Note

I f you do want to remove all rows, you can specify the
statement as DELETE rowsourcename, such as DELETE
pubs..authors to remove all the rows from the authors
table in the pubs database. However, when you want to
rem ove all the rows from a table with many rows, two other
techniques will do the job faster . I nvoke the TRUNCATE
TABLE statem ent to rem ove all the rows from a table without
logging the delet ions to the log file while preserv ing the
table’s design. Alternat ively , you can invoke the DROP TABLE
statement to remove concurrent ly the contents and the
design for a table.
The last part of t he following script creates a stored procedure that rem oves the
row with a Contact I D colum n value of 3 by applying the DELETE statem ent . Then
the script executes the stored procedure to rem ove the row with a Contact I D
value of 3. Finally the script concludes by invoking a SELECT statem ent that
displays the rem aining rows in t he Em ailContacts table. Figure 4-4, aft er the
script , shows the three result sets it produces.
--CreateudpInsertUpdateDeleteSamples
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpInsertUpdateDeleteSamples’)
 DROP PROCEDURE udpInsertUpdateDeleteSamples
GO

--Insert into a table via a view.
CREATE PROC udpInsertUpdateDeleteSamples
AS
INSERT INTO vewEmailContacts
(ContactID, FirstName, LastName, Email1)
VALUES (3, ’Tony’, ’Hill’, ’tony@cabinc.net’)
GO

--Confirm new result set.
EXEC udpInsertUpdateDeleteSamples
SELECT * FROM EmailContacts
GO

--Modify table column values via a view.
ALTER PROC udpInsertUpdateDeleteSamples
AS
UPDATE vewEmailContacts

SET FirstName = ’Anthony’, Email1 = ’anthony@cabinc.net’
WHERE ContactID = 3
GO

--Confirm new result set.
EXEC udpInsertUpdateDeleteSamples
SELECT *
FROM vewEmailContacts
GO

--Delete newly added row directly from table.
ALTER PROC udpInsertUpdateDeleteSamples
AS
DELETE
FROM EmailContacts
WHERE ContactID = 3
GO

--Confirm new result set.
EXEC udpInsertUpdateDeleteSamples
SELECT * FROM EmailContacts
GO

Figure 4 -4 . The return from view s that successively insert , update, and
delete row s from a row source.

Perform ing Database Maintenance w ith Param eters

Typically, you won’t run data m anipulat ion statem ents, such as I NSERT I NTO,
UPDATE, and DELETE, wit h constants as in t he preceding sam ple. The purpose for
the preceding scr ipt was to provide a basis for describing the syntax for including
data m anipulat ion statem ents in stored procedures. The real power of stored
procedures with these statem ents is that you can pass param eters to t he
procedures to specify the rows that the statem ents insert , update, or delete from
a row source.
The sam ple script in this sect ion builds on the prior one by dem onst rat ing the
syntax for using param eters with data m anipulat ion statem ents. Again, the
em phasis is on clarit y, so the scr ipt accom plishes the sam e kind of t asks as the
preceding one. A significant change, however, is that the target row source is
from another database on the sam e server— the Northwind SQL Server database.

The script in t his sect ion follows the m odel of t he previous one by alter ing one
stored procedure instead of creat ing three separate stored procedures— one for
insert ing, another for updat ing, and a third for delet ing. Because of the sim ilar it y
of t his script ’s design to the preceding one, I w ill explain just the first part of t he
script for insert ing a new record. Like the preceding sam ple, t his one switches
back and forth between using a table and a v iew as a row source for t he data
m anipulat ion statem ents. This is to reinforce your understanding that you can
perform database m aintenance chores with either type of object serv ing as a row
source.
After rem oving any prior version of t he udpParam sForI nsertUpdateDelete stored
procedure, the script creates a new version that includes an I NSERT I NTO
statem ent . The CREATE PROC statem ent for creat ing the stored procedure has
two input param eters— one for t he Com panyNam e colum n value and another for
the Phone colum n value. A com m a delim its the two param eter declarat ions. The
data type set t ings follow those for the colum ns in t he Northwind Shippers table.
The param eter nam es appear again in parentheses after t he VALUES keyword.
These param eters replace the st r ing constants used in t he preceding script
sam ple. The code illust rat ing the syntax for t he UPDATE and DELETE statem ents
follows the sam e pat tern. First it declares the param eter. Second it uses the
param eters as var iables in database m aintenance statem ents.
The EXEC statem ent for the stored procedure specif ies values for passing to the
stored procedure. This is one way your Visual Basic .NET applicat ions can use
values entered by users as part of data m anipulat ion statem ents. Chapter 10
illust rates how to use Visual Basic .Net for this kind of task. The user input sets
the param eter values in the code that calls the stored procedure. After adding the
new record to the Shippers table in t he Northwind database by calling the stored
procedure, the script invokes a SELECT statem ent to display all t he rows in the
Shippers table.
--CreateudpParamsForInsertUpdateDelete
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpParamsForInsertUpdateDelete’)
 DROP PROCEDURE udpParamsForInsertUpdateDelete
GO

--Insert values into a table in another database.
CREATE PROC udpParamsForInsertUpdateDelete
@newCompanyName nvarchar(40),
@newPhone nvarchar (24)
AS
INSERT INTO Northwind..Shippers
(CompanyName, Phone)
VALUES (@newCompanyName, @newPhone)
GO

--Confirm new result set.
EXEC udpParamsForInsertUpdateDelete
 ’CAB Delivers’, ’(123) 456-7890’
SELECT *
FROM Northwind..Shippers
GO

--Modify table column values in another database
--via a view pointing at the table in this database.
ALTER PROC udpParamsForInsertUpdateDelete
@newPhone nvarchar(24),
@newCompanyName nvarchar(40)

AS
UPDATE vewShippers
SET Phone = @newPhone
WHERE CompanyName = @newCompanyName
GO

--Confirm new result set.
EXEC udpParamsForInsertUpdateDelete
 ’(234) 567-8901’, ’CAB Delivers’
SELECT *
FROM vewShippers
GO

--Delete newly added row in other database
--from view pointing at row in this database.
ALTER PROC udpParamsForInsertUpdateDelete
@newCompanyName nvarchar(40)
AS
DELETE
FROM vewShippers
WHERE CompanyName = @newCompanyName
GO

--Delete newly added row directly from table.
EXEC udpParamsForInsertUpdateDelete ’CAB Delivers’
SELECT * FROM Northwind..Shippers
GO

Program m ing Condit ional Result Sets

Even though a stored procedure is com piled, it can st ill execute in different ways
at run t im e, depending on the values of param eters. The preceding sect ion
showed how to accom plish this for insert / update/ delete operat ions. This sect ion
shows how you can m odify the output from a procedure at run t im e in a m ore
advanced way than set t ing values for WHERE clause expressions. This sect ion
starts with a sam ple that lists the v iews in a database. I f there are no views in
the database, it doesn’t display the colum n headers for item izing v iews. The
second and third sam ples show how to return the top x rows with a SELECT
statem ent . Users can vary t he num ber of rows returned.

Condit ionally List ing Objects

A SELECT statem ent displays the colum n headers for a result set even if the
result set is em pty. I f you happen to be returning m ult iple result sets from a
stored procedure, the writ ing of headers for em pty result sets can clut t er the
Results pane and dist ract at tent ion from populated result sets. I n any event , you
m ay prefer to avoid pr int ing the colum n headers for an em pty result set— after
all, t here’s nothing to it em ize below the headers.
The sam ple for t his sect ion tests whether the result set for a SELECT statem ent
has any rows before sending it s output to the Results pane. The logic is to
perform an aggregate query that t ests for the existence of it em s sat isfy ing a
WHERE clause cr it er ion. I f the count of returned rows is greater t han 0, the
procedure executes a SELECT statem ent t hat returns the indiv idual it em s.
Otherwise, t he stored procedure j ust wr ites a statem ent t o the Messages pane
saying there are no it em s in the result set .

This sam ple enum erates the views in a database connect ion. A USE statem ent at
the top of t he script specifies the target database. This book has two custom
databases so far. The database for t his chapter, Chapter04, has nine v iews.
Chapter01, the database for this book’s f irst chapter, has zero v iews. Therefore,
by changing the USE statem ent t o point at one or the other database, the sam ple
script can dem onst rate condit ional outputs from the sam ple stored project .
The stored procedure uses a local var iable, @intViews, to store the result from a
SELECT statem ent with a COUNT funct ion. The funct ion aggregates the num ber of
virtual tables (or v iews) in a database. The I NFORMATI ON_SCHEMA.TABLES v iew
is the row source for t he SELECT statem ent . An I F…ELSE statem ent branches to
the I F block or the ELSE statem ent depending on the value of @intViews. I f the
local var iable is greater than 0, t he procedure executes the BEGI N…END block in
the I F clause of t he I F…ELSE statem ent . Whenever you need to condit ionally
execute m ore than one statem ent in eit her clause of an I F…ELSE statem ent , you
m ust group the statem ents between BEGI N and END keywords as the sam ple
dem onst rates.
The two statem ents in t he BEGI N…END block pr int the num ber of v iews in t he
database connect ion to the Messages pane and show the result set for a SELECT
statem ent list ing the indiv idual v iew nam es in t he Results pane. I f @intViews is 0,
the procedure m erely pr ints a sentence to the Messages pane saying there are no
views. Because this requires j ust one statem ent , the ELSE clause doesn’t require
a BEGI N…END block. To unclut ter t he Messages pane, t he procedure invokes the
SET NOCOUNT ON statem ent at it s start and restores the default set t ing (SET
NOCOUNT OFF) at it s close.
Because the stored procedure for this sam ple is m eant for a one- t im e execut ion,
the script drops the stored procedure at it s conclusion. Therefore, t he stored
procedure isn’t st r ict ly necessary for this sam ple. Feel free to m odify the sam ple
to rem ove the creat ion of t he stored procedure. I n any event , learn the IF…ELSE
design guidelines presented in t he sam ple.
--CreateudpCountAndListViews
--Designate database context.
USE Chapter04
GO

--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpCountAndListViews’)
 DROP PROCEDURE udpCountAndListViews
GO

--Create procedure to count and list views in the
--current database connection.
CREATE PROC udpCountAndListViews
AS
SET NOCOUNT ON
DECLARE @intViews int
SET @intViews = (SELECT COUNT(TABLE_NAME)
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = ’VIEW’ AND
 LEFT(TABLE_NAME,3) <> ’sys’)
IF (@intViews) > 0
BEGIN
 PRINT ’There were ’ +
 CAST(@intViews AS varchar(3)) + ’ views in the connection.’
 SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = ’VIEW’ AND

 LEFT(TABLE_NAME,3) <> ’sys’
END
ELSE
 PRINT ’There are no views in the connection.’
SET NOCOUNT OFF
GO

--Run the procedure to report on the views in
--the current database connection.
EXEC udpCountAndListViews
GO

--Drop the procedure from the current database connection.
DROP PROCEDURE udpCountAndListViews
GO

Returning X I tem s w ith the TOP Predicate

A typical request on SQL Server newsgroups is, “How do I return just t he top x
item s, where I can vary the value of x?” The quest ion is som et im es phrased as,
“How do I use the TOP predicate to return a variable num ber of it em s from a row
source?” The TOP predicate alone can’t solve this problem because it can accept
only a constant as the num ber of it em s to return.
One way to use a TOP predicate to return m ore than a single num ber of it em s
from a row source is to nest SELECT statem ents with TOP predicates within t he
clauses of an I F…ELSE statem ent . Because you can nest I F…ELSE statem ents
within one another indefinitely, t his approach perm its you to fine- tune the level of
precision on how m any rows to return if you are willing to nest enough I F…ELSE
statem ents within one another.
The next sam ple returns eit her t he top 5 or 10 orders with t he longest delay in
shipping after t he required date for an order. An input param eter value cont rols
which of t hese two result sets the stored procedure returns. I f t he input
param eter, @Num berOfOrders, is less than or equal to 5, t he stored procedure
returns the 5 orders with t he longest delays in shipping. I f the value of
@Num berOfOrders is 6 or greater, t he procedure returns the 10 orders with t he
longest delays in shipping. This is the first sam ple in the chapter to assign a
default value to a param eter. The equal sign in t he param eter declarat ion shows
the syntax for assigning a default value of 5. Because of this default value, t he
procedure returns the 5 records with the longest delays if t he EXEC statem ent
that invokes the udpLongestLateOrdersWithTop stored procedure fails to
designate a param eter value.
A single I F…ELSE statem ent passes cont rol to one of t he two SELECT statem ents
in it s clauses based on the @Num berOfOrders param eter value. The SELECT
statem ent in t he I F clause uses a TOP predicate with an argum ent of 5 . On the
other hand, the SELECT statem ent in the ELSE clause has exact ly the sam e
syntax except t hat it s TOP predicate has an argum ent of 10 .
The EXEC statem ent for invoking the stored procedure passes the param eter
value 7 . Because this is greater than 5, the procedure returns the 10 orders with
the longest shipping delays after the required date. The param eter value 100 ,
1,000 , or 10,000 w ill st ill return j ust 10 rows in the result set . This is because the
stored procedure supports j ust two different TOP predicate argum ent values. You
can alt er the procedure by adding nested I F…ELSE statem ents to accom m odate
m ore TOP predicate argum ent values.
--CreateudpLongestLateOrdersWithTop
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES

 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpLongestLateOrdersWithTop’)
 DROP PROCEDURE udpLongestLateOrdersWithTop
GO

--Create proc for itemizing late orders
--with one of two TOP predicates.
CREATE PROC udpLongestLateOrdersWithTop
@NumberOfOrders int = 5
AS
IF @NumberOfOrders <= 5
SELECT TOP 5 OrderID,
 CAST((RequiredDate - ShippedDate) AS int)
 ’Days shipped after required’,
 CustomerID
FROM Northwind..Orders
WHERE (RequiredDate - ShippedDate) IS NOT NULL
ORDER BY (RequiredDate - ShippedDate)
ELSE
SELECT TOP 10 OrderID,
 CAST((RequiredDate - ShippedDate) AS int)
 ’Days shipped after required’,
 CustomerID
FROM Northwind..Orders
WHERE (RequiredDate - ShippedDate) IS NOT NULL
ORDER BY (RequiredDate - ShippedDate)
GO

--Run proc to list orders with the shipped
--date farthest behind the required date with
--one of two TOP predicates.
EXEC udpLongestLateOrdersWithTop 7
GO

Returning X I tem s w ith SET ROW COUNT

The SET ROWCOUNT statem ent provides a m ore f lex ible technique for returning a
variable num ber of records from som e SELECT statem ents. The SET ROWCOUNT
statem ent can stop a T-SQL statem ent after a fixed num ber of rows.
Furtherm ore, t he argum ent for t he SET ROWCOUNT statem ent can be a
param eter. This perm its your applicat ion to set the num ber of rows to return at
run t im e.
The following scr ipt dem onst rates the syntax for returning a var iable num ber of
rows shipped after their required date. Because this script uses the SET
ROWCOUNT statem ent , it can return a var iable num ber of rows with j ust a single
SELECT statem ent . Before the SELECT statem ent , the stored procedure assigns
the @Num berOfOrders param eter as the argum ent for t he SET ROWCOUNT
statem ent . The declarat ion for t he @Num berOfOrders param eter again assigns
the default value 5 to t he param eter. Therefore, the procedure will return five
rows even if a user fails to set a param eter when invoking the stored procedure.

Note

The SET ROWCOUNT statement will overr ide a TOP predicate
argument if the SET ROWCOUNT argument is the smaller of
the two.

The EXEC statem ent for the stored procedure designates the param eter value 7—
j ust like t he preceding sam ple script . However, in t his instance, the stored
procedure returns precisely 7 rows instead 10 rows. Furtherm ore, t he SELECT
statem ent will always return the precise num ber of rows designated by the
param eter value up to t he m axim um num ber of rows available from the SELECT
statem ent without a SET ROWCOUNT statem ent .
--CreateudpLongestLateOrdersWithoutTop
--Remove prior version of stored procedure.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpLongestLateOrdersWithoutTop’)
 DROP PROCEDURE udpLongestLateOrdersWithoutTop
GO

--Create proc for itemizing late orders.
CREATE PROC udpLongestLateOrdersWithoutTop
@NumberOfOrders int = 5
AS
SET ROWCOUNT @NumberOfOrders
SELECT OrderID,
 CAST((RequiredDate - ShippedDate) AS int)
 ’Days shipped after required date’,
 CustomerID
FROM Northwind..Orders
WHERE (RequiredDate - ShippedDate) IS NOT NULL
ORDER BY (RequiredDate - ShippedDate)
GO

--Run proc to list seven orders with the shipped
--date farthest behind the required date.
EXEC udpLongestLateOrdersWithoutTop 7
GO

Chapter 5 . Program m ing User- Defined
Funct ions and Triggers
This chapter com pletes the book’s review of database objects that facilitate the
reuse of T-SQL code. The beginning of the chapter int roduces user-defined
funct ions (UDFs). Your applicat ions can apply UDFs as if t hey were built - in
funct ions. The chapter explores the different kinds of UDFs that you can create
and illust rates scenar ios for developing and applying them . The last part of t he
chapter deals with t r iggers. Visual Basic developers are likely to find it useful to
think of t r iggers as event procedures for tables and v iews. This chapter ’s
coverage of t r iggers starts with an overview of the key concepts for designing and
apply ing t r iggers and concludes with a ser ies of four sam ples that dem onst rate
the k inds of uses to which you can put t r iggers. The m ain purpose of the sam ples
is to highlight syntax convent ions for different t ypes of t r iggers and illust rate
broad design issues. The T-SQL inside a t r igger can reference other database
objects. For exam ple, the last t r igger sam ple references a UDF defined earlier in
the chapter.
The resources for t his chapter include the Chapter05 database, with com pleted
versions of t he sam ple UDFs discussed as well as T-SQL scr ipts for creat ing the
UDFs and t r iggers from scratch. Unless explicit ly stated, all scripts are to be run
from the Chapter05 database. I f you run the scripts from another database
context , such as the m aster database, you can generate errors unrelated to the
sam ple logic and syntax. See the “Chapter Resources” sect ion in Chapter 2 for
m ore detail on at taching database files to a server and creat ing a new blank
database from which you can invoke the scripts. This chapter also references the
SQL Server Northwind database. This database is installed with SQL Server 2000 .

I nt roduct ion to User- Defined Funct ions

A user-defined funct ion perm its a developer t o save a body of T-SQL code and
then reuse it . UDFs can return both scalar values and tables. I n fact , SQL Server
2000 int roduces a new data type, table, for represent ing the return of a table
from a UDF. Visual Basic developers will feel com fortable with UDFs because in
m any ways they perform like funct ion procedures in Visual Basic. You can pass
UDF values through param eters, and they return a value— nam ely, a scalar value
or a table.

Note

The table data type wasn’t discussed in the rev iew of data
types in Chapter 2 because that chapter focuses on the
creat ion of permanent tables that are part of a database. You
can refer to a permanent table direct ly. Permanent tables
cannot include colum ns with a table data type. A table
returned by a UDF isn’t permanent . The returned table is
available only through the UDF that returns it . Many uses for
temporary tables can be served by tables returned from
UDFs. You can also use the table data type in stored
procedures and T-SQL batches. Search for “table data type”

from the I ndex tab of Books Online for more details on this
data type.

Overview of UDF Types

SQL Server 2000 offers three types of UDFs:

• You can wr it e a scalar funct ion t o return a scalar value, such as a
conversion rout ine for represent ing the value of Br it ish pounds in U.S.
dollars or Fahrenheit degrees in Cent igrade degrees.

• A UDF can return a table based on a single SELECT statem ent . SQL Server
calls t his an inline table-valued funct ion.

• With a m ult istatem ent t able-valued funct ion , you can declare the colum ns
and com pose a UDF return based on m ult iple statem ents. For exam ple,
you can insert result set s from two or m ore SELECT statem ents in t he
table returned by a UDF. I n addit ion, m ult istatem ent table-valued
funct ions don’t rest r ict you to SELECT statem ents for populat ing the
returned table.

Scalar UDFs

A scalar UDF returns a single value. The com putat ions inside a UDF cannot affect
any ent it y outside the UDF. SQL Server docum entat ion refers to t his property as
UDFs having no side effects. The num ber of input param eters for a UDF can range
from 0 through 1024. Just as with input param eters for stored procedures, you
can assign default values for UDF input param eters. UDF param eters don’t
support user-def ined or t im estam p data types. I n addit ion, UDF param eters
cannot be nonscalar, such as a table-valued UDF. The return from a UDF can
have any colum n data t ype except t ext , ntext , im age, and t im estam p. UDFs don’t
support output param eters. A UDF’s return value is it s sole form of output .
You can use a scalar UDF anywhere in a UDF that you can use a scalar value,
such as the list for a SELECT statem ent . Other uses for scalar UDFs include
argum ents in WHERE, HAVI NG, ORDER BY, and GROUP BY clause expressions.
Your code can also put scalar UDFs to use in SET statem ents for local variables in
stored procedures and T-SQL batch scr ipts within Query Analyzer. I n addit ion,
UDFs are useful wit hin data m anipulat ion statem ents for adding new values and
updat ing exist ing ones. Yet another UDF applicat ion is inside table declarat ions
for check const raints and com puted values. When using UDFs for com puted
colum ns with indexes, t he UDF m ust be determ inist ic— that is, it m ust always
return the sam e value given the sam e input .

Note

Determ inism is a relat ively new concept for funct ions, v iews,
and stored procedures. See the “Determ inist ic and
Nondeterm inist ic Funct ions” topic in Books Online for an
int roduct ion to this topic for SQL Server 2000.

I nline Table- Valued UDFs

An inline table-valued UDF perform s sim ilar ly to a v iew. I t differs from a scalar
UDF in t hat t he inline UDF returns a table instead of a scalar value. Both types of
UDF can accept input param eters. Because a v iew and an inline UDF depend on a
single SELECT statem ent— but t he UDF accepts a param eter— the inline UDF

offers t he funct ionalit y of a param eterized v iew. I n addit ion, a v iew can serve as
the source for an inline UDF. I f your v iew involves a com plex JOI N statem ent with
indexes and therefore schem a binding, the inline UDF can deliver t he power of
the v iew with a m uch sim pler syntax than the T-SQL statem ent under ly ing the
view, and it offers the advantages of select ions based on param eters. You can
invoke I NSERT, UPDATE, and DELETE statem ents with inline table-valued UDFs
serv ing as a source in t he FROM clause provided the inline table-valued UDF
draws on a SELECT statem ent or a v iew that perm its data m anipulat ion.

Note

See a discussion of issues that enable updatable views in the
“Remarks” sect ion of the Books Online “CREATE VI EW” topic.
See also the “Rules for Updat ing Results” topic in Books
Online for guidance on SELECT statements that generate
updatable result sets.

Mult istatem ent Table- Valued UDFs

Mult istatem ent table-valued UDFs and inline table-valued UDFs both return
tables, but t here are two im portant differences. First , as the nam e im plies, you
can use m ult iple statem ents to define the result set from a m ult istatem ent table-
valued UDF. I n addit ion to m ult iple SELECT statem ents, you can draw on other T-
SQL statem ents, such as DECLARE and assignm ent statem ents; I F…ELSE
statem ents; and I NSERT, UPDATE, and DELETE statem ents for table variables
local t o the funct ion. Second, m ult istatem ent table-valued UDFs return read-only
tables. Recall t hat inline table-valued UDFs perm it updat ing their base tables
through the UDF.

Statem ents for Creat ing and Managing UDFs

You can create and m anipulate UDFs with statem ents perform ing fam iliar
funct ions for other SQL Server database objects. These statem ents are CREATE
FUNCTI ON, ALTER FUNCTI ON, and DROP FUNCTION. Because of the divergence
in types of UDFs, the syntax for t he CREATE FUNCTI ON and ALTER FUNCTI ON
statem ents differs as well; there are three variat ions of each of t hese two
statem ents to m atch the corresponding UDF types. I n cont rast , a single DROP
FUNCTI ON syntax suffices for all t hree UDF t ypes. Trail the keyword phrase with
the nam e of the funct ion that you want rem oved from a database. You can use
the I NFORMATI ON_SCHEMA.ROUTI NES v iew to detect the existence of a
previously exist ing version of a UDF.
The CREATE FUNCTI ON statem ent for a scalar UDF has several im portant
argum ents with a variet y of var iat ions beyond those depicted in t he following
tem plate. The funct ion_nam e argum ent is a standard SQL Server ident ifier .
However, as with other objects, you m ay care to use a pref ix t o m ake it easy to
ident ify UDF objects vs. other types of objects. This chapter uses udf as the first
three characters of all UDF nam es.
The input param eters for a UDF reside within parentheses following the funct ion
nam e. Start each param eter nam e with the @ sign, and then m ake the rest of the
param eter nam e characters follow SQL Server ident if ier rules. Designate a data
type for each param eter with a space delim iter after the param eter nam e. Delim it
m ult iple param eter declarat ions with com m as. You can opt ionally designate a
default value for param eters with an equal sign (=) followed by a value after t he
data type specificat ion for any param eter with a default value.

Designate a data type for t he scalar UDF with t he RETURNS keyword. The
RETURNS keyword and its t railing data type specificat ion m ake up the RETURNS
clause within t he CREATE FUNCTI ON statem ent . Use the AS keyword to m ark the
t ransit ion from funct ion declarat ions to T-SQL code for t he funct ion.
The T-SQL code for a scalar UDF m ust appear between BEGI N and END keywords.
The RETURN keyword within t he BEGI N…END block m arks the expression that
specifies the return value from the scalar UDF. The RETURN keyword and its
expression argum ent are another cr it ical clause within the CREATE FUNCTI ON
statem ent , as shown in this code tem plate:
CREATE FUNCTION
function_name (parameter_names and data types)

RETURNS
data type for return value
AS
BEGIN

T-SQL statements for UDF
 RETURN (expression for scalar return value)

END

The following CREATE FUNCTI ON statem ent tem plate illust rates the syntax for
creat ing an inline table-valued UDF. The funct ion nam e and param eter
declarat ions follow the sam e convent ions as for the CREATE FUNCTI ON statem ent
for a scalar UDF. The RETURNS and TABLE keywords together m ake up the
RETURNS clause for an inline UDF. This clause designates a table as the return
data type from the UDF. The tem plate follows the return data type specificat ion
with t he AS keyword that m arks the t ransit ion between the declarat ions and the
T-SQL code for t he funct ion. When you’re generat ing an inline table-valued UDF,
the only T-SQL code is a single SELECT statem ent that serves as the argum ent
for the RETURN keyword. The SELECT statem ent is the equivalent of t he
expression for t he scalar return value in t he preceding tem plate.
CREATE FUNCTION
function_name (parameter_names and data types)
RETURNS TABLE
AS
RETURN
(SELECT statement)

The CREATE FUNCTI ON tem plate for a m ult istatem ent table-valued UDF that
appears next has a different design from that of either of t he two preceding
tem plates. I n fact , t he tem plate borrows elem ents from each of t he preceding
tem plates and adds it s own unique elem ent . The funct ion nam e and param eter
declarat ions are the sam e as in the preceding two tem plates. The RETURNS
keyword denotes a table data type (with t he TABLE keyword) as the return data
type for the funct ion. The syntax of a CREATE FUNCTI ON statem ent for a
m ult istatem ent table-valued UDF requires a table nam e between the RETURNS
keyword and the TABLE keyword. The table nam e follows the sam e convent ions
as param eters and local var iables. (Don’t forget the leading @ sign.) Another
unique elem ent of the CREATE FUNCTI ON tem plate for a m ult istatem ent table-
valued UDF is the colum n declarat ions area that appears after the TABLE keyword
specify ing the return data type and the AS keyword. Colum n declarat ions include
colum n nam es, data t ype specificat ions, and opt ional colum n specificat ions for
the prim ary key, a unique index, or a check const raint . The RETURNS clause for a
m ult istatem ent table-valued UDF starts with t he RETURNS keyword and runs
through the colum n specificat ions. The T-SQL statem ents in t he BEGI N…END

block m ust include one or m ore I NSERT statem ents t hat refer back to t he table
nam e in the RETURNS clause. These I NSERT statem ents populate t he table
returned by the UDF. The T-SQL code in your BEGI N…END block can opt ionally
include UPDATE and DELETE statem ents that assist in refining the result set
returned by the UDF. The RETURN keyword within the BEGI N…END block signals
the end of processing in the UDF.
CREATE FUNCTION
function_name (parameter_names and data types)
RETURNS
table_name TABLE

(column declarations)
AS
BEGIN

T-SQL statements for UDF
RETURN
END

CREATE FUNCTI ON statem ents support t he assignm ent of two opt ional funct ion
specificat ions, using the keywords ENCRYPTI ON and SCHEMABI NDI NG. Designate
either of these specificat ions following a WI TH keyword. Place the designat ion
just before the AS keyword. I f you invoke the ENCRYPTI ON opt ion, rem em ber t o
preserve an unencrypted version of your funct ion for future edit ing. After
invoking the SCHEMABI NDI NG opt ion for a UDF, any tables or v iews on which the
funct ion relies cannot change unt il you eit her drop the UDF or m odify t he UDF
with t he ALTER FUNCTI ON statem ent . Several special rules apply when you apply
the SCHEMABI NDI NG opt ion to a funct ion. See the “Argum ents” sect ion of t he
“CREATE FUNCTI ON” topic in Books Online for t he rules.

Com paring UDFs w ith View s and Stored Procedures

UDFs share elem ents in com m on with both v iews and stored procedures. On the
other hand, UDFs also differ from views and stored procedures in som e im portant
ways. Understanding these sim ilar it ies and differences will help you decide when
to choose each k ind of object for a database chore and whether it is appropr iate
to reform ulate an object in one form at t o another form at .
Views and table-valued UDFs both have result sets. I n addit ion, t he inline table-
valued UDF even relies on a single SELECT statem ent j ust like a v iew. The
sim ilar it ies between inline table-valued UDFs and v iews m eans that you can use
either for v iewing and updat ing data. An im portant dist inct ion is t hat the inline
table-valued UDF perm its input param eters in it s SELECT statem ent . Therefore,
an inline table-valued funct ion delivers t he features of a v iew with the added
flex ibilit y afforded by param eters. The m ult istatem ent table-valued funct ion has
it s own colum n declarat ions, and it can contain m ult iple SELECT statem ents as
well as other k inds of T-SQL statem ents that m odify t he values returned by the
funct ion. These ext ra statem ents provide added flex ibilit y for t he creat ion of the
result set from a m ult istatem ent table-valued UDF relat ive to either an inline
table-valued UDF or a view. On the other hand, your applicat ions can never
m odify t he base tables for a m ult istatem ent table-valued UDF through the UDF.
Stored procedures can return scalar values and result sets j ust as UDFs can. I n
addit ion, both stored procedures and UDFs accept param eters t hat the objects
can use to help com pute outputs. Stored procedures can return one or m ore
result sets, but table-valued UDFs always return a single result set . The result
sets from a stored procedure are available for viewing in Query Analyzer when
you run a stored procedure, and you can pass the result sets to t em porary tables
for addit ional program m at ic m anipulat ion. The result set from table-valued UDFs

is available for use direct ly in t he FROM clause of SELECT statem ents.
Addit ionally, you m ust pass scalar returns from stored procedures to local
variables before you can program m at ically m anipulate t hem outside the stored
procedure. On the other hand, you can use a scalar UDF j ust like a scalar value in
a T-SQL script . Stored procedures do counter t hese UDF advantages by offer ing a
richer array of output types. I n addit ion to offer ing m ult iple result sets, a stored
procedure can concurrent ly return a result set , m ult iple output param eters, and a
return status value. UDFs don’t offer t his r ichness of output types.

Creat ing and I nvoking Scalar UDFs

Scalar UDFs are a flex ible developm ent t ool. This is for two prim ary reasons.
First , t hey m ake it easy to encapsulate T-SQL statem ents for reuse. Second, it is
sim ple to reference scalar UDFs in T-SQL script s and other SQL Server objects.
Three scalar funct ion sam ples in t his sect ion confirm how easy it is to encapsulate
T-SQL expressions in UDF funct ions. The sect ion also highlights ways of
referencing scalar UDFs in different T-SQL contexts.

Creat ing a Scalar UDF W ithout Param eters

Scalar funct ions can com pute all k inds of results. I t is com m on in database
applicat ions to need the next higher num ber in a ser ies, such as when one or
m ore rows in a child table need a foreign key value m atching the ident it y colum n
value for the row m ost recent ly inserted into a parent table. The @@I DENTI TY
funct ion can supply this value autom at ically when you are insert ing new rows into
a table. However, there are t im es when the return value from the @@I DENTI TY
funct ion isn’t desirable because your applicat ion needs to add ref inem ents to the
basic behavior. Even outside the autoincrem ent ing context , an applicat ion can
readily require the next higher value in a series. The sam ple in this sect ion shows
how to sat isfy t his requirem ent with a scalar UDF.
The following scr ipt creates a table with a single colum n, col1 , and then populates
the colum n with f ive row values: 1, 5, 9, 4, 12. I NSERT I NTO statem ents add the
values to t he table. Because the row values are pr im ary key values, any SELECT
statem ent without an ORDER BY clause for the table arranges the rows in
ascending order from 1 through 12.
After creat ing and populat ing the table, t he script adds a new scalar UDF to the
Chapter05 database. The USE statem ent at t he top of the scr ipt sets the database
context for t his sam ple. All t he other sam ples in t his chapter are for t he sam e
database context , alt hough subsequent sam ples don’t explicit ly include the USE
statem ent for t he Chapter05 database. By checking the
INFORMATI ON_SCHEMA.ROUTI NES v iews, the script can detect whether a pr ior
version of the udfOneHigherThanMax UDF exists in the Chapter05 database. I f
one already exists, the script rem oves it w it h t he DROP FUNCTI ON statem ent .
Next t he CREATE FUNCTI ON statem ent dem onst rates the applicat ion of basic UDF
specificat ions. Before dwelling on the statem ent ’s form at , not ice the GO keyword
im m ediately preceding it . A CREATE FUNCTI ON statem ent m ust start it s own T-
SQL batch. Not ice also that parentheses follow the funct ion nam e. Parentheses
are necessary whether or not your UDF has param eters. The RETURNS statem ent
declares the scalar return value from the funct ion as an int data type. This is
consistent with the data type for t he col1 colum n in t he MyTable table created
and populated ear lier in the sam ple. The scalar UDF has j ust a single operat ional
statem ent t hat selects the m axim um value from the col1 colum n in the MyTable
table and then adds 1 to it . However, t he syntax rules for all scalar UDFs require

the standard AS keyword and a BEGI N…END block. The SELECT statem ent for
com put ing the integer 1 higher t han the m axim um in col1 appears within
parentheses in the RETURN clause for the CREATE FUNCTI ON statem ent . The
expression within t he clause com putes the value that the scalar UDF returns.
After the CREATE FUNCTI ON statem ent , a T-SQL script invokes the scalar UDF
inside a SELECT statem ent . This returns the value 13 in a result set with one row
and one colum n. Not ice the owner specificat ion for the UDF— nam ely, dbo. Recall
that dbo designates any m em ber of the sysadm in fixed server role who creates
an object . Funct ion nam es m ust be unique for a database by the funct ion’s
owner.

Note

By default , perm ission to create a UDF is available to
members of the sysadmin fixed server role as well as the
db_owner and db_ddladm in fixed database roles. Members of
the sysadm in and db_owner roles can grant perm ission to
create UDFs to other logins. See the “Perm issions” sect ion in
the “CREATE FUNCTION” Books Online topic for more detail
about perm issions to create and adm inister UDFs. The Books
Online topics for all data definit ion language (DDL) T-SQL
statements have a “Perm issions” sect ion. Chapter 7 drills
down on SQL Server security .
--udfHigherThanMax
--Specify database context.
USE Chapter05

--Remove prior version of table MyTable.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = ’MyTable’)
DROP TABLE MyTable

--Create table MyTable.
CREATE TABLE MyTable
(
col1 int PRIMARY KEY
)
GO

--Populate MyTable with either 4 or 5 rows.
--Comment out last INSERT INTO statement for 4 rows.
INSERT INTO MyTable VALUES(1)
INSERT INTO MyTable VALUES(5)
INSERT INTO MyTable VALUES(9)
INSERT INTO MyTable VALUES(4)
INSERT INTO MyTable VALUES(12)
GO

--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfOneHigherThanMax’)
 DROP FUNCTION udfOneHigherThanMax
GO

--Create function to find value 1 greater than maximum.
CREATE FUNCTION udfOneHigherThanMax()
RETURNS int

AS
BEGIN
 RETURN(SELECT MAX(col1)+1 FROM MyTable)
END
GO

--Must reference function owner’s name (dbo) for syntax to work.
SELECT dbo.udfOneHigherThanMax()
GO

Creat ing a Scalar UDF w ith a Param eter

Redesigning the udfOneHigherThanMax UDF with an input param eter can achieve
two benefits. First , t he redesign dem onst rates the detailed syntax for passing
param eters to funct ions. Second, the redesign offers t he opportunit y t o create a
new scalar UDF that returns a value that is x units higher t han the current
m axim um col1 colum n value.
The following scr ipt illust rates how to achieve both of these benefits. The script
starts by dropping any prior versions of the udfXHigherThanMax UDF if it ex ists.
Next t he CREATE FUNCTI ON starts the design of a new scalar UDF. The
parentheses after the funct ion nam e include a param eter declarat ion. Recall t hat
the init ial sam ple included the parentheses, but they didn’t enclose anything. The
nam e of t he param eter for this UDF is @x , and it s data type is int , which m atches
the data type of the values in col1 . The m atching data type specif icat ion for t he
colum n values and the param eter elim inates the need for a conversion when the
funct ion adds @x t o the m axim um value in the col1 colum n.
With t he udfXHigherThanMax UDF, users can specify the return of a value @x
units higher than the m axim um value in col1. The SELECT statem ent after t he
CREATE FUNCTI ON statem ent illust rates the syntax for passing a param eter to a
funct ion. Sim ply enclose the value in parentheses after t he funct ion nam e. The
sam ple denotes a param eter value of 2, but any param eter value that yields a
legit im ate int value for t he UDF is acceptable. All parts of t he funct ion call are
m andatory. First you m ust specify a funct ion owner; t he sam ple designates the
dbo user. Second, after the funct ion nam e, you m ust include parentheses. When
there is a param eter (as in t his instance) , you m ust specify a param eter value
unless the param eter has a default value in it s declarat ion.
--udfXHigherThanMax
--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfXHigherThanMax’)
 DROP FUNCTION udfXHigherThanMax
GO

--Create function to compute x units higher than maximum.
--Demonstrates use of parameters.
CREATE FUNCTION udfXHigherThanMax(@x AS int)
RETURNS int
AS
BEGIN
 Return(SELECT MAX(col1) + @x FROM MyTable)
END
GO

--Must reference function owner’s name (dbo) for syntax to work.
SELECT dbo.udfXHigherThanMax(2)
GO

Using Scalar UDFs in T- SQL Scripts

The first two sam ples highlighted the syntax for creat ing scalar UDFs. However,
they m erely echoed the return value from the UDF. One significant reason for
using UDFs is their abilit y to be used direct ly in T-SQL statem ents. This sect ion
creates a new UDF and illust rates the syntax for referencing the UDF at several
locat ions within a SELECT statem ent as well as in a T-SQL script wit h an I F…ELSE
statem ent and in st r ing expressions for local var iables.
The udfDaysShippedLate scalar UDF returns the num bers of days that an order
shipped before or after it s required date. After rem oving any prior version of the
scalar UDF, t he procedure invokes the CREATE FUNCTI ON statem ent t o start the
creat ion of t he new version of the udfDaysShippedLate UDF. This UDF requires
three item s to com pute it s return value: the order I D, the required date, and the
shipped date for t he order. The UDF accepts the order I D as a param eter nam ed
@Target I D. Two SELECT statem ents return the required and shipped dates from
the Orders table in t he Northwind database. Alt hough the database context for
the funct ion is the Chapter05 database, the UDF can refer to t he Northwind
database using the standard three-part nam ing convent ion. The built - in
DATEDI FF funct ion com putes the difference in days between the required and
shipped dates so that orders shipping after t he required date have a posit ive
value. The scr ipt uses the return from the built - in funct ion with it s argum ents as
the expression for the RETURN clause. This clause passes back a value from the
scalar UDF.
--udfDaysShippedLate_a
--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfDaysShippedLate’)
 DROP FUNCTION udfDaysShippedLate
GO

--Create function to compute difference in days between
--required date and shipped date for an order.
CREATE FUNCTION udfDaysShippedLate(@TargetID AS int)
RETURNS int
AS
BEGIN
DECLARE @TargetShippedDate datetime
DECLARE @TargetRequiredDate datetime

SET @TargetShippedDate = (SELECT ShippedDate
 FROM Northwind..Orders
 WHERE OrderID = @TargetID)
SET @TargetRequiredDate = (SELECT RequiredDate
 FROM Northwind..Orders
 WHERE OrderID = @TargetID)
RETURN (DATEDIFF(d, @TargetRequiredDate, @TargetShippedDate))
END
GO

The next script is a SELECT statem ent t hat dem onst rates the syntax for
referencing a scalar UDF in t he list for the statem ent and in the WHERE and
ORDER BY clauses of t he statem ent . The list for the statem ent includes four
colum ns for each order: OrderI D, t he udfDaysShippedLate value, the shipped
date, and the required date. The input param eter specif ied for the scalar UDF is
OrderI D. This causes the UDF to return the difference between the required and
shipped dates for the order on each row of t he SELECT statem ent ’s result set .
The FROM clause designates the Orders table in the Northwind database.

Without any addit ional clauses, the list and the FROM clause for t he SELECT
statem ent would return a row for each row in t he Orders table with rows
arranged by OrderI D value, the pr im ary key for the Orders table. However, t he
two addit ional clauses change this. First , t he WHERE clause causes the statem ent
to return rows j ust for t hose orders that shipped one or m ore days after the
required date. The udfDaysShippedLate UDF helps to specify the expression for
the clause. The UDF’s representat ion is the sam e as in the SELECT statem ent ’s
list . Second, the ORDER BY clause specifies that t he rows in the result set be
sorted from the order t hat shipped the latest to the order t hat shipped the least
late.
--udfDaysShippedLate_b
--Syntax for user-defined function in list, WHERE, and
--ORDER BY clauses of SELECT statement to return
--orders shipped after required date.
SELECT OrderID, dbo.udfDaysShippedLate(OrderID) ’Days Shipped Late’,
 LEFT(ShippedDate, 11) ’Shipped Date’,
 LEFT(RequiredDate, 11) ’Required Date’
FROM Northwind..Orders
WHERE dbo.udfDaysShippedLate(OrderID) > 0
ORDER BY dbo.udfDaysShippedLate(OrderID) DESC

Figure 5-1 shows an excerpt from the result set for the preceding SELECT
statem ent . The second colum n shows the return values from the UDF. You can
confirm its calculat ion with the help of t he last two colum ns. Not ice also that rows
appear in order based on the value in t he second colum n, which displays the UDF
values for each row. Figure 5-1 shows the Results pane. However, t he Messages
pane contains the num ber of rows affected, or returned, by the SELECT
statem ent . I t is only 37, which is substant ially less than the full num ber of 830
rows in t he or iginal Orders table.

Figure 5 -1 . An excerpt from a result set based on a SELECT st atem ent
that uses a scalar UDF in its list as w ell as its W HERE and ORDER BY

clauses.

The next script shows another t ype of applicat ion for t he udfDaysShippedLate
UDF. This script uses the UDF in an expression that serves as the condit ion for an
IF…ELSE statem ent . Because the value for the UDF appears elsewhere in the
script besides the condit ion for t he I F…ELSE statem ent , the script saves the UDF’s
value in a local var iable, @DaysBeforeAfter . This assignm ent saves having to
recom pute the funct ion each t im e the script needs the UDF’s value.
The script com putes and displays one of two possible m essages based on the
udfDaysShippedLate UDF value. I f t he scalar UDF value is negat ive, t he order
shipped before the required date. Otherwise, the order shipped on or after t he
required date. The expression for the I F…ELSE statem ent captures whether t he
order shipped before or after the required date. The I F clause of t he statem ent
com putes a statem ent saying how m any days before the required date an order

shipped. This can be any value from 1 day through the m axim um num ber of days
in the Orders table t hat an order shipped before it s required date. The ELSE
clause com putes a statem ent detailing how m any days after t he required date an
order shipped. The st r ing expressions in t he I F and ELSE clauses both reference
the @DaysBeforeAfter local var iable, which the script uses to store the return
value from the udfDaysShippedLate UDF.
To see the script in operat ion, you need to run it wit h OrderID values for orders
shipping before and after their required dates. The sam ple script includes two
such OrderI D values. As the script appears below, it com putes a m essage for
OrderI D 10777, which shipped 23 days after it s required date. You can com m ent
out t he SET statem ent assigning 10777 to t he @Target I D local var iable and
rem ove the com m ent m arkers for the SET statem ent assigning 10248 to the local
variable. This act ion perm its you to run the script in a m ode that com putes a
m essage for t he num ber of days that an order shipped before it s required date.
I n this instance, the order shipped 16 days before it s required date.
--udfDaysShippedLate_c
--Invoke a user-defined function to compute a conditional message
--for the number of days that an order ships before or after its
--required date.
DECLARE @TargetID int
DECLARE @DaysBeforeAfter int
DECLARE @ShipMessage varchar (1000)

--Order 10248 shipped 16 days before its required date.
--Order 10777 shipped 23 days after its required date.
--SET @TargetID = 10248
SET @TargetID = 10777

--Save user-defined function value for reuse in script.
SET @DaysBeforeAfter = dbo.udfDaysShippedLate(@TargetID)

--Branch to compute one of two message formats based on the
--user-defined function value.
IF @DaysBeforeAfter < 0
 BEGIN
 SET @ShipMessage = ’Order ’ + CAST(@TargetID AS varchar) +
 ’ shipped ’ + CAST(-1 * @DaysBeforeAfter AS varchar) +
 ’ days before the required date.’
 Print @ShipMessage
 END
ELSE
 BEGIN
 SET @ShipMessage = ’Order ’ + CAST(@TargetID AS varchar) +
 ’ shipped ’ + CAST(@DaysBeforeAfter AS varchar) +
 ’ days after the required date.’
 Print @ShipMessage
 END
GO

Creat ing and I nvoking Table- Valued UDFs

Both inline UDFs and m ult istatem ent UDFs can return tables instead of scalar
values. The inline UDF has the advantage of an exceedingly sim ple syntax. I n
addit ion, it supports param eters so that users can cont rol it s result set at run
t im e. Mult istatem ent UDFs are substant ially m ore flex ible than inline UDFs. The
ext ra flex ibilit y com es at the expense of m ore sophist icated T-SQL logic. SQL

Server gives you a choice. You can incorporate the table-valued UDF that best fit s
your needs. The sam ples in t his sect ion will help you see som e of t he capabilit ies
of both approaches so that you can m ake an inform ed choice.

Providing Param etr ic View s

I nline table-valued UDFs are always based on a single SELECT statem ent— just
like a v iew. However, t he inline table-valued UDF offers one significant advantage
over a v iew. You can pass param eters t o t he SELECT statem ent for an inline
table-valued UDF, but t he syntax for t he CREATE VI EW statem ent offers no
opportunit ies for specify ing param eters. I nline UDFs heighten the power of t heir
advantage by offer ing it wit h an exceedingly sim ple syntax. Recall t hat all you
have to do when creat ing an inline UDF is declare the return data type as table in
the RETURNS clause and then specify a SELECT statem ent as the argum ent for
the RETURN clause. You can reference an inline UDF in T-SQL statem ents j ust as
you would a v iew except that you can pass the inline UDF param eter values.
The following scr ipt illust rates the syntax for saving a SELECT statem ent in a
UDF. The SELECT statem ent provides a result set with a row for each order by a
custom er. The syntax for the statem ent j oins the Custom ers and Orders tables in
the Northwind database. Not ice that t he SELECT statem ent specifies the input
param eter @Cust I D in it s WHERE clause. The SELECT statem ent is the argum ent
for the RETURN clause in a CREATE FUNCTI ON statem ent . The parentheses after
the funct ion nam e t railing the CREATE FUNCTI ON keyword phrase are where the
UDF declares the @Cust I D param eter value.
The SELECT statem ent t hat concludes the following script illust rates the syntax
for invoking an inline UDF. The sam ple specifies the return of all the colum ns
from the source with the * character. You can designate indiv idual colum ns in t he
list . The FROM clause designates the inline UDF as the source for t he result set
from the SELECT statem ent . I n t his applicat ion, it isn’t essent ial that you specify
the owner for t he UDF. The funct ion’s nam e is sufficient for designat ing an inline
UDF owned by the dbo user. The specificat ion of the @Cust I D param eter in the
parentheses after the UDF’s nam e is crit ical because the funct ion expects a
param eter value and has no default value. This param eter allows the funct ion to
return the orders for a part icular custom er.
--udfOrdersForCustomerID
--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfOrdersForCustomerID’)
 DROP FUNCTION udfOrdersForCustomerID
GO

--Create Inline table-valued function with a parameter.
CREATE FUNCTION udfOrdersForCustomerID(@CustID varchar(5))
RETURNS TABLE
AS
RETURN(
SELECT c.CompanyName, c.ContactName, c.Phone,
 o.OrderID, o.OrderDate
 FROM Northwind..Customers c JOIN Northwind..Orders o
 ON (c.CustomerID = o.CustomerID)
 WHERE c.CustomerID = @CustID
)
GO

--Specify a parameter for table returned from function.
SELECT *
 FROM udfOrdersForCustomerID(‘BERGS’)
GO

Using a Scalar UDF in the List for an I nline UDF

By com bining dif ferent t ypes of funct ions, you can add considerable flex ibilit y to
your applicat ions. A scalar UDF returns a single value, but t he single value can
change depending on input param eter values. An inline UDF returns a result set
that can contain m ult iple rows. By condit ioning a scalar UDF on colum n values
from the result set of an inline UDF, you can create new values that com bine or
extend the values in t he source for the inline UDF.
The script sam ple in this sect ion illust rates how to use a scalar UDF to define a
colum n for t he result set from an inline UDF. The script also shows how to use the
colum n defined by the scalar UDF in the WHERE clause for SELECT statem ents
invoking the inline UDF.
The script defines two UDFs. The first , udfManagerNam e, is a scalar UDF. This
funct ion returns the first and last nam e for an em ployee from the Em ployees
table in the Northwind database. An expression in the list for t he SELECT
statem ent com bines the FirstNam e and LastNam e f ields into a single scalar value
with a space delim iter between them . The WHERE clause for t he SELECT
statem ent includes a param eter for designat ing the Em ployeeI D colum n value.
The return value from the scalar UDF is the nam e of t he em ployee with an
Em ployeeI D colum n value m atching the input param eter.
The second UDF in t he following script is an inline UDF, nam ed
udfEm ployeeExtensionManager . The SELECT statem ent for the inline UDF
specifies the Em ployees table in the Northwind database as it s row source. The
list for t he SELECT statem ent designates four colum ns. Three com e direct ly from
the row source; these are an em ployee’s f irst nam e, last nam e, and extension.
The fourth colum n is the return value from the udfManagerNam e UDF. The
param eter value passed to t he scalar UDF is the ReportsTo colum n value from the
Em ployees table. This colum n value is the Em ployeeI D for t he m anager to which
an em ployee reports. The SELECT statem ent specifies an alias, Manager ’s Nam e,
for the udfManagerNam e UDF return value. Not ice that you can represent a single
apost rophe within a st r ing constant with two single apost rophes.
--udfEmployeeExtensionManager
--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfManagerName’)
 DROP FUNCTION udfManagerName
GO

--
Function to return the manager’s name matching a ReportsTo column val
ue.
CREATE FUNCTION udfManagerName (@reportsto int)
RETURNS varchar(40)
AS
BEGIN
 RETURN(SELECT DISTINCT FirstName + ’ ’ + LastName
 FROM Northwind..Employees WHERE
 EmployeeID = @reportsto)
END
GO

--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfEmployeeExtensionManager’)
 DROP FUNCTION udfEmployeeExtensionManager
GO

--Inline table-
valued function to return employee first name, last name,
--extension, and manager’s name.
CREATE FUNCTION udfEmployeeExtensionManager()
RETURNS TABLE
AS
RETURN(SELECT FirstName, LastName, Extension,
 dbo.udfManagerName(ReportsTo) ’Manager’’s Name’
 FROM Northwind..Employees)
GO

--SELECT statement with inline table-
valued function in its FROM clause.
PRINT ’Report for Full udfEmployeeExtensionManager Function’
SELECT *
FROM udfEmployeeExtensionManager()

--Print direct reports to Andrew Fuller.
PRINT ’Report for Andrew Fuller Direct Reports’
SELECT FirstName, LastName, Extension
FROM udfEmployeeExtensionManager()
WHERE [Manager’s Name] = ’Andrew Fuller’

--Print direct reports to Steven Buchanan.
PRINT ’Report for Steven Buchanan Direct Reports’
SELECT FirstName, LastName, Extension
FROM udfEmployeeExtensionManager()
WHERE [Manager’s Name] = ’Steven Buchanan’

--Print direct and indirect reports to Andrew Fuller.
PRINT ’Report for Andrew Fuller Direct and Indirect Reports’
SELECT FirstName, LastName, Extension
FROM udfEmployeeExtensionManager()
WHERE [Manager’s Name] = ’Andrew Fuller’
UNION
SELECT FirstName, LastName, Extension
FROM udfEmployeeExtensionManager()
WHERE [Manager’s Name] = ’Steven Buchanan’

After creat ing the two UDFs, the script illust rates with four different batches how
to invoke the inline UDF containing a scalar UDF in it s SELECT list . The first batch
returns all the colum ns for all the rows in t he result set from the inline UDF. This
result set has four colum ns and nine rows: one colum n for each it em in the list
for the SELECT statem ent of t he inline UDF and one row for each row in t he
Em ployees table— the base table for the SELECT statem ent . The following list ing
shows the result sets for each of t he four sam ples.
The second and third batches show how to reference in the WHERE clause the
colum n returned by the scalar UDF inside the inline UDF. The syntax for this
reference uses the alias nam e for the funct ion, Manager ’s Nam e, in t he SELECT
list from the inline UDF. The second sam ple returns all the direct reports to
Andrew Fuller. The third sam ple returns the direct reports to Steven Buchanan.
Because Steven Buchanan reports direct ly to Andrew Fuller , the direct reports to
Steven report indirect ly to Andrew Fuller.
The fourth batch const ructs a UNI ON query statem ent t hat returns all t he
em ployees report ing direct ly or indirect ly t o Andrew Fuller . The UNI ON operator
com bines into one result set the results from the SELECT statem ents in the
second and third sam ples. This f inal result differs from the one for the first
sam ple in a couple of ways. First , it contains just three colum ns. There is no need
for a colum n with the m anager’s nam e because all em ployees report direct ly or

indirect ly t o Andrew Fuller. Second, this f inal result set contains just 8 rows as
opposed to t he 9 rows in t he result set for the first sam ple. This is because
Andrew Fuller doesn’t appear in t he list of em ployees report ing to him .
The following list ing presents all t he result sets returned to the Messages pane
when you run the preceding sam ple from Query Analyzer with a Results I n Text
set t ing.
Report for Full udfEmployeeExtensionManager Function
FirstName LastName Extension Manager’s Name
---------- -------------------- --------- ---------------------------

Nancy Davolio 5467 Andrew Fuller
Andrew Fuller 3457 NULL
Janet Leverling 3355 Andrew Fuller
Margaret Peacock 5176 Andrew Fuller
Steven Buchanan 3453 Andrew Fuller
Michael Suyama 428 Steven Buchanan
Robert King 465 Steven Buchanan
Laura Callahan 2344 Andrew Fuller
Anne Dodsworth 452 Steven Buchanan

(9 row(s) affected)

Report for Andrew Fuller Direct Reports
FirstName LastName Extension
---------- -------------------- ---------
Nancy Davolio 5467
Janet Leverling 3355
Margaret Peacock 5176
Steven Buchanan 3453
Laura Callahan 2344

(5 row(s) affected)

Report for Steven Buchanan Direct Reports
FirstName LastName Extension
---------- -------------------- ---------
Michael Suyama 428
Robert King 465
Anne Dodsworth 452

(3 row(s) affected)

Report for Andrew Fuller Direct and Indirect Reports
FirstName LastName Extension
---------- -------------------- ---------
Anne Dodsworth 452
Janet Leverling 3355
Laura Callahan 2344
Margaret Peacock 5176
Michael Suyama 428
Nancy Davolio 5467
Robert King 465
Steven Buchanan 3453

(8 row(s) affected)

Encapsulat ing More Logic w ith Mult istatem ent UDFs

A m ult istatem ent table-valued UDF provides substant ially m ore flex ibilit y than is
available from an inline UDF. While an inline UDF rest r icts you to a single SELECT
statem ent , a m ult istatem ent UDF can contain m ult iple SELECT statem ents along
with other k inds of T-SQL statem ents. The wide range of statem ents that you can
place inside a m ult istatem ent UDF allows you to create m ore f lex ible funct ions
that can sim plify t he logic of T-SQL statem ents t hat reference them or even
recover from invalid input .
The following scr ipt contains a m ult istatem ent UDF that can return three different
types of result sets. The UDF accom plishes this feat with t he aid of a couple of
input param eters and nested I F…ELSE statem ents that t est the input param eter
values. The @ReportsTo param eter designates the m anager for whom to return a
result set . The param eter has an int data type, and it denotes a m anager ’s
em ployee I D. The @I ndirect param eter has a bit data type. The value 0 is for
direct reports, and the value 1 is for t he return of direct and indirect reports. The
logic inside the CREATE FUNCTI ON statem ent accom m odates one invalid pair of
input param eters to dem onst rate what you can accom plish with a m ult istatem ent
UDF. This logic t raps for a request of indirect reports for t he m anager whose
Em ployeeI D value is 5. This request is invalid for the Em ployees table in the
Northwind database because this m anager has only direct reports. The funct ion
recovers from the request by supply ing only direct reports to the m anager.
After creat ing the m ult istatem ent UDF with a CREATE FUNCTI ON statem ent , the
script launches four SELECT statem ents that reference the UDF. The param eters
for the SELECT statem ents allow you to confirm the f lex ibilit y of t he UDF. The
first SELECT statem ent returns the direct report s to Andrew Fuller , whose
Em ployeeI D is 2. The second SELECT statem ent returns the direct reports to
Steven Buchanan, whose Em ployeeI D is 5. The third SELECT statem ent includes
the Em ployeeI D value for Andrew Fuller again, but it sets @I ndirect to 1. This
perm its the UDF to return the result for a union query instead of a sim ple
param eter query (as in the first two SELECT statem ents) . The fourth SELECT
statem ent requests the direct and indirect reports for t he m anager whose
Em ployeeI D is 5, nam ely Steven Buchanan. This requests passes cont rol to t he
last I F clause in t he UDF and returns j ust t he direct reports for Steven Buchanan.
The UDF could have pr inted a custom m essage with t he RAI SERROR statem ent .
--udfReportsTable
--Drop old version of user-defined function if it exists.
IF EXISTS(SELECT * FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfReportsTable’)
 DROP FUNCTION udfReportsTable
GO

--Create multistatement table-valued function.
CREATE FUNCTION udfReportsTable(@ReportsTo int, @Indirect bit)
RETURNS @TableOut TABLE(
FirstName varchar(10) NOT NULL,
LastName varchar(20) NOT NULL,
Extension varchar(4) NULL
)
AS
BEGIN
IF @Indirect = 0
 INSERT @TableOut
 SELECT FirstName, LastName, Extension
 FROM Northwind..Employees
 WHERE ReportsTo = @ReportsTo
ELSE
 IF @ReportsTo = 2
 INSERT @TableOut
 SELECT FirstName, LastName, Extension
 FROM Northwind..Employees

 WHERE ReportsTo = @ReportsTo
 UNION
 SELECT FirstName, LastName, Extension
 FROM Northwind..Employees
 WHERE ReportsTo <> @ReportsTo AND
 ReportsTo IS NOT NULL
 ELSE
 IF @ReportsTo = 5
 INSERT @TableOut
 SELECT FirstName, LastName, Extension
 FROM Northwind..Employees
 WHERE ReportsTo = @ReportsTo
RETURN
END
GO

--Print direct reports to Andrew Fuller.
SELECT *
FROM udfReportsTable(2,0)

--Print direct reports to Steven Buchanan.
SELECT *
FROM udfReportsTable(5,0)

--Print direct and indirect reports to Andrew Fuller.
SELECT *
FROM udfReportsTable(2,1)

--Demo recovery from Indirect Reports request for Steven Buchanan.
SELECT *
FROM udfReportsTable(5,1)

I nt roduct ion to Triggers

Triggers enable developers to create stored procedures that f ire autom at ically
when an applicat ion m akes changes to tables or v iews to which the t r iggers
belong. This sect ion int roduces core concepts about what a t r igger is, t he
different types of t r iggers available to developers, and statem ents for m anaging
t riggers in your applicat ions.

Triggers Are like Event Procedures

Visual Basic developers m ay find it convenient t o think of t r iggers as event
procedures. Tr iggers encapsulate T-SQL code m uch like stored procedures except
that t r iggers fire autom at ically when events happen for an object to which the
t rigger belongs. I t is good pract ice to back up your t rigger code independent ly of
the objects to which they belong— especially as you are init ially defining the
objects for a project . This is because dropping an object rem oves any t r iggers
associated with t he object . There is no warning m essage about the existence of
t rigger code that you m ight want to save before rem oving an object .
The events t hat f ire a t r igger are inserts, updates, and deletes. With classic
t riggers, t he events are for tables. These t riggers actually f ire aft er the init iat ion
of a change event but before the com m itm ent of a change to a database table.
Within the code for a classic t r igger, you can perform m any different k inds of
act ions, such as rolling back the change to t he table, perform ing data integrity
checks, and archiving or iginal and changed data. Before the int roduct ion of

declarat ive referent ial integr ity and cascading updates and deletes, it was
com m on to program this kind of behavior with t r iggers. Even now, if an
applicat ion requires referent ial integr ity between two tables in different
databases, you m ust program it m anually . Tr iggers represent a natural place to
locate the code for program m ing referent ial integrit y across two tables in
different databases.
I t is good pract ice to keep your t r igger code short and uncom plicated. This is
because a t r igger f ires whenever it s event occurs. Therefore, an update t r igger
fires whenever a user t r ies to update a value in a table. The update doesn’t
com m it unt il SQL Server com pletes the execut ion of the code in t he t r igger. I f the
code presents a m essage to the user, you especially want t o keep the code br ief
so that t he m essage returns to t he user swift ly .
A t r igger does have a decided advantage over an event procedure that you can
assign to a form in Visual Basic. This is because the t r igger always fires no m at ter
how a user opens the object with the t r igger. With an event procedure for a form
that uses a SQL Server t able for it s row source, database users can bypass any
logic in the event procedure by opening the table direct ly or opening the table
with another form or user interface that doesn’t have the event procedure. When
you code your change direct ly against t he database object with a t r igger, t he
code fires no m at ter how users open the row source.

Types of Tr iggers

SQL Server offers two basic types of t r iggers. Within each type, you can have
three event types that f ire t r iggers: inserts, updates, and deletes. You can create
a t r igger for any com binat ion of these three events.
The preceding sect ion briefly descr ibed classic t riggers. This is the first t ype of
t rigger. SQL Server docum entat ion refers to this kind of t r igger as an AFTER
t rigger. You can create an AFTER t r igger only for a table. The nam e for the type
of t r igger indicates when the t r igger f ires— nam ely, after t he start of a change to
a table. You can have m ult iple AFTER t riggers for the sam e change event . With
the help of two system stored procedures, you can designate the first and last
t rigger to fire for a change event t o an object . By designat ing a first and last
t rigger to fire, you can precisely cont rol the order in which up to t hree t r iggers
fire. However, rem em ber that all the t r iggers eventually f ire for a change event t o
an object . Therefore, t he m ore t r iggers you have, t he longer it takes for SQL
Server to com m it the insert , update, or delete act ion. I n addit ion, m ult iple
t riggers can delay custom m essages sent back to users.

Note

I nvoke the sp_set t r iggerorder system stored procedure to
cont rol the order of execut ion for t r iggers. The procedure
takes three argum ents: one for the t r igger name, another for
the order of fir ing, and the third for the type of event .
The second type of t r igger is an I NSTEAD OF t r igger. You can create I NSTEAD OF
t riggers for both tables and v iews. This type of t r igger f ires before the change
event for t he object . Therefore, you cannot roll back a change to a table or v iew
from an I NSTEAD OF t r igger because the event didn’t occur yet . However, you
can com plete the act ion, or an alt ernat ive one, from within t he t r igger code.
Unlike AFTER t r iggers, only one I NSTEAD OF t r igger can exist for each type of
change event . I f you apply a change event to a view and perm it direct access to
any base tables for the view, users can bypass the t r igger for the v iew by opening
the base tables.

inserted and deleted Tables

The inserted and deleted tables are two logical tables available within a t r igger.
The tables have the sam e st ructure as the table or v iew to which a t r igger
belongs. Each of t he three change events im pacts the contents of the inserted
and deleted tables different ly . These tables are convenient for archiving changes
to a table. You can select which colum ns you archive and add any data that your
requirem ents dictate, such as user ident if icat ion, date, and t im e.
An I NSERT statem ent populates the inserted table. I NSERT statem ents don’t
populate the deleted table. The new colum n values for the inserted row are in the
inserted table.
A DELETE statem ent populates the deleted table, but t he statem ent leaves the
inserted table em pty. The deleted table will have as m any rows as the DELETE
statem ent rem oves from the table. The TRUNCATE TABLE statem ent doesn’t log
changes to t he deleted t able or fire t r iggers. I n addit ion, t he DROP TABLE
statem ent doesn’t f ire a t r igger. I nstead, the statem ent rem oves the t r igger along
with t he table.
An UPDATE statem ent populates both the inserted and deleted tables. The rows
with t he new values are in t he inserted table. The rows with the old values are in
the deleted table. As with t he DELETE statem ent , the inserted and deleted tables
can contain m ult iple rows for a single UPDATE statem ent .

Statem ents for Creat ing and Dropping Tr iggers

An array of T-SQL statem ents exist for creat ing and m anaging t r iggers. Many of
these statem ents parallel those for other database objects, but som e are special
for t r iggers. (For exam ple, you already read about the sp_set t r iggerorder system
stored procedure.) You can m ake new t r iggers with t he CREATE TRI GGER
statem ent . This single T-SQL statem ent facilitates the creat ion of AFTER and
INSTEAD OF t r iggers by the inclusion of a keyword phrase specify ing the t r igger
type. The DROP TRI GGER statem ent works for either type of t r igger, but there is
no INFORMATI ON_SCHEMA v iew that displays the t r iggers in a database. The
following sam ples dem onst rate an approach to checking for t he existence of a
t rigger based on the sysobjects table in a database. I t is som et im es convenient to
disable a t r igger (for exam ple, t o enter new rows into a table t hat conflict with
the logic in t he t r igger) . Use the ALTER TABLE statem ent with the DI SABLE
keyword followed by the t r igger nam e to disable an exist ing t r igger. To restore
the t r igger, specify the ENABLE keyword followed by the t r igger ’s nam e within an
ALTER TABLE statem ent .
The CREATE TRI GGER statem ent is f lex ible because a single t em plate
accom m odates both AFTER and I NSTEAD OF t r iggers. I n addit ion, you can specify
either t r igger type for any com binat ion of the three possible events that can fire
it . The t r igger nam e following the CREATE TRI GGER keyword phrase is a norm al
SQL Server ident if ier. To m ake t r igger nam es ident ify t heir object type, t his
chapter begins t r igger nam es with t he t rg pref ix . Designate the object to which a
t rigger belongs in t he ON clause. Specify t he object by following the ON keyword
with t he nam e of a table or v iew.
The next line is where the CREATE TRI GGER statem ent offers m uch of it s
flex ibilit y. You can start the line with eit her t he AFTER keyword or t he I NSTEAD
OF keyword phrase to declare the t r igger type. Because AFTER is t he default
t rigger type, you don’t need to specify t he AFTER keyword to create an AFTER
t rigger. The FOR clause specifies t he type of events that will f ire an AFTER
t rigger. The syntax for t he I NSTEAD OF keyword doesn’t require t he FOR keyword
(as is t he case for AFTER t r iggers) . The following code tem plate shows all t hree
events. However, you can designate any two or just one event . The event nam es
in the FOR clause determ ine what act ions fire a t r igger. The AS keyword m arks

the t ransit ion from the t r igger declarat ions to the T-SQL code that a t r igger
executes when it f ires.
CREATE TRIGGER trigger_name

ON tablename or viewname
AFTER OR INSTEAD OF OR FOR INSERT, UPDATE, DELETE
AS
T-SQL statements for trigger

CREATE TRI GGER w ill fail if you t ry t o create a new t r igger with a nam e for a
previously exist ing t r igger. There are a couple of workarounds to t his problem .
First , you can m odify t he design of t he old t r igger with t he ALTER TRI GGER
statem ent . Second, you can condit ionally drop the old version of a t r igger. The
syntax for checking on the existence of a previously exist ing t r igger is different
from that for tables, v iews, stored procedures, and UDFs. This is because there is
no INFORMATI ON_SCHEMA v iew for list ing t r iggers. However, you can use the
nam e and t ype colum ns of t he sysobjects table to ver ify t he existence of a
previously exist ing version of a t rigger in a database. The sysobjects table is a
table m aintained by SQL Server that keeps t rack of the objects in a database. I n
the following tem plate, cont rol passes to the DROP TRI GGER statem ent only if t he
sysobjects table contains a row with a nam e colum n value equal t o t r iggernam e
and a t ype value equal t o TR.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’triggername’ AND type = ’TR’)
 DROP TRIGGER triggername

You can use the sam e syntax for ver ify ing the existence of m any other database
objects. Change t ype to V for views and P for stored procedures. Use FN, I F, and
TF for scalar, inline, and m ult istatem ent UDFs, respect ively.

Creat ing and Managing Tr iggers

Triggers are a valuable tool for m anaging your databases. The “I nt roduct ion to
Tr iggers” sect ion reviewed the basic concepts for using t r iggers, som e potent ial
applicat ions, and basic syntax issues. This sect ion provides four sam ples that
illust rate t he syntax for using t r iggers in database applicat ions. The sam ples
aren’t as im portant t hem selves as the issues that t hey fram e, such as how to use
the inserted and deleted tables and how to enforce business rules. Review the
sam ples to rapidly ram p up to speed on core t r igger design and applicat ion
issues. Then adapt and extend the sam ples for your own applicat ion developm ent
needs.

Protect ing and Unprotect ing a Table from Changes

Because t r iggers can f ire whenever there is an at tem pt to change a table, it is
possible to wr it e a t r igger that guards the contents of a table. For exam ple, you
can block all at tem pts to m odify t he contents of a table. You can select ively
rest r ict the abilit y to delete rows, change colum n values in rows, or insert new
rows into a table with AFTER t riggers. You can protect a table’s contents
uncondit ionally, or you can condit ion the protect ion on a user’s m em bership in
secur ity roles, the t im e of day, day of the week, or whatever. I f you elect to block
m odificat ions with a t r igger t o a table uncondit ionally , you will probably encounter
a need to disable t he t r igger occasionally. Disabling a t r igger allows you to
reinvoke it easily without having to re-create or m odify it in any way. To reinvoke

a disabled t r igger, all you have to do is enable it . Recall that you can disable and
enable a t r igger with an ALTER TABLE statem ent for the table with t he t r igger
that you want to disable tem porarily.
The following scr ipt dem onst rates the syntax for creat ing a t r igger for the
MyTable table created earlier in this chapter. (See the “Creat ing a Scalar UDF
Without Param eters” sect ion.) The t r igger protects the table from insert s,
updates, and deletes by rolling back the t ransact ion associated with the t r igger.
The script starts by rem oving any previous version of the
t rgKeepMyTableUntouched t r igger and then begins a CREATE TRI GGER
statem ent . Like m ost other CREATE statem ents, the CREATE TRI GGER statem ent
m ust occur at the top of a batch. Therefore, the code to drop the old version ends
with t he GO keyword. The ON clause of the CREATE TRI GGER statem ent
designates the MyTable t able as the one to which the t r igger will belong. The FOR
clause indicates that t he t r igger will f ire for insert , update, and delete events.
The first statem ent aft er the AS keyword is a RAI SERROR statem ent that sends a
custom m essage back to the Messages pane of Query Analyzer. An inform at ional
m essage issued from a t r igger is useful for let t ing a user know that a t r igger
fired. The RAI SERROR statem ent can serve other funct ions as well, but it is a
robust alt ernat ive to the PRI NT statem ent for sending m essages to t he Messages
pane. The st r ing for a custom m essage can be up to 400 characters. The t railing
values 16 and 1 indicate the sever ity and state for t he error. For sim ple
inform at ional m essages, you can consistent ly apply t hese values. The second T-
SQL statem ent in the script rolls back the t ransact ion to m odify the table. The
ROLLBACK TRAN statem ent is an abbreviated version of the ROLLBACK
TRANSACTI ON statem ent . I n either form , t his statem ent rem oves any inserted
rows, restores any colum n values to their nonupdated state, and adds back any
deleted rows. You will generally want t o use the ROLLBACK TRAN statem ent as
the last statem ent in a t r igger because any statem ents after ROLLBACK TRAN can
m odify t he table for a t r igger.
--trgKeepMyTableUntouched
--Drop prior version of trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgKeepMyTableUntouched’ AND type = ’TR’)
 DROP TRIGGER trgKeepMyTableUntouched
GO

--Create new trigger to keep MyTable table untouched.
CREATE TRIGGER trgKeepMyTableUntouched
ON MyTable
FOR INSERT, UPDATE, DELETE
AS
RAISERROR(‘Message from trgKeepMyTableUntouched.’,16,1)
ROLLBACK TRAN
GO

The following scr ipt is a collect ion of T-SQL statem ents that dem onst rates the
behavior of the t r igger as well as how to disable and restore the t r igger. The first
couple of batches in the script at tem pt t o delete all rows from the MyTable table
and m odify a colum n value in t he table. Neither batch succeeds because the
t rgKeepMyTableUntouched t r igger protects the MyTable table from delete and
update events (as well as insert events) .
I f it becom es essent ial t o m odify a table with a t r igger that blocks changes, you
can tem porar ily disable the t r igger. The script dem onst rates the syntax for the
t rgKeepMyTableUntouched t r igger. You have to m odify t he MyTable table with the
ALTER TABLE statem ent to disable it s t r igger. After disabling the t r igger, the
script changes the m axim um value in t he col1 colum n. Then, in another batch,
the script restores the init ial m axim um value. The scripts use a scalar UDF
developed ear lier in t his chapter to accom plish these tasks. After successfully

m odify ing the table with the t r igger disabled, the script enables the t r igger again
for the MyTable table with the ALTER TABLE statem ent . Just to conf irm the
t rigger ’s operat ion, the script again at t em pts to delete all rows from the table.
The t r igger f ires and pr ints it s inform at ional m essage and rolls back the
t ransact ion to rem ove the rows from the table.
--Demo_trgKeepMyTableUntouched
--An attempt to delete all records fails with
--trigger error message.
DELETE
FROM MyTable
GO

--An attempt to update the maximum value in
--col1 in the MyTable table fails also.
UPDATE MyTable
SET col1 = dbo.udfOneHigherThanMax()
WHERE col1 = (SELECT MAX(col1) FROM MyTable)
GO

--Disable the trigger for MyTable without dropping it.
ALTER TABLE MyTable
Disable TRIGGER trgKeepMyTableUntouched
GO

--Update attempt for MyTable succeeds.
UPDATE MyTable
SET col1 = dbo.udfOneHigherThanMax()
WHERE col1 = (SELECT MAX(col1) FROM MyTable)

SELECT * FROM MyTable
GO

--Restoring update event also succeeds.
UPDATE MyTable
SET col1 = dbo.udfOneHigherThanMax() - 2
WHERE col1 = (SELECT MAX(col1) FROM MyTable)

SELECT * FROM MyTable
GO

--Re-enable trigger.
ALTER TABLE MyTable
Enable TRIGGER trgKeepMyTableUntouched
GO

--An attempt to delete all records fails again
--with trigger error message.
DELETE
FROM MyTable
GO

Archiving Changes to a Table

The logical tables inserted and deleted contain t he changes that users m ake to a
table. Unfortunately, the inserted and deleted t ables are available only for the
t im e that a t r igger has cont rol of an applicat ion. When the t r igger closes, SQL
Server in effect clears the tables. I f you want t o persist som e subset of the
changes to a table for perm anent ready access, you can use t r iggers to save the
contents of the logical inserted and deleted tables to a table in a SQL Server

database. Because changes (inserts, updates, and deletes) affect t he inserted and
deleted tables different ly, one approach is to create a separate t r igger for each
type of change. This sim plif ies the t r igger logic, and it m akes each type of change
run faster t han having one t r igger t hat deciphers the type of change and then
archives the inserted and deleted tables properly.
The following scr ipt creates three t r iggers to log inserts, updates, and deletes to
the MyTable table in the ChangeLogForMyTable table. The script starts by
rem oving the t rgKeepMyTableUntouched t r igger created in t he previous sam ple.
Recall t hat the previous t r igger blocks all changes to t he MyTable table. Next this
procedure creates a fresh blank version of the ChangeLogForMyTable table. The
table has four colum ns— one for t he col1 values from the inserted or deleted
table, a second for t he type of change, a third for t he date and t im e of the
change, and a fourth colum n for the login of the user m aking the change.
After creat ing a table to archive changes, the script creates a fresh copy of t he
t rgI nsertToChangeLog t r igger. This t r igger copies the col1 value from the inserted
table to a local var iable. Then it uses the local variable in t he VALUES clause of an
INSERT I NTO statem ent to persist t he new value to the ChangeLogForMyTable
table. The script uses a st r ing constant— I NSERT—to designate the type of
change. The CURRENT_TIMESTAMP and SYSTEM_USER keywords denote built - in
funct ions that return the current date and t im e as well as the login for t he current
user (the one who m akes the change) .
The CREATE TRI GGER statem ents for t he t rgDeleteToChangeLog and
t rgUpdateToChangeLog t r iggers persist t he delete and update col1 values to t he
ChangeLogForMyTable table. When logging deletes, you use the deleted table
instead of t he inserted t able. I n t he case of updates, you log the contents of the
deleted and inserted tables to the ChangeLogForMyTable table. However, the
basic design of delete and update t r iggers corresponds to t he
t rgI nsertToChangeLog t r igger.
--trgInsertUpdateDeleteToChangeLog
--Drop prior version of trgKeepMyTableUntouched trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgKeepMyTableUntouched’ AND type = ’TR’)
 DROP TRIGGER trgKeepMyTableUntouched
GO

--Remove prior version of ChangeLogForMyTable table.
IF EXISTS(SELECT TABLE_NAME = ’ChangeLogForMyTable’
 FROM INFORMATION_SCHEMA.TABLES)
 DROP TABLE ChangeLogForMyTable

--Create ChangeLogForMyTable table.
CREATE TABLE ChangeLogForMyTable
(
col1 int,
type varchar (10),
changedatetime datetime,
changeuser varchar(128)
)
GO

--Drop prior version of trgInsertToChangeLog trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgInsertToChangeLog’ AND type = ’TR’)
 DROP TRIGGER trgInsertToChangeLog
GO

--Create trigger to monitor inserts.
CREATE TRIGGER trgInsertToChangeLog
ON MyTable

FOR INSERT
AS
DECLARE @col1value int
SET @col1value = (SELECT col1 FROM inserted)
INSERT INTO ChangeLogForMyTable VALUES(@col1value, ’INSERT’,
CURRENT_TIMESTAMP, SYSTEM_USER)
GO

--Drop prior version of trgDeleteToChangeLog trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgDeleteToChangeLog’ AND type = ’TR’)
 DROP TRIGGER trgDeleteToChangeLog
GO

--Create trigger to monitor deletes.
CREATE TRIGGER trgDeleteToChangeLog
ON MyTable
FOR DELETE
AS
DECLARE @col1value int
SET @col1value = (SELECT col1 FROM deleted)
INSERT INTO ChangeLogForMyTable VALUES(@col1value, ’DELETE’,
CURRENT_TIMESTAMP, SYSTEM_USER)
GO

--Drop prior version of trgUpdateToChangeLog trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgUpdateToChangeLog’ AND type = ’TR’)
 DROP TRIGGER trgUpdateToChangeLog
GO

CREATE TRIGGER trgUpdateToChangeLog
ON MyTable
FOR UPDATE
AS
DECLARE @col1value int
SET @col1value = (SELECT col1 FROM deleted)
INSERT INTO ChangeLogForMyTable VALUES(@col1value, ’UPDATE’,
CURRENT_TIMESTAMP, SYSTEM_USER)
SET @col1value = (SELECT col1 FROM inserted)
INSERT INTO ChangeLogForMyTable VALUES(@col1value, ’UPDATE’,
CURRENT_TIMESTAMP, SYSTEM_USER)
GO

The following scr ipt should be run im m ediately after you create the t r iggers with
the preceding scr ipt . I t also benefits from a fresh copy of the MyTable t able, such
as the one generated by the udfHigherThanMax script in the “Creat ing a Scalar
UDF Without Param eters” sect ion. The script m akes a ser ies of changes to the
MyTable table. After each change, it uses SELECT statem ents to return the
MyTable table and the ChangeLogForMyTable table. The first change is to add a
new row with t he value 25 for col1 . Next it updates the value 25 to 26. Finally it
deletes the row in t he MyTable table with a col1 value of 26.
--Demo_trgInsertUpdateDeleteToChangeLog
--Insert a new row into MyTable and display
--MyTable and ChangeLogForMyTable tables
INSERT INTO MyTable (col1)
VALUES (25)

SELECT *
FROM MyTable
SELECT *

FROM ChangeLogForMyTable
GO

--Update inserted row value and display
--MyTable and ChangeLogForMyTable tables.
UPDATE MyTable
SET col1 = 26
WHERE col1 = 25

SELECT *
FROM MyTable
SELECT *
FROM ChangeLogForMyTable
GO

--Delete updated row and display
--MyTable and ChangeLogForMyTable tables.
DELETE
FROM MyTable
WHERE col1 = 26

SELECT *
FROM MyTable
SELECT *
FROM ChangeLogForMyTable
GO

Exam ining the Results pane contents will allow you to follow the changes to t he
MyTable table as well as the ChangeLogForMyTable table. The f irst display of the
ChangeLogForMyTable table shows a table with j ust one row and a col1 value of
25. I n the next display of t he table, you can see three rows. This is because an
update adds two rows to the table. I n it s f inal appearance in t he results pane, t he
ChangeLogForMyTable table contains four rows.

Enforcing a Business Rule on a Table

One of t he classic uses for t r iggers is t he enforcem ent of business rules. After all,
the t r igger always f ires before a change event . The T-SQL in t he t r igger can
assess the change to m ake sure it conform s to business rules before com m it t ing
the change to a table. I f a change value doesn’t sat isfy a business rule, the
t rigger can take an appropr iate rem edy, such as reject ing the change or revising
the change and inform ing the user of any rem edial act ion.
The next sam ple enforces a sim ple business rule. The rule is t hat users can insert
only even num bers into col1 of t he MyTable table. Your norm al business rules can
be substant ially m ore sophist icated than this sam ple, but t he t r iggers to enforce
those rules can st ill use the sam e logic. First you test the change value to m ake
sure it adheres to the rule. Second, if t he change value doesn’t conform to t he
business rule, your t r igger can perform an appropriate rem edial act ion for the
invalid change value. Third, if t he change value sat isfies t he business rule, you
insert it into the table.

Note

Before running the sample script in this sect ion, make sure
you drop all other t r iggers for the MyTable table that can
conflict with the sample below. The sample script on the
book’s companion CD removes all pr ior t r iggers created for

the MyTable table in this chapter. For brevity, the list ing here
doesn’t show the code for dropping all these t r iggers.
The sam ple uses an I NSTEAD OF t r igger. Because this type of t r igger f ires before
the change event , t here is no need to roll back a t ransact ion for an invalid act ion.
The sam ple uses the m odulo operator (%) to check whether a num ber div ides
evenly by 2. A rem ainder of 1 indicates an odd num ber. This outcom e calls for a
rem edial act ion. The act ion in t his instance is t o add 1 to the input value from the
inserted table, const ruct a m essage indicat ing the alt ernat ive act ion taken, and
finally insert the new even num ber into t he table. A rem ainder of 0 indicates an
even num ber. Because even num bers sat isfy the business rule, the t r igger can
just insert t he value from the inserted table into col1 of t he MyTable table.
After the creat ion of t he t r igger, t he script includes data m anipulat ion and SELECT
statem ents to test the t r igger ’s logic. You can run the sam ple script and see the
t rigger autom at ically add 1 when the script at tem pts to input an odd num ber (25)
into col1 in t he MyTable table. On the other hand, the t r igger m erely accepts the
insert of an even num ber (24) into col1 in the MyTable table.
--trgInsteadOfInsert
--Drop prior version of trgInsteadOfInsert trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgInsteadOfInsert’ AND type = ’TR’)
 DROP TRIGGER trgInsteadOfInsert
GO

--Create an INSTEAD OF trigger.
CREATE TRIGGER trgInsteadOfInsert
ON MyTable
INSTEAD OF INSERT
AS
DECLARE @col1value int
DECLARE @newcol1value int
DECLARE @strMsg varchar(400)

SET @col1value = (SELECT col1 FROM inserted)

--If inserted value is odd, make it even
--before inserting it.
IF @col1value%2 = 1
 BEGIN
 SET @newcol1value = @col1value + 1
 SET @strMsg = ’The value you want to insert is: ’
 + CAST(@col1value AS varchar(3))
 + ’, but it violates a business rule.’ + CHAR(10) +
 ’ Therefore, I insert ’
 + CAST(@newcol1value AS varchar(3)) + ’.’
 RAISERROR (@strMsg,16,1)
 INSERT INTO MyTable (col1) VALUES(@newcol1value)
 END
ELSE
 INSERT INTO MyTable (col1) VALUES(@col1value)
GO

--Try to insert an odd value into col1 in MyTable.
INSERT INTO MyTable (col1) VALUES(25)

--Display the col1 values in MyTable.
SELECT *
FROM MyTable

--Delete the next even value after the odd value.

DELETE
FROM MyTable
WHERE col1 = 26

--Display the col1 values in MyTable.
SELECT *
FROM MyTable

--Insert an even value into col1 in MyTable.
INSERT INTO MyTable (col1) VALUES(24)

--Display the col1 values in MyTable.
SELECT *
FROM MyTable

--Delete the new even col1 value in MyTable.
DELETE
FROM MyTable
WHERE col1 = 24

--Display the col1 values in MyTable.
SELECT *
FROM MyTable

Enforcing a Business Rule on a View

Two of the advantages of views are that they perm it you to insulate your
database schem a from the user interface for an applicat ion and that you can
select ively expose subsets from a table without exposing all t he data in a base
table. These features perm it you to secure the base table or tables for a view
from all or m ost users while you grant t hese sam e users access to a subset of t he
data from the base table or tables through a view. Unfortunately, AFTER t r iggers
never applied to v iews, so previously you couldn’t enforce business rules with
t riggers for v iews. SQL Server 2000 int roduced I NSTEAD OF t r iggers, which apply
to v iews. Therefore, you can gain the benefits of exposing data through views and
st ill be able to enforce business rules v ia t r iggers.
The sam ple in t his sect ion dem onst rates the syntax for apply ing a business rule
for inserts into a view. The v iew is vewMyTable. This v iew returns all t he rows for
the colum n in t he MyTable table. The business rule is that t he inserted col1 value
can be only 1 greater t han the current m axim um in col1 of the MyTable table.

Note

As with the sample script from the preceding sect ion, you
should remove all t r iggers that can conflict with the new
t r igger. The version of the following sam ple on the book ’s
companion CD removes all pr ior t r iggers created for the
MyTable table in this chapter. For brevity, the list ing here
doesn’t show the code for dropping all these t r iggers.
The script below starts with t he creat ion of the vewMyTable v iew. Then the script
m oves on to create a fresh version of t rgI nsteadOfI nsertForvewMyTable. No
special act ion is necessary for creat ing a t r igger for a v iew. I n the ON clause for
the CREATE TRI GGER statem ent , j ust nam e the view— vewMyTable, in t his case.
The t r igger ’s logic uses the udfOneHigherThanMax UDF created ear lier in t his
chapter. You should run the code to create this UDF if it isn’t available. The logic
for enforcing the business rule is the sam e as for the previous t r igger, although

the actual business rule is different . An I F…ELSE statem ent t ests for the validity
of t he new value relat ive to the business rule. I f the new value fails the test , the
t rigger perform s a rem edial act ion. This act ion prints a m essage let t ing the user
know the new value is invalid. Because the t r igger is an I NSTEAD OF t r igger,
there is no need to roll back the insert . I f the new value is valid, t he t r igger
inserts the new value into vewMyTable.
After the script creates the t r igger, t he script goes on to t est the t r igger by t ry ing
to insert two new values. The f irst value v iolates the business rule, and the
t rigger rejects it . The second value sat isfies t he business rule, and the t r igger
inserts the new value into col1 of t he MyTable t able. The final data m anipulat ion
statem ent in t he script rem oves the value newly inserted into the vewMyTable
view to restore the base table to it s init ial state.
--trgInsteadOfInsertForvewMyTable
--Drop prior version of vewMyTable view.
IF EXISTS(SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_NAME = ’vewMyTable’)
 DROP VIEW vewMyTable
GO

--Create vewMyTable view.
CREATE VIEW vewMyTable
AS
SELECT *
FROM MyTable
GO

--Drop prior version of trgInsteadOfInsertForvewMyTable trigger.
IF EXISTS (SELECT name FROM sysobjects
 WHERE name = ’trgInsteadOfInsertForvewMyTable’ AND type = ’TR
’)
 DROP TRIGGER trgInsteadOfInsertForvewMyTable
GO

--Create an INSTEAD OF trigger for a view.
CREATE TRIGGER trgInsteadOfInsertForvewMyTable
ON vewMyTable
INSTEAD OF INSERT
AS
DECLARE @col1value int
SET @col1value = (SELECT col1 FROM inserted)
IF @col1value > dbo.udfOneHigherThanMax()
 RAISERROR(‘Value too high.’,17,1)
ELSE
 INSERT INTO vewMyTable (col1) VALUES(@col1value)
GO

--Attempting to insert a value of 100 fails
--through vewMyTable.
INSERT INTO vewMyTable (col1) VALUES(100)

SELECT * FROM vewMyTable
GO

--Attempting to insert a value one higher
--than the maximum value succeeds.
INSERT INTO vewMyTable (col1) VALUES(dbo.udfOneHigherThanMax())

SELECT * FROM vewMyTable
GO

--Remove inserted value.
DELETE
FROM vewMyTable
WHERE col1 = dbo.udfOneHigherThanMax()-1
GO

Chapter 6 . SQL Server 2 0 0 0 XML
Funct ionality
When Microsoft SQL Server 2000 was launched, Microsoft com m it ted it self t o
providing the best Extensible Markup Language (XML) funct ionalit y possible. XML
is im portant because it prom ises to revolut ionize the way database and Web
developers im plem ent data access and data m anipulat ion capabilit ies in their
solut ions. Microsoft said it would revise the init ial release with t im ely updates that
included new funct ionalit y reflect ing the rapidly evolv ing XML standards and
related developm ent issues.
As this chapter was being prepared, Microsoft delivered on it s com m itm ent with
the release of it s latest update— the Microsoft SQL Server 2000 Web Services
Toolk it . The toolk it follows two ear lier releases: XML for SQL Server 2000 Web
Release 1 and XML for SQL Server 2000 Web Release 2.
The Web Services Toolk it is based on SQLXML 3.0 and includes the SQLXML 3.0
installat ion package. Microsoft says that t he features int roduced in SQLXML 1.0
and SQLXML 2.0 are included in the SQLXML 3.0 package. See Chapter 12 for
coverage of the com pat ibilit y of t he toolk it w it h the two prior Web releases. I n
addit ion, see Chapter 1 3 for com m entary and sam ples using the Web Services
Toolk it .
You will gain from this chapter an overall understanding of XML funct ionalit y in
SQL Server with an em phasis on access to that funct ionalit y v ia T-SQL, XML
schem as and tem plates, and hypertext t ransport protocol (HTTP) . Chapter 12 will
refocus on XML so that you can build on the understanding presented here while
you learn how to tap the XML capabilit ies in SQL Server with Visual Basic .NET
and related technologies, such as ADO.NET. With XML, developers can build
incredibly powerful solut ions for ret r iev ing and m aintaining data over Web
connect ions. As the word gets out about how easy it is to create these solut ions,
you will becom e an evangelist for using XML with SQL Server.
This chapter relies on the Northwind sam ple database. The chapter sam ples add a
couple of new views and user-defined funct ions to t he database for use with XML
files. T-SQL scripts for creat ing these objects are included with t he sam ple files
for this chapter. The m ain resource for the chapter is a collect ion of nearly 20
XML f iles along with an assortm ent of URLs. Som e of t he URLs dem onst rate direct
access to a SQL Server database, while other URLs invoke an XML file and access
a SQL Server database indirect ly t hrough the XML file.

Overview of XML Support

I n learning about XML funct ionalit y, it is im portant to recall t hat Microsoft
int roduced XML processing power t o SQL Server 2000 in m ult iple waves. This
m eans that selected XML features available from the init ial version of SQL Server
2000 have been obsoleted, or at least deprecated, by subsequent ly int roduced
XML techniques. This is because Web Release 1 and Web Release 2— and now the
Web Services Toolk it— added new XML funct ionalit y not available in the init ial
release.
The overview of XML capabilit ies in t his sect ion has two parts. First it br iefly
sum m arizes im portant XML features for t he init ial release of SQL Server 2000 and
each of t he first two Web releases. Second it provides helpful inform at ion for
installing the Web releases. See Chapter 12 and Chapter 1 3 for m ore

inform at ion about t he latest Web release, the Microsoft SQL Server 2000 Web
Services Toolk it .

Sum m ary of XML Features by SQL Server Release

The init ial release of SQL Server 2000 offered XML funct ionalit y in four m ain
areas.

• The abilit y t o access SQL Server v ia HTTP. This form of access relies on
the creat ion of a Microsoft I nternet I nform at ion Services (I I S) v irt ual
directory for each database for which you provide access via HTTP.

• Support for XDR (XML-Data Reduced) schem as. You can use these
schem as to create XML-based v iews of SQL Server row sources, and you
can use a subset of t he XML Path (XPath) query language to query these
views. The full XPath specificat ion is a World Wide Web Consort ium (W3C)
standard (as out lined at ht tp: / / www.w3.org/ TR/ xpath) .

• Ret r ieving and wr it ing XML data. With the FOR XML clause for t he T-SQL
SELECT statem ent , SQL Server provides a route for reading it s data
sources and returning result sets in XML form at . OPENXML is a new
funct ion that can return a rowset based on an XML docum ent . Because T-
SQL enables the use of the OPENXML funct ion in a m anner sim ilar t o t hat
of t he OPENROWSET funct ion, you can use I NSERT statem ents to populate
data sources based on XML docum ent contents.

• Enhancem ents for XML to Microsoft SQL Server 2000 OLE DB provider
(SQLOLEDB). These XML im provem ents com e along with version 2.6 of
Microsoft Data Access Com ponents. Using the new capabilit ies perm its you
to pass XML- form at ted data to a Com m and object and return XML-
form at ted data from a Com m and obj ect . I n eit her case, the data passes as
a St ream obj ect .

Web Release 1 was last updated on February 15, 2001. This release adds selected
new XML capabilit ies to the XML features int roduced when SQL Server 2000
init ially shipped in t he fourth quarter of 2000. As you can see, Microsoft wasted
no t im e enhancing the init ial capabilit ies. Web Release 1 creates two m ajor
im provem ents along with a collect ion of m inor ones.

• Updategram s enable t ransact ion-based data m anipulat ion using XML.
Updategram s offer an XML-based syntax for insert ing, updat ing, and
delet ing records in a SQL Server row source. You can specify t ransact ions
for sets of operat ions within Updategram s so that all t he data m anipulat ion
tasks within a t ransact ion occur or none occur. By using Updategram s
instead of t he OPENXML funct ion, developers can im prove the perform ance
of t heir inserts, updates, and deletes while sim plify ing the coding.

• XML Bulk Load targets m oving m assive am ounts of XML-based data into
SQL Server. This feature addresses the needs of database adm inist rators
and others who regular ly use eit her t he BULK I NSERT statem ent or t he
bcp ut ilit y. I n a non- t ransact ion-based m ode, you can insert XML-
form at ted data faster t han with Updategram s or the OPENXML funct ion.

• Selected other Web Release 1 enhancem ents. New syntax offers you the
abilit y to specify with a param eter the return of binary data from a SQL
Server data source. Virtual directory m anagem ent tools expand to offer
m ore precise cont rol over how users can access a database v ia a v irtual
directory. Syntax enhancem ents im prove your abilit y to m ap XML schem as
to SQL Server data sources and generally m anage XML tem plates.

Web Release 2 cont inued the pat tern of interm ediate releases that enhance the
XML funct ionalit y of SQL Server 2000. The last update for Web Release 2 was
October 15, 2001, eight m onths after Web Release 1. I n I nternet t im e, this gap is
long enough for a m aj or upgrade— and Microsoft took advantage of t he interval t o
offer significant new funct ionalit y . Web Release 2 is especially appropr iate for
those planning to develop solut ions with a .NET language, such as Visual Basic
.NET. I highlight four m ajor areas of XML funct ionalit y and operat ion associated
with Web Release 2:

• Com pliance with the W3C schem a specificat ion known as XML Schem a
Definit ion (XSD). While this release doesn’t drop support for t he
proprietary XDR schem a specificat ion, Microsoft adds new funct ionalit y
that is com pliant only with the indust ry-standard XSD. Adopt ing XSD
schem as in your own work will ensure the interoperabilit y of your
applicat ions with those of others who subscribe to t he XSD specificat ion.

• Client -side form at t ing perm its the XML form at t ing of SQL Server rowsets
on the I I S server rather than the database server. This offers potent ial
scalabilit y advantages because m ult iple v irt ual director ies from different
I I S servers can point to the sam e database on a database server. I n
addit ion, client -side form at t ing rem oves processing from a database
server t hat m ight have other processing requirem ents besides those for
one or m ore I I S servers.

• Two new data access com ponents enhance XML processing capabilit ies.
First , t he SQLXMLOLEDB provider facilitates m ult iple object ives, including
client -side form at t ing and Act iveX Data Objects (ADO) access to Web
Release 2 funct ionalit y. SQLXMLOLEDB isn’t a data provider; you use it in
com binat ion with SQLOLEDB, the SQL Server ADO data provider. Second,
SQLXML Managed Classes explicit ly expose the Web Release 2 object
m odel, SQLXML 2.0, to the .NET Fram ework. By using these m anaged
classes, Visual Basic .NET developers can apply DiffGram s as an
alternat ive to Updategram s for data m anipulat ion tasks.

• Side-by-side installat ion allows Web Release 2 to run on the sam e
m achine with Web Release 1. When using Web Release 2 in this fashion,
developers need to explicit ly reference the version they need for t heir
applicat ions. For exam ple, client -side processing is exclusively available
from virtual director ies com pliant with Web Release 2. Sim ilarly, t he XML
Bulk Loading capabilit y is dependent on Web release. Each Web release
has it s own dist inct DLL for im plem ent ing the XML Bulk Loading feature.
You m ust register t he one that your applicat ion requires.

W eb Release I nstallat ion

Both Web Release 1 and Web Release 2 are fully supported releases for SQL
Server 2000. These releases shouldn’t be confused with serv ice packs that f ix
problem s. While a Web release can rem edy a problem , it s m ain goal is to add
new funct ionalit y not present in an ear lier release. I n order t o install Web Release
1 or 2, your com puter m ust have installed SQL Server 2000 RTM (Version
8.00.194) .
You can obtain the Web releases from ht tp: / / www.m icrosoft .com / sql/ downloads/ .
Click t he link labeled XML For SQL Server Web Release 1 (WR1) for Web Release
1. Click the link labeled XML For SQL Server Web Release 2 (SQLXML 2.0) for
Web Release 2. You will t ypically be downloading the releases to a com puter
equipped with an I I S server. Therefore, you should take the norm al precaut ions
to guard against acquir ing a v irus during your I nternet connect ion t im e.
After you com plete installing a Web release, your Program s m enu is updated with
an item for the release. Web Release 1 adds a new m enu it em labeled Microsoft

SQL Server XML Tools, which includes a single item — XML For SQL
Docum entat ion. This item opens the Software Developm ent Kit (SDK) for t he
package, which includes docum entat ion on the features of t he release.
Web Release 2 adds SQLXML 2.0 to the Program s m enu. The SQLXML 2.0 m enu
contains three item s: Configure I I S, SQL 2.0 Docum entat ion, and SQLXML 2.0
Readm e. Configure I I S offers a new wizard for configur ing a v irt ual directory to
interact with SQL Server (updated from the wizard in the init ial release) . The
installat ion of Web Release 2 also offers a new SQLI SAPI f ilter and SQLXML DLL
files for t he m iddle t ier t hat replace the versions shipping with t he init ial release
of SQL Server 2000. Creat ing a v irt ual directory with the Configure I I S m enu item
perm its your applicat ions to take advantage of the new features enabled by these
com ponents. You can also use the new wizard to upgrade v irtual directories to
take advantage of features int roduced with Web Release 2. I nstalling the files for
Web Release 2 doesn’t cause the rem oval or overwr it ing of the files for Web
Release 1. I t is t his feature that perm its you to tap the features of either release
side by side on the sam e com puter.

XML Form ats and Schem as

XML is a r ich and deep technology that prom ises to advance com put ing in t he
first decade of t he twenty- first century as m uch as or m ore than Visual Basic did
in the last decade of t he twent ieth century. This sect ion delivers an int roduct ion
to XML- form at ted data that part icular ly targets current and potent ial applicat ions
of XML with SQL Server. Subsequent sect ions will highlight how to use XML with
SQL Server 2000; t his sect ion focuses on three XML topics that will equip you to
understand the m aterial in t hose later sect ions. First I start by descr ibing the
overall syntax for XML docum ents. Second I present t he basics of XML schem as
as a device for validat ing XML docum ents. Third I review XML annotated schem as
as a m eans of creat ing a v iew for a SQL Server data source.

XML Docum ents

XML is especially well suited for represent ing st ructured docum ents, such as
invoices and row sources in a database. There is an im m ense body of literature
about XML. Aside from this sect ion, one place to start fam iliar izing yourself wit h
XML convent ions for represent ing data is the World Wide Web Consort ium (W3C)
site at ht tp: / / www.w3c.org/ XML. This sit e contains links to m any valuable XML
resources, such as the W3C Recom m endat ion for XML 1.0. I n addit ion, there are
m any XML-based technologies, such as XML Schem a, XPath, XSL, and XSLT.
Links at t he W3C m ain Web site can serve as a start ing point for learning about
these related technologies.
A typical XML docum ent can represent data with a collect ion of tags and a
start ing declarat ion. These tags are sim ilar in som e ways to HTML tags, but t hey
differ in im portant ways. XML tags denote data elem ents instead of how to form at
data. HTML assigns a precise m eaning to tags. For exam ple, t he < p> tag m eans
start a new paragraph. XML, on the other hand, doesn’t assign a predeterm ined
m eaning to a tag. I ndeed, the sam e tag can have a dif ferent m eaning in different
XML docum ents, and it is even possible for one tag to have different m eanings in
the sam e XML docum ent . By using nam espaces, developers can resolve potent ial
conflicts when the sam e tag has two or m ore different m eanings in the sam e
docum ent .
XML literature typically refers to t he tags in a docum ent as elem ents. An elem ent
can contain other elem ents, a data value, or both other elem ents and a data

value. Elem ents can have parent , child, and sibling relat ionships with one
another. When an elem ent contains another one, t he container elem ent is the
parent elem ent and the contained elem ent is the child elem ent . For exam ple,
< ShipperI D> , < Com panyNam e> , and < Phone> tags can be child tags of a parent
tag < Shippers> in an XML docum ent with data for the Shippers table. The tags
between a part icular instance of < Shippers> and < / Shippers> can denote a row
in the Shippers table. XML docum ents that contain m ult iple occurrences of at
least one tag, such as < Shippers> , m ust have one tag set t hat contains all other
tags, such as < root> and < / root> . This outerm ost tag set can occur just once
within an XML docum ent .
An XML tag (or elem ent) can have one or m ore at t r ibutes. The use of at t r ibutes is
opt ional. At t r ibutes appear within t he tag for an elem ent , such as < Shippers> .
You designate at t r ibutes with nam e-value pairs. The nam e denotes the at t r ibute’s
nam e, and the value depicts it s data value. Data values can appear in either
single or double quotat ion m arks following an equal sign behind the at t r ibute
nam e. You can represent the data for a table with elem ent values, at t r ibute
values, or both.
The following docum ent depicts the Shippers table data from the Northwind
database represented with elem ents and no at t r ibutes. Not ice that the first set of
angle brackets (< >) declares the docum ent as an XML docum ent in version 1
form at . The ut f-8 designat ion for encoding denotes a convent ion for convert ing
characters to bit sequences inside a com puter. Because the < Shippers> tag is
repeated three t im es in the docum ent , a parent tag set that appears just once is
necessary; t he < root> and < / root> tags m eet this requirem ent . The nam e root
has no special m eaning; any other legit im ate nam e for a tag, such as
ShippersRoot , can replace root . The < Shippers> tag is t he parent of t he
< ShipperI D> , < Com panyNam e> , and < Phone> tags. These lat t er three tags are
siblings of one another.
<?xml version="1.0” encoding="utf-8”?>
<!--Available in Chapter 06 code samples as shippers_elements.xml-->
<root>
 <Shippers>
 <ShipperID>1</ShipperID>
 <CompanyName>Speedy Express</CompanyName>
 <Phone>(503) 555-9831</Phone>
 </Shippers>
 <Shippers>
 <ShipperID>2</ShipperID>
 <CompanyName>United Package</CompanyName>
 <Phone>(503) 555-3199</Phone>
 </Shippers>
 <Shippers>
 <ShipperID>3</ShipperID>
 <CompanyName>Federal Shipping</CompanyName>
 <Phone>(503) 555-9931</Phone>
 </Shippers>
</root>

The next XML docum ent shows the sam e data from the Shippers table as the
preceding one. I n this instance, t he docum ent ’s form at t ing represents data values
with at t r ibutes instead of elem ents or tags. The declarat ion for this XML
docum ent instance is the sam e as in t he preceding sam ple. At t r ibutes appear in a
paired arrangem ent— first the at t r ibute nam e followed by an equal sign, and
second the at t r ibute value in double quotat ion m arks. The colum n values for each
row in the Shippers table appear within a separate < Shippers> tag in the
docum ent . The t railing / character within each < Shippers> tag is an alternat ive to
designat ing < / Shippers> to close the < Shippers> tag.
<?xml version="1.0” encoding="utf-8” ?>

<!--shippers_attributes.xml-->
<root>
 <Shippers ShipperID="1” CompanyName="Speedy Express"
 Phone="(503) 555-9831” />
 <Shippers ShipperID="2” CompanyName="United Package"
 Phone="(503) 555-3199” />
 <Shippers ShipperID="3” CompanyName="Federal Shipping"
 Phone="(503) 555-9931” />
</root>

Figure 6-1 shows the Shippers table in the XML form at for each of t he preceding
XML docum ent files. The figure reveals how the XML appears within a browser.
Not ice that you can read the data! Many other data form ats don’t appear so
readable in a browser. XML’s character-based form at for represent ing data is one
of t he advantages of XML over other form ats for represent ing data. I n t he
browser view of shippers_elem ents.xm l, you can collapse the data for any
indiv idual row in the Shippers table by click ing the m inus sign (-) next t o the
opening < Shippers> tag for a row. You can collapse the data for all three rows by
click ing the m inus sign next to the opening < root> tag for eit her docum ent .

Figure 6 - 1 . A pair of screen shots illust rat ing that users can readily
exam ine the contents of an XML docum ent in a brow ser.

XML Schem as

An XML schem a provides a fram ework for describing the st ructure and validat ing
the contents of an XML docum ent . With an XML schem a, you can know what
values are legit im ate for any tag or at t r ibute instance. You can also use schem as
to place const raints on the range of acceptable values for a data elem ent . By
specify ing cardinalit y for elem ents with t he m inOccurs and m axOccurs elem ent
at t ributes, you can specify how m any elem ent instances are legit im ate in an XML
docum ent . You can addit ionally designate whether an elem ent has any at t r ibutes,
and the relat ionships am ong elem ents.
The W3C approved on May 2, 2001, a recom m endat ion
(ht tp: / / www.w3.org/ 2001/ XMLSchem a) that serves as the indust ry standard for
expressing XML schem as. Developers refer t o t he W3C schem a standard as an
XSD schem a. Start ing with Web Release 2, SQL Server adopted this standard.
Before Web Release 2, SQL Server worked with XDR schem as— a precursor of the
XSD schem a. This chapter uses exclusively XSD schem as.
The following scr ipt represents t he shell for a schem a. Not ice that an XSD schem a
is an XML docum ent because it starts with an XML declarat ion. This m eans that
you can describe an XSD schem a with t he sam e syntax that you use for any XML
docum ent . I n addit ion, not ice the reference to t he nam espace at
ht tp: / / www.w3.org/ XMLSchem a. This nam espace defines a set of tags and
at t ributes for defining schem as as XML docum ents. The xsd designat ion for the
nam espace is arbit rary. (For exam ple, you can use xs instead.) An XSD schem a
can have m ore than one nam espace reference. Each nam espace can reference a
different set of tags and at t r ibutes. By using a dist inct nam espace designator for
each nam espace, you can resolve conflicts for ident ically nam ed tags and
at t ributes between two different nam espaces. The shell refers to the tags and
at t ributes with t he xsd nam espace designat ion. The schem a tag or elem ent ,
which m arks the beginning and end of a schem a, is from the nam espace
designated by xsd.
<?xml version="1.0” encoding="UTF-8”?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
</xsd:schema>

A basic understanding of several form at t ing convent ions can help you get started
wr it ing your own schem a (or at least equip you to read those writ t en by others) .
Elem ent declarat ions can be for a sim ple or a com plex type. A com plex type
elem ent has at least one child elem ent or one at t r ibute. You can explicit ly define
a child elem ent within a parent elem ent or refer to a child elem ent defined
elsewhere within a schem a. A sim ple type elem ent has neit her a child elem ent
nor an at t ribute. I n addit ion, the declarat ion for a sim ple t ype elem ent classif ies
the data type for t he elem ent according to one of the built - in XSD data types. The
XSD data types generally correspond to SQL Server data types. See the “Data
Type Coercions and the sql: datatype Annotat ion” topic in t he online
docum entat ion for Web Release 2 for a detailed discussion of the sim ilar it ies and
differences between SQL Server and XSD data t ypes. I n addit ion to elem ents, a
schem a can also specify at t r ibutes. According to the W3C convent ion, the
at t ributes for a com plex type elem ent are designated following the specificat ions
for or references to any child elem ents.
The following XML docum ent is t he XSD schem a for t he shippers_elem ents.xm l
docum ent file presented in t he preceding sect ion. Following the schem a tag with
the nam espace declarat ion, the schem a declares a com plex elem ent type for the
root tag. The root elem ent is com plex because it has child elem ents, nam ely, one
or m ore Shippers elem ents. The exact upper lim it for the num ber of Shippers
elem ents within the root elem ent is unbounded. (See the assignm ent for
m axOccurs.) The m inOccurs at t r ibute for the choice specif icat ion doesn’t appear

in the schem a, but it s default value is 1. Therefore, t o allow an XML docum ent
with no Shippers elem ents, designate the value 0 for m inOccurs. Not ice that t he
Shippers elem ent doesn’t appear nested within the root elem ent declarat ion.
I nstead, the root elem ent declarat ion uses the ref at t r ibute to refer t o t he
Shippers elem ent .
The Shippers elem ent declarat ion follows the root elem ent declarat ion. The
Shippers elem ent has three child elem ents— ShipperI D, Com panyNam e, and
Phone. I n the following schem a, t he declarat ions for t he child elem ents appear
nested within t he Shippers elem ent . Each child elem ent has a data type derived
from an XSD built - in data type, such as the integer or st r ing data t ype. The
rest r ict ion elem ent in t he child declarat ions denotes the data t ype for t he child
elem ents from the built - in data type. I n the case of t he ShipperI D elem ent , the
declarat ion lim its the elem ent ’s values to integers. I n t he case of the
Com panyNam e and Phone elem ents, t he declarat ions lim it the elem ent values to
st r ings. I n addit ion, t he m axim um length is 40 and 24 for t he Com panyNam e and
Phone elem ents, respect ively. By assigning m inOccurs to 0, the schem a perm its
the Phone elem ent to be opt ional for each Shippers elem ent . The ShipperI D and
Com panyNam e elem ents are required child elem ents for each Shippers elem ent .
<?xml version="1.0” encoding="UTF-8”?>
<!--shippers_elements.xsd-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="root">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element ref="Shippers"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Shippers">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ShipperID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CompanyName">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="40"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Phone” minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="24"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The schem a for t he shippers_at t r ibutes.xm l docum ent file appears next . The
Shippers elem ent in this schem a has no child elem ents because of t he layout of
the shippers_at t r ibutes.xm l docum ent . Nevertheless, the Shippers elem ent st ill
requires a com plex type elem ent declarat ion because the Shippers elem ent has

three at t r ibutes. Not ice that you can use the sam e sim pleType elem ents for
declaring at t r ibutes that you use for declaring elem ents in an XML docum ent . I n
spite of using the sam e sim pleType elem ents as the preceding schem a, this
schem a differs from the preceding one by declaring ShipperI D, Com panyNam e,
and Phone as at t r ibutes instead of elem ents.
<?xml version="1.0” encoding="UTF-8”?>
<!--shippers_attributes.xsd-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="root">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element ref="Shippers"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Shippers">
 <xsd:complexType>
 <xsd:attribute name="ShipperID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="CompanyName">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="40"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="Phone” type="string">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="24"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Annotated Schem as

Up unt il this point , I used schem as to specify t he contents of XML docum ents.
However, m ost of you reading this book probably care m ore about t he data in
your SQL Server database than in an XML docum ent . XML docum ents are a
convenient way of showing and sharing data over the Web. I nstead of schem as
m erely def ining XML docum ents, you would probably prefer t hat XML docum ents
point t o SQL Server databases and expose database contents. This role allows
schem as to provide Web-based v iews for SQL Server database contents.
Annotated schem as when used with a v irt ual directory on an I I S server allow you
to der ive a v iew of the data in a SQL Server database. An annotated schem a
contains special elem ents and at t r ibutes that specify how to link it to a SQL
Server database. The XML docum ent t hat exposes the view can appear in a Web
browser. The contents of the XML docum ent will conform to the schem a design
and any param eters passed direct ly from the browser (or an interm ediate XML
docum ent) . A browser can both init iate t he request for t he XML view and display
the v iew as an XML docum ent . I n addit ion, a browser can launch the process by
point ing to an XML docum ent in a v irtual directory on an I I S server that invokes a

schem a link ing to a row source. SQL Server has a special t ool for creat ing v irtual
director ies on I I S servers that point to specific SQL Server databases. These
virtual directories perm it annotated schem as to connect to a SQL Server database
and der ive a rowset .

Note

One of the innovat ions of Web Release 2 is that the
formatt ing of the returned rowset can take place on the I I S
server instead of SQL Server. By t ransferr ing the format t ing
of the returned rowset from the database server to the I IS
server, Microsoft can eventually prov ide v iews based on
annotated schem as for other than SQL Server databases.
This sect ion int roduces the basics of annotated schem a design and use. A later
sect ion, “Virtual Directory Managem ent ,” drills down on v irt ual director ies. An
annotated schem a is an XML docum ent just like a norm al XSD schem a. However,
you norm ally wr ite it without t he XML version declarat ion. I n addit ion, you m ust
add a new nam espace reference (schem as-m icrosoft -com : m apping-schem a) to
the schem a shell t o accom m odate special annotat ion elem ents and at t r ibutes.
This Microsoft m apping nam espace supports t he special features that perm it
annotat ion of XSD schem a so they link to one or m ore row sources in a SQL
Server database. The sql designator for the nam espace is arbit rary; you can use
any other legit im ate XML nam e.
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
...
</xsd:schema>

Two at t r ibutes for link ing a schem a to a row source in a database include the
relat ion at t r ibute and the f ield at t r ibute. Precede these at t r ibute nam es and any
other that you use for annotat ing your schem a with t he designator for t he
Microsoft m apping nam espace. The relat ion at t r ibute creates a link between a
com plex elem ent and a SQL Server row source. Using the relat ion at t r ibute lets
you create an alias in your annotated schem a for t he row source nam e in a SQL
Server database. The schem a will at tem pt t o m atch the child elem ents and
at t ributes for the com plex elem ent to the colum ns from the row source. I f t he
at t ributes and child elem ents have nam es that m atch colum n nam es in t he row
source, you don’t need to specify a f ield at t r ibute for the at t r ibute or elem ent . I f
the at t r ibute or child elem ent nam e doesn’t m atch the nam e for a colum n in t he
row source, you can specify t he f ield at t r ibute. With t he f ield at t r ibute, you can
explicit ly link an elem ent or at t r ibute to a colum n in t he row source specified by a
relat ion at t r ibute.

Note

I f a com plex element name in a schem a matches a row
source name in a database, you don’t need to designate the
correspondence between the two with the relat ion at t r ibute.
The following annotated schem a dem onst rates the use of t he relat ion and f ield
at t ributes. The schem a form ats an XML docum ent with a com plex elem ent type
nam ed xm lShippers that has two child elem ents, xm lCom panyNam e and
xm lPhone, and an at t r ibute, ShipperI D. Not ice that t he relat ion and f ield
at t ributes appear with a sql prefix to specify the nam espace for defining the
at t ributes. The sql: relat ion at t r ibute points the xm lShippers elem ent to t he
Shippers row source. The sql: f ield at t r ibutes for the xm lCom panyNam e and

xm lPhone elem ents link these elem ents to the Com panyNam e and Phone colum ns
in the Shippers row source. Because the ShipperI D at t r ibute nam e m atches a
colum n in the Shippers row source, it doesn’t require a sql: f ield at t r ibute set t ing
to link it to a colum n within t he row source.
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<!--xmlShippersSchema.xml-->
 <xsd:element name="xmlShippers” sql:relation="Shippers” >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="xmlCompanyName”
 sql:field="CompanyName”
 type="xsd:string” />
 <xsd:element name="xmlPhone”
 sql:field="Phone”
 type="xsd:string” />
 </xsd:sequence>
 <xsd:attribute name="ShipperID” type="xsd:integer” />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

With three m ore steps, you can return an XML docum ent based on the Shippers
row source.

1. Save the annotated schem a in a v irt ual directory configured to connect to
the Northwind database. Because the Northwind table contains a table
nam ed Shippers, t his defines the row source in t he annotated schem a.

2. Create a new XML docum ent , called a tem plate, that invokes the
annotated schem a. By invoking the query with XPath syntax, the tem plate
file can cause the annotated schem a to return a view of the Shippers table
as an XML docum ent .

3. Navigate to t he tem plate from a browser t o return the v iew specified by
the tem plate to t he browser’s docum ent window.

The following XML docum ent illust rates the syntax for referr ing to t he preceding
annotated schem a in xm lShippersSchem a.xm l. The specificat ion requires the
schem a to reside in a special t em plate folder within t he v irtual directory, but you
can explicit ly designate another source for the annotated schem a file. The actual
query syntax sim ply references the elem ent with t he sql: relat ion at t r ibute set t ing,
nam ely xm lShippers. This form of an XPath query requests the return of all the
rows from the Shippers table. The XPath query is equivalent to SELECT * FROM
Shippers in T-SQL.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--xmlShippersSchemaT.xml-->
 <sql:xpath-query mapping-schema="xmlShippersSchema.xml">
 /xmlShippers
 </sql:xpath-query>
</ROOT>

The top screen shot in Figure 6-2 shows the Shippers table in XML form at based
on the annotated schem a in xm lShippersSchem a.xm l and the tem plate file
(xm lShippersSchem aT.xm l) t hat quer ies the schem a. The browser ’s Address box
shows the path to the tem plate file t hat contains the XPath query. The tem plate
resides on an I I S server nam ed ccs1. The tem plate is in t he tem plate folder of t he
MyNwind v irtual directory. The use of t he nam e tem plate for t he tem plate folder
is arbit rary. Any other nam e will serve equally well. The XML docum ent in t he
browser window follows the form at of the annotated schem a. Not ice that

ShipperI D appears as an at t r ibute, but xm lCom panyNam e and xm lPhone appear
as elem ents. Whereas the data values are from the Shippers table in the
Northwind database, the elem ent and at t r ibute nam es are from the annotated
schem a.

Figure 6 - 2 . A pair of screen shots illust rat ing different result sets from
the sam e annotated schem a based on tw o tem plates w ith different XPath

queries.

The lower screen shot in Figure 6-2 shows the result of an XPath query that asks
for the return of just the row with ShipperI D equal to 3. The syntax for the
tem plate with t he query appears below. The param eter for ShipperI D has a
leading @. Not ice that t he Address box points to the file with t he following
tem plate. By cont rast ing the following tem plate with t he preceding one, you can
see how to reuse an annotated schem a to der ive different result sets. I n a sense,
the annotated schem a serves as a param eter ized view!
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--xmlShippersSchemaT2.xml-->
 <sql:xpath-query mapping-schema="xmlShippersSchema.xml">

 /xmlShippers[@ShipperID=3]
 </sql:xpath-query>
</ROOT>

Recall t hat annotated schem as sim ulate v iews in SQL Server databases. Because
views often join tables, the next annotated schem a m erges the Orders table with
the Shippers table to m ake available t he orders by ShipperI D. The schem a has to
specify t he join between the tables in the original SQL Server data source. The
schem a specifies the join with a relat ionship elem ent (not to be confused with a
relat ion elem ent) . The relat ionship elem ent has five at t r ibutes.

• The nam e at t r ibute assigns a nam e to t he relat ionship for subsequent
reference in t he schem a.

• The parent at t r ibute denotes the parent row source, or one side, of t he
one- to-m any relat ionship between Shippers and Orders. (Each shipper can
have m any orders.)

• The parent -key at t r ibute denotes the f ield in t he parent row source for
link ing the parent and child row sources.

• The child and child-key at t ributes point t o t he m any side of the one- to-
m any relat ionship. The Shipvia f ield in the Orders table is a foreign key
point ing to the ShipperI D field in the Shippers t able.

The relat ionship elem ent is nested within the appinfo elem ent , which in turn is
nested in t he annotat ion elem ent .
After specifying the relat ionship in t he SQL Server data source, t he annotated
schem a focuses on specify ing the layout of the XML docum ent and link ing that
layout to t he two source tables and the relat ionship between them . The schem a
defines a custom com plex elem ent nam ed ShipperType. This custom type starts
with a declarat ion for the Order com plex type elem ent . The Order com plex
elem ent is based on the Orders table and the ShipperOrders relat ionship defined
at the top of the schem a. The Order elem ent has two at t r ibutes, OrderI D and
ShipVia, t hat relate to Orders table colum ns with the sam e nam es. I n addit ion to
these at t r ibutes based on the Orders table, the ShipperType elem ent has a parent
with two addit ional at t r ibutes, ShipperI D and Com panyNam e. As with t he Order
at t ributes, t here is no need for t he sql: f ield at t r ibute to link t hese to colum ns in
the Shippers table because the at t r ibute nam es m atch the colum n nam es.
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<!--xmlShipperOrdersSchema.xml-->
<xsd:annotation>
 <xsd:appinfo>
 <sql:relationship name="ShipperOrders"
 parent="Shippers"
 parent-key="ShipperID"
 child="Orders"
 child-key="ShipVia” />
 </xsd:appinfo>
</xsd:annotation>

<xsd:element name="Shipper” sql:relation="Shippers”
type="ShipperType” />
 <xsd:complexType name="ShipperType” >
 <xsd:sequence>
 <xsd:element name="Order”
 sql:relation="Orders"
 sql:relationship="ShipperOrders” >
 <xsd:complexType>
 <xsd:attribute name="OrderID” type="xsd:integer” />

 <xsd:attribute name="ShipVia” type="xsd:integer” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ShipperID” type="xsd:string” />
 <xsd:attribute name="CompanyName” type="xsd:string” />
 </xsd:complexType>

</xsd:schema>

The next XML docum ent shows the tem plate for referencing the preceding
annotated schem a in an XPath query. The query calls for t he return of all rows
from the j oining of t he Shippers table with t he Orders table. An excerpt from the
result set appears in Figure 6-3. The browser docum ent window shows the
t ransit ion from the last few rows for ShipperI D 1 to t he f irst few rows for
ShipperI D 2.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--xmlShipperOrdersSchemaT.xml-->
 <sql:xpath-query mapping-schema="xmlShipperOrdersSchema.xml">
 /Shipper
 </sql:xpath-query>
</ROOT>

Figure 6 - 3 . An excerpt from a result set based on the joining of the
Shippers table w ith the Orders table.

URL Access to SQL Server

The preceding discussion of annotated schem as dem onst rated URL access to a
SQL Server database. You learned that by referencing an XPath query for an
annotated schem a in an XML file, a browser can return data based on it s URL, the
XPath query, and the annotated schem a. I n t his sect ion, I lay t he foundat ion for a
m ore com prehensive understanding of URL access for SQL Server databases. This
sect ion begins with a br ief review of v irtual directory m anagem ent issues. The
prim ary focus is how to set up a new virt ual directory with t he I I S Virt ual
Directory Managem ent For SQLXML 2.0 ut ilit y in Web Release 2. You will also

learn about why and when to upgrade a v irtual directory created with t he init ial
version of the ut ilit y for configur ing I I S v irt ual directories to work with SQL
Server. Next I dem onst rate how to use the FOR XML clause for SQL Server
SELECT statem ents in a browser ’s Address box. After an int roduct ion to the FOR
XML clause, I dr ill down on how to apply it w it h a collect ion of sam ples that
highlight issues pertaining to it s use and reveal workarounds for URL access
problem s with respect t o SQL Server data sources. This closing m aterial
com plem ents and extends the previous discussion of annotated schem as. Many
database developers and adm inist rators are likely t o f ind the T-SQL approach
illust rated in this sect ion m ore fam iliar t han the XPath quer ies of the preceding
sect ion.

Virtual Directory Managem ent

Before users can gain URL access to a SQL Server database, an adm inist rator
m ust conf igure an I I S virtual directory t hat points to the database. This directory
m ust reside on a com puter running I I S server. This can be the sam e or a
different com puter from the one running SQL Server. You can have v irtual
director ies on m ult iple I I S servers connect ing to a single SQL Server database.
Users gain URL access to the database through the v irt ual directory on a server
that points to a SQL Server database.
The I I S Virtual Directory Managem ent For SQLXML 2.0 ut ilit y lets you create and
m anage a v irtual directory. This tool changed with t he int roduct ion of Web
Release 2. This is because Web Release 2 is t he first release to support client -side
form at t ing of XML docum ents. Recall from earlier discussions of this topic t hat
client -side XML form at t ing enhances scalabilit y and reduces the load on a
database server. As a result of t he enhancem ent to the ut ilit y for Web Release 2,
you cannot gain t he benefits of client -side form at t ing without upgrading an old
virtual directory or creat ing a new one with Web Release 2.
Launch the I I S Virtual Directory Managem ent For SQLXML 2.0 ut ilit y by opening
the Windows Start m enu and choosing Program s, then SQLXML 2.0, and then
Configure I I S Support . Select Default Web Site under the local I I S server. This
exposes any previously created v irt ual director ies in t he r ight -hand pane of t he
m anagem ent console for the ut ilit y. Double-click any exist ing directory to open a
m ult itabbed Propert ies dialog box for t hat directory. From this dialog box, you can
update the set t ings for t he directory— just select the Version 2 tab and click
Upgrade To Version 2. Right -click Default Web Site, choose New, and then choose
Virt ual Directory to star t creat ing a new virt ual directory. This opens the New
Virt ual Directory Propert ies dialog box, which has generally the sam e tabs as
those for an exist ing vir tual directory. You specify the new virt ual directory by
m aking select ions on the dialog box’s tabs and click ing OK.
Before start ing to create a new virt ual directory, pick an exist ing physical
directory (a folder) or create a new one with Windows Explorer . The physical
directory will be associated with the virt ual directory you’re creat ing. I t is
com m on to locate folders for a v irtual directory in the wwwroot directory of t he
I netpub folder. For instance, you can create a folder t here nam ed nwind. You will
t ypically want to create two addit ional folders below the m ain folder for a v irt ual
directory— one subfolder for stor ing tem plates and another for storing annotated
schem as. The tem plate folder is part icular ly f lex ible. Recall from the discussion of
annotated schem as that you can store and use annotated schem as in t he
tem plate folder.

Note

For more informat ion about creat ing a vir tual directory, see
the “Creat ing the nwind Virtual Directory” topic in the

SQLXML 2.0 docum entat ion.
After creat ing folders for your v irt ual directory, open a New Virt ual Directory
Propert ies dialog box as j ust described. Next com plete the inform at ion on the
dialog box’s tabs.

• On the General tab, enter a nam e for your v irtual directory, such as
MyNwind. Then use the Browse but ton to navigate to the root folder for
your v irt ual directory.

• Next navigate to the Secur ity tab. I n the Credent ials group, designate a
login t hrough which those browsing the v irt ual directory will log on to t he
database. For exam ple, you can specify I USR_CCS1 to designate
anonym ous Web users on a database server nam ed CCS1. Make sure that
you have a Windows account nam ed I USR_CCS1 as well as SQL Server
login with user accounts in databases to which you want the I USR_CCS1
user to have access. Give the user accounts in a database whatever
perm issions your applicat ion requires. See Chapter 7 for a m ore
com prehensive discussion of SQL Server secur ity.

• On the Data Source tab, enter or select a SQL Server nam e and a
database nam e on the server. These set t ings determ ine the database to
which the v irtual directory points.

• The Set t ings tab offers cont rols for determ ining how browsers can specify
quer ies through the URL they show in t he Address box. For exam ple, you
can enable and disable SQL quer ies, such as those dem onst rated later in
this sect ion, direct ly from the Address box. You can also use this tab to
specify XML form at t ing of a rowset returned by a query on the I I S client
instead of t he database server.

• With the Virt ual Nam es tab, you can designate nam es and paths for t he
schem a and tem plate type folders. You can also create a v irtual nam e as a
dbobject type that facilitates users m aking direct references in a URL to
database objects, such as a table or view.

• Use the Advanced tab to fine-tune perform ance and m em ory usage. When
you com plete all the specificat ions for a new virtual directory, click OK to
create it .

Overview of FOR XML in SELECT Statem ents

SQL Server 2000 int roduced a new clause for it s SELECT statem ent that returns a
rowset form at ted as XML data. The clause causes the SELECT statem ent to return
a text st ream object form at ted as XML instead of as a rowset . The rowset and the
text st ream contain t he sam e inform at ion, but t he FOR XML clause form ats the
inform at ion as an XML docum ent . Using the FOR XML clause in com binat ion with
a v irt ual directory point ing to a SQL Server database perm its your applicat ions to
return data from a SQL Server database via HTTP.
The FOR XML clause goes at the end of a SELECT statem ent for ret r iev ing data.
The clause requires one of four argum ents. These argum ents determ ine how to
form at the ret r ieved data as XML. I n addit ion, t hree opt ional FOR XML argum ents
can further fine-tune the form at for XML data from a SELECT statem ent . The
operat ion of t his clause depends in part on a v ir tual directory’s set t ing for client -
side form at t ing. As m ent ioned, t he FOR XML clause appears at t he end of a
SELECT statem ent . I t s general design is:
SELECT … FOR XML
mode [, optional arguments]

The syntax requires a m ode argum ent . This argum ent can take any of four
values. (See Table 6-1.) The RAW m ode argum ent provides the m ost basic XML
representat ion of a row source. For exam ple, t his argum ent returns XML data

with t he sam e row ident if ier for all row sources, and a parent -child row source
appears in a single collect ion of rows instead of in a nested form at with the child
data nested below the parent data to which it belongs. The AUTO m ode argum ent
provides m ore flex ibilit y in t he return and easier form at t ing for returning binary
data. The EXPLI CI T m ode is a special m ode for detailing the precise layout of an
XML docum ent from a SELECT statem ent . I n return for the cont rol over the
layout , you m ust specially form at t he design of your SELECT statem ent . See the
“Using EXPLI CI T Mode” topic in Books Online for SQL Server 2000 for num erous
sam ples illust rat ing this nonstandard approach to form at t ing XML docum ents.
The NESTED m ode is a special m ode that taps the features of client -side
form at t ing. This is the only m ode that supports the GROUP BY clause in a SELECT
statem ent . For t his m ode to work, a virt ual directory m ust enable client -side
form at t ing. The check box for t his feature is Run On The Client on the Set t ings
tab of t he Propert ies dialog box for a v irtual directory. You can get t o t his dialog
box from the I I S Virt ual Directory Managem ent For SQLXML 2.0 ut ilit y as
described in t he “Virtual Directory Managem ent” sect ion. The m ode is available
only for v irt ual directories created (or upgraded to becom e com pat ible) with Web
Release 2.

7DEOH������0RGH�$UJXPHQWV�LQ�WKH�)25�;0/�&ODXVH�
1DPH� 'HVFULSWLRQ�

RAW Form ats rowset t o XML with a gener ic row ident if ier . Non-null colum ns
in a SELECT statem ent ’s rowset m ap to at t r ibutes within a row.
Represents joined parent -child row sources in a flat form at .

AUTO Form ats rowset t o XML with a specif ic row source ident ifier based on the
SELECT statem ent ’s FROM clause. Represents j oined parent -child row
sources in a hierarchical form at .

NESTED Form ats sim ilar ly to AUTO, but it explicit ly invokes client -side
processing. Requires virt ual directory to enable client -side form at t ing
feature for valid operat ion. Enables GROUP BY clause and aggregate
funct ions.

EXPLI CIT Allows explicit form at t ing of XML data, but it requires special SELECT
statem ent syntax to accom m odate the layout form at t ing f lex ibilit y.

The FOR XML clause opt ional argum ents include ELEMENTS, XMLDATA, and
BI NARY BASE64 . You can concurrent ly use m ore than one opt ional argum ent with
the FOR XML clause for a SELECT statem ent . Delim it t hese argum ents with
com m as from the m ode argum ent and one another. The FOR XML clause returns
colum n values from a SELECT statem ent as at t r ibutes by default . Specifying the
ELEMENTS argum ent returns colum n values as elem ents instead of at t r ibutes.
Referencing the XMLDATA argum ent in a SELECT statem ent inserts a schem a for
the XML form at ted data at the beginning of the argum ent . This schem a is in XDR
(as opposed to XSD) form at no m at ter what release you use. The BI NARY
BASE64 argum ent facilit ates the return of binary data when you’re using either
the RAW or EXPLI CI T m ode argum ent . Failing to use the BI NARY BASE64
argum ent for eit her of t hese m odes when a result set has binary data generates
an error.

RAW vs. AUTO Mode Sam ples

When using the FOR XML clause in the Address box of a browser, you will
t ypically need to designate several item s. Start wit h ht tp: / / . Then follow this with
the path to t he server and v irtual directory you are using. Next enter a quest ion
m ark. This allows you to specify a param eter nam e and its value. Use sql as the
param eter nam e followed by an equal sign (=) . Then type a SELECT statem ent
that term inates with a FOR XML clause, such as SELECT * FROM Shippers FOR

XML RAW . There is no need to replace blank spaces with special characters, such
as % 20, because the I nternet Explorer browser autom at ically inserts replacem ent
characters for blank spaces. When the XML docum ent for a SELECT statem ent
returns m ore than a single row, you m ust specify a root elem ent for the XML
docum ent t o display the result set . You can do this by typing & and root= root .
You can set the term root equal t o any legit im ate XML nam e, such as a or a1, but
not 1a, which is an illegit im ate nam e because it starts with a num ber.
Figure 6-4 shows in it s top screen shot a sam ple SELECT statem ent t o return all
rows from the Shippers table in RAW m ode:
http://ccs1/MyNwind?sql=SELECT * FROM Shippers FOR XML RAW&root=root

The browser subm its the SELECT statem ent to the MyNwind v irt ual directory on
the I I S server nam ed ccs1. For t his query statem ent to work, the MyNwind v irtual
directory m ust point to a SQL Server database with a Shippers row source, such
as the Shippers table in the Northwind database. You can also use a v iew as the
row source. Not ice that the top screen shot includes an XML docum ent in the
browser window based on the SELECT statem ent in the Address box. All rows in
the docum ent have the sam e elem ent— row. Colum n values appear as at t r ibutes
after the row elem ent . The at t r ibute nam e m atches the colum n nam e.
The bot tom screen shot shows exact ly the sam e SELECT statem ent except that
the FOR XML m ode argum ent is AUTO instead of RAW. The sole difference in t he
outcom e for switching to AUTO is that t he row elem ent nam e changed from row
to Shippers. When returning results, the AUTO argum ent always uses the table
nam e, or it s alias, as row ident if iers.

Figure 6 - 4 . A pair of SELECT st atem ents in brow sers cont rast ing the
im pact of the RAW and AUTO m ode argum ents for a result set from a

single table.

Using a SELECT statem ent that j oins parent and child tables dem onst rates
another dist inct ion between the RAW and AUTO m ode argum ents. Consider the
following SELECT statem ent . I t j oins the Orders table t o the Shippers t able by

ShipperI D num ber, which has the nam e ShipVia in t he Orders table. The ORDER
BY clause arranges the rowset so that rows are sorted by OrderI D wit hin
ShipperI D instead of by OrderI D w ithout regard to ShipperI D. OrderI D is the
default order for t he result set . The Orders table rows relate hierarchically t o t he
rows in t he Shippers table because each shipper is responsible for t ransport ing a
m utually exclusive set of orders. Tradit ional relat ional database result sets appear
as flat tables. However, XML can proper ly represent the hierarchical nature of t he
result set from the following SELECT statem ent . To display the return set
hierarchically, use AUTO instead of RAW as the m ode argum ent .
SELECT ShipperID, CompanyName, ShipVia, OrderID, OrderDate
FROM Shippers JOIN Orders ON (Shippers.ShipperID=Orders.ShipVia)
ORDER BY ShipperID

Figure 6-5 shows an excerpt from the XML form at ted result set for t he preceding
SELECT statem ent with both the RAW and AUTO m ode argum ents. The RAW
m ode argum ent outcom e appears in the top pane. The docum ent window for the
browser in t he top pane shows the last two rows for ShipperI D 1 and the first two
rows for ShipperI D 2. The bot tom pane shows the sam e results form at ted based
on AUTO m ode. Not ice that t he first two Order rows for ShipperI D 2 appear
nested within a Shippers row. All the Order rows appear nested within whichever
shipper t ransported them . This hierarchical display of the data is m ore m eaningful
than the flat table form at in t he top screen shot . However, in eit her case, you
enj oy the benefit of capturing data direct ly from a SQL Server database over the
Web.

Figure 6 - 5 . The top pane show s the form at for a parent - child result set
w ith RAW m ode. The bot tom pane show s the sam e result set form att ed

based on AUTO m ode—not ice it is hierarchical!

The default form at for returning XML data is at t ribute-cent r ic. That is, data values
appear as at t r ibute values. However, an elem ent -cent r ic form at is popular with
m any developers. Using the ELEMENTS opt ional argum ent perm its you to return
values from a SELECT statem ent in an elem ent -cent r ic form at . To specify the
ELEMENTS opt ion, you m ust use eit her AUTO or NESTED as the m ode argum ent

in the FOR XML clause. Not ice that a com m a delim its the ELEMENTS opt ion from
the AUTO m ode designat ion:
http://ccs1/MyNwind?sql=SELECT * from Shippers Œ
for XML AUTO, ELEMENTS&root=root

Figure 6-6 dem onst rates the use of this syntax for invoking the ELEMENTS opt ion.
To appreciate t he im pact of t he ELEMENTS opt ion, you can cont rast the XML
docum ent in Figure 6-6 with the one in the bot tom pane of Figure 6-4. The
SELECT statem ent is ident ical in both cases except for t he ELEMENTS clause.

Figure 6 -6 . Form at XML docum ents so they are elem ent - cent r ic, instead
of the default at t r ibute- centr ic layout , by specifying the opt ional

ELEMENTS argum ent .

The sam ples in this chapter up to t his point deal with result sets populated with
characters. However, you som et im es have to deal with binary data. For exam ple,
the Northwind data populates two tables with binary data represent ing im ages.
One of t hese is the Categories table that contains binary data for it s Picture
colum n values. The binary data in t he Picture colum n represents im ages of t he
products in a category. When using RAW m ode to return the colum ns of the
Categor ies table, you m ust specify t he BI NARY BASE64 opt ional argum ent in t he
FOR XML clause. The following URL shows the syntax for t he Address box in t he
browser. The top screen shot in Figure 6-7 shows an excerpt from the XML
docum ent t hat t he browser displays. Not ice that the XML docum ent shows an
encoded representat ion of t he im age. Failing to specify t he opt ional BI NARY
BASE64 argum ent generates an error m essage in the browser window instead of
an XML docum ent .
http://ccs1/MyNwind?sql=SELECT * FROM Categories Œ
FOR XML RAW, BINARY BASE64&root=root

Specify ing the AUTO m ode passes back a path to the Picture colum n values in t he
XML docum ent . (See the following URL and the m iddle screen shot in Figure 6-7.)
You can open the Picture colum n value for any row in the browser as an im age by
appending the path to t he Web server with t he virtual directory point ing to t he
target database. The bot tom screen shot in Figure 6-7 shows the XPath query
statem ent com prising the Web server, the virt ual directory nam e, and the first
colum n value for Picture in t he m iddle row. Not ice that t he bot tom screen shot

displays the picture for the binary object in the browser! To run the query in t he
bot tom browser, your v irtual directory m ust be able to run XPath quer ies, and
you m ust have def ined a dbobject v irt ual nam e. You can cont rol these features
with t he I I S Virt ual Directory Managem ent For SQL Server ut ilit y .
http://ccs1/MyNwind?sql=SELECT * FROM Categories Œ
FOR XML auto &root=root

Figure 6 - 7 . W orking w ith binary im age files can be st raight forw ard w hen
you use AUTO m ode for the FOR XML clause and the XPath queries, but

even RAW m ode can return an encoded representat ion of an im age to an
XML docum ent .

AUTO vs. NESTED Mode Sam ples

All t he URL access sam ples to t his point in t he chapter worked with tables, but
views can serve as the row source for a SELECT statem ent with a FOR XML clause
as well. However, t he result ing XML docum ent varies slight ly depending on
whether you use AUTO or NESTED as the m ode argum ent . With AUTO as the
m ode argum ent , the row ident if ier in t he XML docum ent is the nam e of the v iew.
When you use NESTED as the m ode for a SELECT statem ent based on a v iew, t he
row ident if ier in t he XML docum ent is the base table’s nam e rather t han the
view’s nam e.
Use Query Analyzer to create the ShipperView database object in the Northwind
database. This view can serve as a row source for a SELECT statem ent . Not ice
that the view m erely creates a set of aliases for the colum ns in t he Shippers
table.
--CreateShipperView.sql
USE Northwind
GO
CREATE VIEW ShipperView AS
SELECT ShipperID as SID, CompanyName as CName, Phone as PNo
FROM Shippers
GO

Execut ing a SELECT statem ent from the browser’s Address box that selects all the
colum ns from the ShipperView obj ect form ats an XML docum ent showing the
colum n aliases as at t ribute nam es. This outcom e is t rue whether you use AUTO or
NESTED as t he m ode argum ent for t he FOR XML clause in t he SELECT statem ent .
However, wit h AUTO as the m ode argum ent , t he ident if ier elem ent for each row
in the docum ent is the v iew’s nam e, ShipperView . (See the top screen shot in
Figure 6-8.) This outcom e holds whether you enable client -side form at t ing for
XML docum ents in the v irt ual directory or not . I f your SELECT statem ent uses
NESTED for it s m ode argum ent and you enabled client -side form at t ing for XML
docum ents in the v irtual directory, the row ident if ier refers to the base table for
the v iew— nam ely, Shippers in the case of t he v iew nam ed ShipperView . (See the
bot tom screen shot in Figure 6-8.) I f you run a SELECT statem ent with NESTED
for the m ode and the v irtual directory doesn’t enable client -side form at t ing, an
error results.

Figure 6 - 8 . Using NESTED as the m ode argum ent show s the base table
for a view rather than the view ’s nam e.

Som e developers m ight consider not showing a v iew’s nam e a m inor weakness
for client -side processing. However, a m ajor st rength of client -side processing is
it s abilit y t o use the GROUP BY clause and aggregate funct ions in SELECT
statem ents that use NESTED as the m ode in the FOR XML clause. Other m ode
argum ents don’t support the use of t he GROUP BY clause. Because this clause is
so com m on in SELECT statem ents, being able t o specify t he GROUP BY clause is a
m ajor advantage of client -side form at t ing for XML docum ents. Even if your v irt ual
directory enables client -side form at t ing, you don’t gain t he abilit y to use the
GROUP BY clause unless your SELECT statem ent explicit ly designates NESTED as
the m ode argum ent in the FOR XML clause.
The SELECT statem ent in t he following URL invokes the GROUP BY clause for
OrderI D in t he I nvoices view to com pute total ExtendedPrice for each order. A
CAST funct ion form ats total ExtendedPrice per order with two places after the
decim al point . Figure 6-9 shows an excerpt from the XML docum ent t hat the
SELECT statem ent generates.
http://ccs1/MyNwind?sql=SELECT OrderID, Œ
CAST(SUM(ExtendedPrice) AS DEC(8,2)) AS [OrderTotal] Œ
FROM Invoices GROUP BY OrderID FOR XML NESTED&root=root

Figure 6 - 9 . This excerpt from an XML docum ent results from a SELECT
statem ent that specifies the NESTED m ode in the FOR XML clause so that

the statem ent can specify a GROUP BY clause to sum ExtendedPrice
colum n values by order.

Note

I n the URL at the bot tom of the previous page, not ice that
the alias for the total of ExtendedPrice per order is
OrderTotal. Although this alias appears in brackets, they
aren’t st r ict ly necessary. I could have used a SELECT
statement with an alias of [Order Total] for total
ExtendedPrice. However, because spaces are illegal in XML
names, the parser would automat ically convert the name
when assigning it to an at t r ibute for the aggregate column
value. I t is to avoid this renam ing process that I reverted to
a nam e without spaces. A slogan that I use in my sem inars is
“Real programmers do not use spaces.”
Som e applicat ions group m ult iple SELECT statem ents in a single connect ion to a
database server. This st rategy returns m ult iple results without incurr ing the cost
of a new connect ion for each result set . I f your applicat ions can benefit from this
capabilit y, avoid using NESTED as t he m ode set t ing for t he FOR XML clause in
your SELECT statem ents. The following code sam ple shows a URL with two
SELECT statem ents. Not ice that a sem icolon delim its the two SELECT statem ents.
Each SELECT statem ent designates AUTO as t he m ode argum ent for it s FOR XML
clause. This statem ent succeeds even if the v irt ual directory enables client -side
form at t ing. (See Figure 6-10.) However, updat ing either of the AUTO keywords
with NESTED generates an error.
http://ccs1/MyNwind?sql=SELECT * FROM Shippers Œ
WHERE ShipperID=1 FOR XML AUTO;SELECT OrderID, OrderDate Œ
FROM Orders WHERE ShipVia=1 FOR XML AUTO&root=root

Figure 6 -1 0 . An XML docum ent based on tw o dist inct SELECT st atem ents.

Tem plate Access to SQL Server

Tem plates are XML files that reside in t he tem plate folder of a v irt ual directory
point ing to a SQL Server database. Developers can create solut ions that ret r ieve
and m anipulate t he data in a database with the XML files in a tem plate folder. By
wrapping up the code to perform data ret r ieval and m anipulat ion operat ions in an
XML f ile, you can protect and secure your applicat ion’s code and the database it
references. Tem plate-based solut ions are as easy to run as enter ing a URL in a
browser or navigat ing to a URL from a cont rol on a form . The URL points to t he
XML f ile in the tem plate folder. You can m ake your solut ions dynam ic at run t im e
by passing param eters in t he URL. To invoke tem plate-based solut ions for a
database, the v irtual directory point ing to t he database m ust have a tem plate
folder. You can create a tem plate folder reference when you init ially create a
virtual directory, or you can add a tem plate folder or update the nam e and
locat ion of a tem plate folder for an exist ing v irt ual directory.
XML f iles in a t em plate folder can contain several types of contents to ret r ieve
and m anipulate t he data in a database. I n t he “Annotated Schem as” sect ion
earlier in t his chapter, you learned how to use XML files in a tem plate folder
containing annotated XSD schem as that are queried with the XPath language to
ret r ieve the contents of a SQL Server data source. This sect ion shows how to use
XML f iles with T-SQL statem ents; SQL Server database objects, such as user-
def ined funct ions; and Updategram s. Updategram s are a special t ype of XML file
for insert ing, updat ing, and delet ing data from SQL Server tables. St r ict ly
speaking, Updategram s aren’t tem plate files, but you store them in the tem plate
folder. XML f iles in a t em plate folder can contain other types of f iles, such as
Dif fGram s. Microsoft int roduced DiffGram s for t ight integrat ions with t he .NET
Fram ework, part icular ly the ADO.NET DataSet com ponent . DiffGram s, like
Updategram s, facilitate the m anipulat ion of data source contents. I will revisit
Dif fGram s in Chapter 12.

Tem plates w ith T- SQL Statem ents

Using an XML file in a t em plate folder is a two-step process. First you create the
XML f ile. Second you invoke the file. I f your t em plate needs edit ing, you can pass
through these steps as m any t im es as necessary to fine-tune the design of your
XML tem plate f ile. The XML file m ust have a top- level tag, such as ROOT, w ith a
reference to urn: schem as-m icrosoft -com : xm l-sql. This nam espace contains the
elem ents and at t r ibutes for designing tem plate files. After you’ve declared the
nam espace for t he elem ents and at t r ibutes, t he exact contents of a tem plate file
vary according to your object ives and how you go about im plem ent ing your

tem plate-based solut ion. For exam ple, you can query a data source with either an
XPath statem ent or a T-SQL statem ent . The elem ents t hat you use in your
tem plate file vary according to t he language for expressing the query.
The following docum ent illust rates the XML form at t ing for a sim ple T-SQL
statem ent . The ROOT elem ent designates sql as referencing the urn: schem as-
m icrosoft -com : xm l-sql nam espace. Not ice that you em bed a T-SQL statem ent in
a sql: query elem ent . The T-SQL statem ent ret r ieves all rows and colum ns from
the Shippers data source. The definit ion for this data source depends on the
virtual directory holding the XML file in it s tem plate folder. I n t his chapter, I use
the MyNwind v irt ual directory point ing to t he Northwind database. I f you run the
sam e XML file from the tem plate folder of a v irtual directory point ing to a
different database, you can obtain different results from the sam e XML tem plate
file.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--tmpSelectAllShippers.xml-->
 <sql:query>
 SELECT * FROM Shippers FOR XML RAW
 </sql:query>
</ROOT>

Figure 6-11 illust rates a URL point ing to t he tem plate file and the corresponding
result set in t he browser. The FOR XML clause determ ines the XML form at for t he
result set . The browser’s Address box in Figure 6-11 points to t he ccs1 I I S server
and the MyNwind v irt ual directory within the server. The tem plate folder has the
nam e tem plate, but any other legit im ate folder nam e will work as well so long as
you adjust your set t ings for t he v irt ual directory to point t o it . The last item in the
Address box specifically nam es the XML file with t he SELECT statem ent .

Figure 6 - 1 1 . The Address box show s the form at for referr ing to a
tem plate file that returns all the row s from the Shippers table.

The sim ple form at for the Address box in Figure 6-11 enables you to readily
create applicat ions that allow users to tap the contents of your databases from
anywhere in t he wor ld. Because the data returned is in XML form at , t he contents
are readily usable by all applicat ions com pat ible with XML data. Also, you can
disable running quer ies direct ly from the URL and bet ter secure your applicat ions.
Tem plate f iles facilitate sanct ioned ret r ievals from your database— nam ely, t hose
that you preprogram for users.
I t is frequent ly desirable to return a subset of records in a row source. This
capabilit y is even m ore powerful when you m ake it dynam ic at run t im e so that
an applicat ion can determ ine which subset t o return according to user input .
Enabling tem plate files t o return results based on param eters sat isfies this
requirem ent . Users can specify one or m ore param eters when they invoke the
tem plate file. The param eters can determ ine the result set from the tem plate file.

Creat ing dynam ic tem plate files that accept run- t im e input requires an updated
tem plate design. I n part icular, you will need to add a m inim um of two new
elem ents to an XML tem plate file. First , you need a sql: header elem ent . You can
def ine one or m ore param eters within t his elem ent . Second, you need the
sql: param elem ent . Use start ing and ending sql: param tags for each param eter.
Designate the param eter’s nam e as the nam e at t r ibute for t he sql: param
elem ent . You can opt ionally specify a default value for t he param eter. I f the user
fails to specify the param eter at run t im e, your applicat ion can execute it s T-SQL
statem ent with it s default param eter value. Within a T-SQL statem ent , designate
the param eter with a leading @ sym bol. I f your param eter nam e is MyI D in t he
sql: param elem ent , your T-SQL statem ent should refer t o it as @MyI D.

Note

One sql: header elem ent can contain m ult iple parameter
specificat ions. Reference more than one parameter in a
template file by adding a sql: param element with a unique
name at t r ibute for each addit ional parameter.
The following XML docum ent illust rates an extension of the preceding sam ple. A
WHERE clause in the T-SQL uses a param eter t o specify which row to ret r ieve
from the Shippers table. Your applicat ion can specify this value at run t im e by
including the param eter ’s nam e and value in the URL invoking the tem plate file.
Not ice that the sql: param elem ent nam es the param eter MyI D, and the WHERE
clause designates the param eter as @MyI D. The param eter’s default value is 1.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--tmpSelectShipperIDEquals.xml-->
 <sql:header>
 <sql:param name=‘MyID’>1</sql:param>
 </sql:header>
 <sql:query>
 SELECT * FROM Shippers WHERE ShipperID=@MyID FOR XML AUTO
 </sql:query>
</ROOT>

Figure 6-12 shows a browser invoking the tem plate file with it s result set . The
URL t rails the nam e for the tem plate f ile with a quest ion m ark (?) . Then the URL
lists the param eter nam e, an equal sign (=) , and the param eter value, 3. I f you
had addit ional param eters to specify, you could delim it t hem from one another
with an am persand (&). Each param eter designat ion follows the sam e form at :
param eter nam e, equal sign, param eter value. Failing to specify a param eter at
run t im e returns the row with a ShipperI D value of 1. I f your tem plate file didn’t
specify a default value, the result set would be em pty. (No error m essage is
returned.)

Figure 6 - 1 2 . A sam ple dem onstrat ing the specificat ion of a param et er in
a URL invoking a tem plate file to return a row from the Shippers table.

XML tem plate f iles with T-SQL don’t rest r ict you to ret r iev ing data. You can
perform data m anipulat ion and even other tasks. The t r ick is to use the proper T-
SQL code and associate a login with the v irtual directory t hat has perm ission to
perform the tasks you program in t he tem plate file. (Chapter 7 exam ines SQL
Server secur ity.) For exam ple, associat ing a login in the sysadm in fixed server
role enables the execut ion of the next sam ple (as well as the updategram
sam ples in the chapter ’s closing sect ion). Using T-SQL in a tem plate file is a very
rich approach because you can accom plish anything that T-SQL perform s
(provided your login account has proper perm ission) .
The next tem plate file shows how to use the I NSERT and DELETE statem ents to
first add and then rem ove a record from the Shippers table. The tem plate file
m onitors t he start ing, interm ediate, and ending states of the Shippers table with
a ser ies of SELECT statem ents. I n addit ion, the T-SQL scr ipt in the tem plate file
reseeds the IDENTI TY property for t he Shippers table so that t he added record
always appears with a ShipperI D value of 4 instead of a progression of values,
such as 4, 5, 6, on successive execut ions of t he tem plate f ile. This sam ple is
inst ruct ive because it shows the use of t he DBCC CHECKI DENT statem ent , which
is neither a data ret r ieval nor a m anipulat ion statem ent .
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--tmpInsertAndDelete.xml-->
<sql:query>
 SELECT ’Shippers before an insert’
 SELECT *, ’Before Insert’ as At FROM Shippers FOR XML AUTO

 INSERT INTO Shippers (CompanyName, Phone) VALUES (‘foo’,’(123) 45
6-7890’)
 SELECT ’Shippers after an insert’
 SELECT *, ’After Insert’ as At FROM Shippers FOR XML AUTO

 DELETE FROM Shippers WHERE ShipperID > 3
 SELECT ’Shippers after deleting records with ShipperID > 3’
 SELECT *, ’After Delete’ as At FROM Shippers FOR XML AUTO

 <!--Reseed Identity for Shippers table so it starts from 3-->
 DBCC CHECKIDENT (Shippers, RESEED, 3)
</sql:query>
</ROOT>

Figure 6-13 shows the result sets from the SELECT statem ents in t he preceding
XML tem plate f ile— one before the insert , another after t he insert , and a final one
after the delete. Not ice that the new record appears in the m iddle result set . No
m at ter how m any t im es you rerun the tem plate file, the ShipperI D value for the
new record will always be 4. I f you started with an init ial I DENTI TY value greater
than 3, t he first run of the tem plate file will ref lect the higher value, but all
subsequent successive runs will act as if t he last I DENTI TY value were 3. This
behavior reflects the im pact of the DBCC CHECKIDENT statem ent at the close of
the T-SQL script in t he tem plate file.

Figure 6 - 1 3 . This brow ser show s the im pact of a T- SQL scr ipt in an XML
tem plate file that adds and then rem oves a row from the Shippers table.

Tem plates Enhanced w ith Database Objects

The “AUTO vs. NESTED Mode Sam ples” sect ion describes a T-SQL statem ent for a
URL that com putes a sum with a GROUP BY clause. Unfortunately, t he sam e
statem ent fails when executed from within an XML tem plate file rather t han a
URL. However, you can st ill perform aggregates with SELECT statem ents that
include GROUP BY clauses. The t r ick is to create a v iew with t he GROUP BY clause
and aggregate funct ion. Then use the v iew as the source for a SELECT statem ent
inside a tem plate file. The tem plate f ile returns rows with aggregated values
based on the com putat ions perform ed in t he v iew that serves as it s source.
The following scr ipt creates a v iew based on the T-SQL statem ent used to
populate Figure 6-9. Recall that t he figure excerpts the outcom e from a T-SQL
statem ent in a URL that groups and aggregates colum n values from a row source.
The SELECT statem ent for t he OrderTotalView v iew and the query generat ing the
result set excerpted in Figure 6-9 are ident ical except for t he FOR XML clause,
which is m issing from the v iew. This var iance is because you want t he view to
return a t radit ional rowset . A second query in a tem plate file can reference the
OrderTotalView v iew as it s source argum ent in t he FROM clause. I t is in the
tem plate file t hat your applicat ion can apply XML form at t ing to t he rowset
returned by the v iew.
--CreateOrderTotalView.sql
USE Northwind
GO
CREATE VIEW OrderTotalView AS
SELECT OrderID, CAST(SUM(ExtendedPrice) AS DEC(8,2)) OrderTotal
FROM Invoices
GROUP BY OrderID
GO

The XML tem plate file can contain the following XML scr ipt . By using the
OrderTotalView v iew as it s source, t he query in the tem plate file draws on a
rowset with aggregated extended pr ice across the line item s for each order in the
I nvoices view. An alias (I nvoices) for the OrderTotalView v iew enables the
SELECT statem ent to show I nvoices as the ult im ate source for t he results. The
XML form at ted result set from running this tem plate file looks ident ical to the one
in Figure 6-9. However, the contents of the Address box are m uch m ore basic.
The URL m erely references the tem plate file:
http://ccs1/MyNwind/template/tmpSelectFromAggregatingView.xml .

<!--tmpSelectFromAggregatingView.xml-->
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:query >
 SELECT *
 FROM OrderTotalView AS Invoices
 FOR XML AUTO
 </sql:query>
</ROOT>

The solut ion is desirable if you want a report wit h t he totals for all t he orders, but
frequent ly applicat ions require a result for j ust one item or som e subset of it em s.
To m eet this requirem ent , you can aggregate by group and then filter based on
the group values your applicat ion needs to return. By referencing a table-valued
user-defined funct ion from a query in a t em plate file, you can enable a tem plate
file to dynam ically f ilter a rowset with rows containing aggregated values at run
t im e.
You can apply the logic in t he preceding paragraph to extending the previous
sam ple. The process requires two steps. First create a user-defined funct ion
nam ed OrderTotalFunct ion that returns a table based on the I nvoices v iew. The
funct ion’s SELECT statem ent aggregates the ExtendedPrice colum n from the
I nvoices view by OrderI D. The @MyOrderI D param eter in t he funct ion perm its a
calling rout ine to determ ine for which order t he funct ion returns a table. I n t his
case, the table consists of a single row. Second create an XML tem plate file
(tm pSelectFrom Aggregat ingTableUDF.xm l) t hat references the user-defined
funct ion. The tem plate file can use the funct ion as the source for a SELECT
statem ent . I n addit ion, the tem plate file can pass a param eter t o the funct ion to
designate which row the user-defined funct ion should return. At run t im e for the
tem plate, users can dynam ically specify t he OrderI D of the order for which they
want a t otal.
Here’s the script for creat ing the user-defined funct ion. I t s SELECT statem ent is
ident ical to t he SELECT statem ent in t he v iew for the preceding sam ple except for
the HAVI NG clause that f ilt ers the result set and the param eter, @MyOrderI D,
that facilitates the run-t im e designat ion of which order to return the sum for. See
the “Creat ing and I nvoking Table-Valued UDFs” sect ion in Chapter 5 for a review
of t he syntax for user-defined funct ions.
--CreateOrderTotalFunction.sql
USE Northwind
GO
CREATE FUNCTION OrderTotalFunction(@MyOrderID int)
RETURNS TABLE
AS
RETURN(
 SELECT OrderID, CAST(SUM(ExtendedPrice) AS DEC(8,2)) OrderTotal
 FROM Invoices
 GROUP BY OrderID
 HAVING OrderID = @MyOrderID
)
GO

The following XML docum ent invokes the OrderTotalFunct ion udf. This docum ent
fulf ills the second step in t he applicat ion developm ent process. I t defines a
param eter nam ed MyOrderI D wit h a default value. Therefore, users can get a
result set from running the tem plate file whether or not they specify a param eter
value. Figure 6-14 shows the XML form at ted result set in the browser from a URL
that specifies 10252 as the param eter value.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<!--tmpSelectFromAggregatingTableUDF.xml-->
 <sql:header>
 <sql:param name=‘MyOrderID’>10250</sql:param>

 </sql:header>
 <sql:query >
 Select * FROM OrderTotalFunction(@MyOrderID)
 FOR XML AUTO
 </sql:query>
</ROOT>

Figure 6 - 1 4 . This brow ser show s the result set from an XML tem plate file
that invokes a user -defined funct ion to return an aggregated value for

the row s m atching a specific OrderI D.

Updategram s Are like Tem plates

Updategram s aren’t t em plates, but you can invoke them in ways that are sim ilar
to how you run XML tem plate f iles. Updategram s offer an XML-based way to
insert , delete, and update rows in a SQL Server row source. Because
Updategram s accept param eters, your applicat ions can allow users to specify
dynam ically what rows to insert , delete, or update. A single Updategram can
support m ult iple inserts, deletes, and updates. I n addit ion, you can group your
data m anipulat ion tasks into t ransact ions so that none will occur unless all tasks
within the t ransact ion com plete. You can even com pose an Updategram with
m ult iple t ransact ions so that t he data m anipulat ion tasks in one t ransact ion occur
even if t hose in another t ransact ion roll back. Perhaps the best feature of
Updategram s is t hat t heir syntax is easy to understand.
The following layout shows the overall design for m ost Updategram s. Not ice that
Updategram s have their own nam espace. However, t hey follow standard XML
syntax convent ions. You can opt ionally designate an annotated schem a for them
to work against . I f you don’t specify an annotated schem a, Updategram s operate
against whatever row source you specify in t he updg: before and updg: after
elem ents. The updg: sync elem ent allows you to group data m anipulat ion tasks
into t ransact ions. You can have m ult iple updg: sync elem ents within a single
Updategram , but every Updategram m ust have at least one updg: sync elem ent .
Before the first updg: sync elem ent , you can opt ionally insert an updg: header
elem ent , and within this elem ent you can insert one or m ore updg: param
elem ents. You can use these updg: param elem ents in Updategram s in t he sam e
way that you do within XML tem plate files to specify param eters. Within t he body
of t he Updategram , you designate param eters with a leading $ (dollar sign)
instead of t he @ (at sym bol) com m on in T-SQL code.
I t is within t he updg: before and updg: after elem ents t hat you specify m uch of t he
detail work t hat an Updategram perform s. For exam ple, you can insert a new row
of colum n values into a row source by including a specif icat ion for t he row within
the updg: before elem ent without referencing the row within t he updg: after
elem ent . I n cont rast , you can delete a row by including a reference to it wit hin
the updg: after elem ent without denot ing the row in t he updg: before elem ent . To
specify an update, reference the sam e row within the updg: before and updg: after

elem ents. The colum n values in t he updg: before elem ent should ident ify the row
(or rows) before the update, and the colum n values within the updg: after
elem ent should denote the new colum n values for t he rows that require
m odificat ion.
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync [mapping-schema="SampleSchema.xml"] >
 <updg:before>
 </updg:before>
 <updg:after>
 </updg:after>
</updg:sync>
</ROOT>

The next script denotes the contents of an Updategram to add a new row to t he
Shippers table. The ent ry inside the updg: after elem ent denotes the colum n
values for t he new row. The new colum n values appear as at t r ibutes for the
Shippers elem ent . Don’t specify values for colum ns with an I DENTI TY property
set t ing because SQL Server autom at ically adds values to colum ns with an
IDENTI TY propert y. I t is for t his reason that t he Updategram assigns no value to
ShipperI D. The updg: before elem ent is em pty. I t is the com binat ion of an em pty
updg: before elem ent and a populated updg: after elem ent that causes the
Updategram to add a new row to the Shippers t able. You can save this
Updategram with a nam e, such as updgI nsertCABDelivers.xm l, in the tem plate
folder of a v irt ual directory point ing to a database with a Shippers table. This
convent ion lets you invoke Updategram s j ust as you do standard XML tem plate
files.
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<!--updgInsertCABDelivers.xml-->
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Shippers CompanyName="CAB Delivers” Phone="(123) 456-7890”
/>
 </updg:after>
</updg:sync>
</ROOT>

I nstead of specify ing the new colum n values in a row as at t r ibutes of a single
elem ent in the Updategram , you can designate new values in an elem ent -cent r ic
hierarchical form at . The following excerpt from
updgI nsertCABDeliversElem entsI n.xm l illust rates how to lay out t he preceding
input data in a hierarchical form at . All other design features of the
updgI nsertCABDeliversElem ents- I n.xm l Updategram m atch those in
updgI nsertCABDelivers.xm l. The at t r ibute-cent r ic and elem ent -cent r ic layouts
generate XML docum ents with ident ical content , but t he form at of the generated
docum ent changes between the two files— nam ely, updgI nsertCABDelivers.xm l
vs. updgI nsertCABDeliversElem entsI n.xm l.
 <updg:after>
 <Shippers>
 <CompanyName>CAB Delivers</CompanyName>
 <Phone>(123) 456-7890</Phone>
 </Shippers>

You can run the elem ent -cent r ic version of t he Updategram by entering
ht tp: / / ccs1/ m ynwind/ tem plate/ updgI nsertCABDeliversElem entsI n.xm l in t he
Address box of a browser. As with XML tem plate files, you designate an I I S server
nam e, a v irt ual directory nam e, a t em plate folder nam e, and f inally t he
Updategram filenam e. I f the Updategram succeeds, your browser shows an XML

file with a single root elem ent containing the Updategram nam espace designator.
(See Figure 6-15.)

Figure 6 - 1 5 . You invoke an Updategram sim ilarly to the w ay you run an
XML tem plate file .

Running the tm pSelectAllShippers.xm l tem plate file can confirm the new row in
the Shippers table with a Com panyNam e colum n value of CAB Delivers and a
Phone colum n value of (123) 456-7890. The following Updategram m odifies the
Phone colum n value for the newly added row. I t contains a single set of colum n
values in both the updg: before and updg: after elem ents. The values in the
updg: before elem ent m ust reference a specific row in the Shippers table. I f t he
values denote either m ore than one row or no row, t he update fails with a
m essage in t he browser alert ing the user t o the problem . The values in the
updg: after elem ent include both the Com panyNam e t o ident ify the row and a new
Phone value to replace the exist ing one. You can invoke
updgCABDeliversNewPhone.xm l in the sam e way that you ran the first
Updategram . Because the Updategram m erely returns a single- lined docum ent
with t he nam e of t he Updategram nam espace, you m ight want t o rerun
tm pSelectAllShippers.xm l t o confirm the update.
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<!--updgCABDeliversNewPhone.xml-->
<updg:sync >
 <updg:before>
 <Shippers CompanyName="CAB Delivers” Phone="(123) 456-7890”
/>
 </updg:before>
 <updg:after>
 <Shippers CompanyName="CAB Delivers” Phone="(234) 567-8901”
/>
 </updg:after>
</updg:sync>
</ROOT>

You can rem ove a row from a table by uniquely ident ify ing it in the updg: before
elem ent and leaving the updg: after elem ent em pty. The ident ify ing colum n
values that you specify in the updg: before elem ent m ust point t o a unique row in
a table. I f t he colum n values you use to denote a target row aren’t unique, t he
Updategram returns an error m essage. For t his reason, you should consider using
prim ary key values when specify ing rows for delet ion. The sam ple below uses the
Com panyNam e colum n value to ident ify t he row to delete because the ShipperI D
value is set by SQL Server. You can revise the Updategram to delete a row based
on ShipperI D by running tm pSelectAllShippers.xm l to discover t he target
ShipperI D value and then using that value in the updg: before elem ent . Finally,
you can run the Updategram like eit her of the preceding two sam ples. The URL I
entered was ht tp: / / ccs1/ MyNwind/ tem plate/ updgDeleteCABDelivers.xm l. You will

need to revise the nam es for t he I I S server, v ir tual directory, and tem plate folder
for your applicat ion’s environm ent .
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<!--updgDeleteCABDelivers.xml-->
<updg:sync >
 <updg:before>
 <Shippers CompanyName="CAB Delivers"/>
 </updg:before>
 <updg:after>
 </updg:after>
</updg:sync>
</ROOT>

The next sam ple dem onst rates the syntax for using param eters as you add a new
row to a table. The Updategram declares the param eters with updg: param
elem ents. The sam ple designates two param eters nam ed Com panyNam e and
Phone. The code doesn’t assign default param eter values, so your applicat ion
m ust specify values for the param eters at run t im e. The updg: after elem ent
dem onst rates the syntax for referr ing back to t he param eters as you specify a
new row for a table. As you can see, the rule is to use the param eter nam e with a
leading $.
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<!--updgInsertShippersParams.xml-->
<updg:header>
 <updg:param name="CompanyName” />
 <updg:param name="Phone” />
</updg:header>
<updg:sync >
 <updg:before>
 </updg:before>
 <updg:after>
 <Shippers CompanyName="$CompanyName” Phone="$Phone” />
 </updg:after>
</updg:sync>
</ROOT>

You can run a param et r ically specified Updategram just as you would any XML
tem plate file with param eters. Enter a URL into a browser t hat start s with t he
path to the Updategram on the I I S server. Follow this with a quest ion m ark (?)
and nam e-value pairs for each param eter that t he Updategram requires. Figure
6-16 shows the syntax for adding a shipper with a Com panyNam e f ield of CAB
Delivers and a Phone f ield of (123) 456-7890. The browser autom at ically replaces
each blank space with % 20.

Figure 6 - 1 6 . Designate param et er values a t run t im e for an Updategram
just as you do for an XML tem plate file.

The approach dem onst rated for adding a row based on run- t im e param eters
applies to delet ing and updat ing a row. The following Updategram shows the
syntax for rem oving a row from the Shippers table based on ShipperI D value.
Users can run tm pSelectAllShippers.xm l t o determ ine the ShipperI D value for t he

row they want to delete. For exam ple, if the target row to delete had a ShipperID
value of 5, you could rem ove it by enter ing
ht tp: / / ccs1/ MyNwind/ tem plate/ updgDeleteShippersParam s.xm l?ShipperI D= 5 in
the browser.
<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<!--updgDeleteShippersParams.xml-->
<updg:header>
 <updg:param name="ShipperID"/>
</updg:header>
<updg:sync >
 <updg:before>
 <Shippers ShipperID="$ShipperID"/>
 </updg:before>
 <updg:after>
 </updg:after>
</updg:sync>
</ROOT>

Chapter 7 . SQL Server 2 0 0 0 Security
I n these t im es, all inform at ion technology professionals, including database
developers, have a pressing need to protect their system s. There is no m agic pill
you can take to inoculate your system s against any k ind of securit y at tack that
ever did, or will, ex ist . Secur ing system s is a m at ter of learning your applicat ions
and judiciously apply ing the securit y m easures appropriate for your com put ing
environm ent . This chapter exposes you to t he security features available with
Microsoft SQL Server 2000. Use the foundat ion you get from this chapter as a
basis for dr illing down deeper into selected topics that you feel a need to learn in
greater depth.
Aside from general securit y concerns, SQL Server 2000 developers have specific
reasons for needing to know about secur ity. For exam ple, t he only way users can
connect to a SQL Server instance is by specify ing a login account . After gaining
access to the database server with a login account , users cannot typically gain
access to a database except by having a user account associated with the login
account . Furtherm ore, login account and user account m em bership in various
fixed and user-def ined roles enable users t o perform server and database
funct ions, including m anaging secur ity for a server and it s databases or even for
the databases on other servers.
The two resources for t his chapter are sim ilar t o those for Chapter 2 through
Chapter 5. The first resource is a set of T-SQL scripts with the sam ples in t his
chapter. These T-SQL scripts oft en reference the second resource, t he Chapter07
database. I n fact , there is a script am ong the sam ples files for t his book to create
the database, but the sam ples also include a copy of the database files
them selves (Chapter07_dat .m df and Chapter07_log. ldf) for your easy reference.
The scripts in this chapter differ from those of preceding chapters in that the login
for database connect ions var ies between scripts. By using different logins, the
sam ples enable you to evaluate the effects of different types of logins as well as
understand how to create those logins.

Overview of SQL Server Security

SQL Server secur ity centers on the database server, but the m anagem ent of
secur ity extends upward to t he operat ing system on which SQL Server runs and
downward to client workstat ions that connect t o a com puter running SQL Server.

Security Accounts

SQL Server has two m ain k inds of securit y accounts. The first k ind of secur ity
account grants access to a database server. SQL Server calls this f irst k ind of
secur ity account a login secur ity account or a login. The second kind of secur ity
account grants access to a database within a server. SQL Server applies the
nam e user secur ity account or user to t his k ind of secur ity account . User accounts
allow your applicat ion’s users t o gain access to the resources that you create for
their use on a SQL Server instance. Any one login account can have m ult iple user
secur ity accounts associated with it— one for each database to which the login
needs access.
Every SQL Server instance m aintains a collect ion of logins. A login is like a key
that lets a user open the door into a SQL Server instance. There are three types
of logins. These types of logins relate t o how SQL Server validates a user. The

Windows User and Windows Group are two types of logins that relate t o the
Windows operat ing system . These are accounts validated by Windows. When you
create a Windows User login t ype within a SQL Server instance for a Windows
user, t hat user can gain access to the SQL Server instance without the need to
revalidate her credent ials. SQL Server accepts the Windows user account as valid
for access to SQL Server. The sam e general not ion applies to a Windows Group
type login except t hat SQL Server accepts the Windows login as valid for any
m em ber of t he Windows group.
SQL Server can also m anage its own login accounts. These are standard logins.
SQL Server m ust m anage the login nam e and password in t his case. While SQL
Server secur ity m anagem ent features aren’t as r ich as those for Windows, there
are t im es when standard secur ity login accounts are especially useful. First , if
SQL Server is running on an operat ing system other t han Windows NT, Windows
2000, or Windows XP, such as Windows 98, you m ust use standard logins.
Second, if your applicat ion has users who aren’t registered with a Windows
dom ain server, t hese users require SQL Server logins. Third, SQL Server logins
are also necessary for com pat ibilit y with applicat ions containing data im ported
from database vendors other than Microsoft .
No m at ter what type of security login a user presents, users also generally m ust
have user securit y accounts for database access. The except ions relate to login
accounts with broad author ity and databases with guest accounts for logins
without a user account . User secur it y accounts reside with each database.
However, all user accounts except t he guest account m ust relate to a specific
login. The login type can be Windows User, Windows Group, or standard.

Authent icat ion

As the previous sect ion indicates, login secur ity accounts are what clients present
to a database server to gain access to the server. Authent icat ion is t he process by
which a database server accepts the login secur ity account and determ ines
whether it is valid. SQL Server 2000 supports two authent icat ion m odes. These
are Windows Authent icat ion Mode, which is t he default m ode, and Mixed Mode.
For servers running with Windows Authent icat ion Mode, database users don’t
need to validate them selves when they at tem pt to gain access to a database
server. For servers running Mixed Mode, only database users with a SQL Server
login m ust subm it their login nam e and password when at tem pt ing to gain access
to a server. Database users with a Windows User or Windows Group login type on
the SQL Server instance aren’t prom pted a second t im e to validate their
credent ials.
The default m ode allows login to a SQL Server instance only v ia a Windows
account . All database users m ust m eet two cr iteria with Windows Authent icat ion
Mode. First , database users m ust have a valid Windows account with a dom ain
server for either Windows NT or Windows 2000. Second, the SQL Server instance
m anaging a database m ust author ize the indiv idual user ’s Windows account or a
Windows group to which the indiv idual user belongs. Windows users without an
account t hat SQL Server recognizes cannot enter the database.
When you install w ith the default m ode, t he Windows Adm inist rator account on
the com puter running the SQL Server instance is the serv ice account for SQL
Server. The installat ion process autom at ically creates a login for t he
Adm inist rator account t hat is a m em ber of t he sysadm in f ixed server role. (You
can overr ide this select ion of a serv ice account .) As a result , the login for t he
Adm inist rator account enjoys near ly all the pr iv ileges of t he t radit ional sa secur ity
account . One cr it ical difference is that you can delete t he login for t he
Adm inist rator account , but you cannot delete t he sa login.
With Mixed Mode authent icat ion, users can log in if t hey have an account with a
Windows dom ain server or a SQL Server login m aintained by a SQL Server

instance. When you install t he database server on a com puter running Windows
98 or Windows Millennium Edit ion, SQL Server autom at ically runs with Mixed
Mode authent icat ion. I f your SQL Server instance is an applicat ion server on a
workgroup instead of a dom ain, and one or m ore of your client workstat ions run
Windows 98, your server m ust support Mixed Mode authent icat ion. This
requirem ent exists whether or not SQL Server 2000 runs on a com puter with
either the Windows 2000 or the Windows NT operat ing system .

Note

When you choose Mixed Mode authent icat ion during SQL
Server 2000 installat ion, a rem inder appears to assign a
password to the sa login. Failing to proper ly respond to this
rem inder opens your computer to unwarranted entry.

Roles and Perm issions

Get t ing into a SQL Server instance doesn’t necessarily ensure that you can do
anything once you get t here. The role m em bership of login and user secur ity
accounts conveys perm issions to perform various tasks— both for t he server and
for the databases m aintained on a server. Som e roles are fixed— that is, specified
by SQL Server. Two collect ions of f ixed roles are the fixed server roles and f ixed
database roles. SQL Server also perm its the creat ion of user-defined roles. With
user-defined roles, you can assign the precise perm issions that an applicat ion
requires. Perm issions are of two general types. First , you can assign perm issions
for database objects, such as the abilit y to select rows from a table or v iew.
These perm issions are called object perm issions. Second, you can grant the
authorit y to exercise a subset of t he T-SQL statem ents, such as CREATE TABLE.
These perm issions are called statem ent perm issions.
The fixed server roles convey perm issions for server tasks, such as creat ing,
alter ing, and dropping databases or m anaging logins for other users and changing
their passwords. SQL Server 2000 offers eight fixed server roles. (See Table 7-1.)
The Bulk I nsert role is new with SQL Server 2000. An indiv idual login can belong
to none, one, or m ore than one of t hese roles. Run the sp_addsrvrolem em ber
system stored procedure to add a login to a f ixed server role. Database users
inherit the perm issions for any fixed server roles to which their logins belong. You
cannot direct ly assign a user account to a fixed server role. Use the
sp_helpsrvrole system stored procedure to obtain a list of the fixed server role
nam es along with br ief descript ions. I nvoke the sp_srvroleperm ission system
stored procedure for a detailed list of T-SQL statem ents and server funct ions for
which each fixed server role grants perm ission.
Fixed database roles convey r ights within a database, such as the abilit y to select
or change data as well as the abilit y t o add new database obj ects. There are nine
fixed database roles. (See Table 7-2.) Use the sp_addrolem em ber system stored
procedure to assign a user secur ity account t o a f ixed database role in the current
database. The secur ity account used to designate m em bership in a fixed database
role can be a user account in the current database based on a SQL Server login, a
Windows User login, or a Windows Group login. Just as with t he fixed server
roles, there are two system stored procedures to help you discover m ore about
the fixed database roles. I nvoke sp_helpdbfixedrole for a list ing of t he roles with
brief descript ions. Run sp_dbfixedroleperm ission to v iew the com plete list of
perm issions associated with each fixed database role.

7DEOH������)L[HG�6HUYHU�5ROHV�
5ROH�1DPH� 6HOHFWHG�7DVNV�

Sysadm in Can perform any task and gain unrest r icted access to all databases
Serveradm in Can perform sp_configure and SHUTDOWN operat ions
Setupadm in Can designate a stored procedure to run at startup and m anage

linked server specificat ions
Secur ityadm in Can perform sp_grant login, sp_addlogin, and sp_denylogin

procedures; can also m anage database creat ion perm issions and
password changes

Processadm in Can perform KI LL operat ions
Dbcreator Can perform CREATE DATABASE, ALTER DATABASE, and DROP

DATABASE operat ions
Diskadm in Can perform sp_addum pdevice and sp_dropdevice procedures
Bulkadm in Can perform BULK I NSERT operat ions
Besides the nine f ixed database roles in Table 7-2, another role exists within each
database: t he public role. All database users belong to t he public role and can
exercise whatever perm issions the role allows. Each database has it s own set of
fixed database roles, including the public role. Mem bership in a role within one
database doesn’t convey m em bership in the sam e role for any other database. I n
addit ion, t he public role in one database can possess different perm issions than
the public role in another database.

Note

I t ’s often good pract ice to st r ip all perm issions from the
public role so that users in a database derive no perm issions
just from their abilit y to access a database. This pract ice is
especially important when you have a guest user account in
a database because the guest account , which allows
database access by any login, is a m ember of the public role.

7DEOH������)L[HG�'DWDEDVH�5ROHV�
5ROH�1DPH� 6HOHFWHG�7DVNV�

db_owner Can perform any task in a database
db_accessadm in Can perform sp_grantdbaccess and sp_revokedbaccess

procedures
db_securit yadm in Can perform sp_addrolem em ber and sp_droprolem em ber

procedures
db_ddladm in Can execute CREATE, ALTER, and DROP statem ents for

objects in a database
db_backupoperator Can perform BACKUP DATABASE and BACKUP LOG operat ions
db_datareader Can perform SELECT operat ions for any object in a database
db_datawriter Can perform I NSERT, UPDATE, and DELETE operat ions for

any object in a database
db_denydatareader Cannot perform SELECT operat ions for any objects in a

database
db_denydatawriter Cannot perform I NSERT, UPDATE, or DELETE operat ions for

any object in a database
I n addit ion to t he fixed roles listed in Tables 7-1 and 7-2, SQL Server perm its the
creat ion of user-defined roles. Create user-def ined roles when your securit y
needs are m ore granular than those accom m odated by the fixed roles. I nvoke the
sp_addrole system stored procedure to create a new user-defined role. After
creat ing a role, you can add m em bers to it w ith the sp_addrolem em ber system

stored procedure. You can assign m em bers to user-defined roles from the sam e
set of secur ity accounts as for f ixed database roles. Of course, you can m anage
perm issions for a user-defined role so that m em bership has it s pr iv ileges! Just as
with fixed roles, user-defined roles exist within a database. Two user-def ined
roles in different databases with the sam e nam e can have different m em bers and
convey different perm issions within each database. You can m anage user-defined
roles with any login t hat belongs to t he sysadm in fixed server role or any user
secur ity account t hat is a m em ber of the db_owner or db_secur ityadm in fixed
database role.
You can assign two types of perm issions to user-defined roles. The first k ind of
perm issions grants author ity for database objects. These perm issions include
SELECT, I NSERT, UPDATE, DELETE, REFERENCES, and EXECUTE. You can apply
SELECT, I NSERT, UPDATE, and DELETE perm issions to any ent ire table, v iew, or
table-valued user-defined funct ion. I n addit ion, you can apply SELECT and
UPDATE perm issions to any subset of the colum ns in a table or v iew. EXECUTE
perm ission pertains to both stored procedures and user-defined funct ions.
REFERENCES allows two different t ypes of perm issions. First , you can use
REFERENCES t o designate perm ission to reference the prim ary key in one table
as a m atch for t he foreign key in another table. Second, you can also invoke the
REFERENCES perm ission to enable a view or a user-defined funct ion to specify it s
sources for SCHEMABI NDI NG. The REFERENCES perm ission becom es necessary
for these cases when the owner of t he table with t he pr im ary key is different from
the owner of the table with t he foreign key or t he owner of a view or user-defined
funct ion is dif ferent from its base tables or v iews.
The second k ind of perm issions that you can add to user-def ined roles is T-SQL
statem ent perm issions. With t hese perm issions, the m em bers of your user-
def ined roles can perform tasks such as creat ing databases and creat ing tables,
views, stored procedures, and user-defined funct ions within a database. The
“Managing Perm issions” topic in Books Online includes the full list of statem ents
to which you can grant perm issions.
T-SQL offers three statem ents for m anaging the perm issions that a role can
convey to it s m em bers. The GRANT statem ent gives a perm ission to a role. The
REVOKE and DENY statem ents can both disable a perm ission in a role. When the
sam e user belongs to m ult iple roles, conf licts with perm issions can exist . A
perm ission conveyed through a GRANT statem ent for one role overrides a
REVOKE statem ent for t he sam e perm ission in any other role. However, a DENY
statem ent overr ides any GRANT statem ent . Therefore, a user belonging to two
different roles with a GRANT statem ent and a DENY statem ent for the sam e
perm ission in both roles won’t have the perm ission.

I nt roduct ion to Specia l Security I ssues

A var iety of special SQL Server secur ity t opics fall outside the scope of the
preceding sum m ary of secur it y accounts, authent icat ion, roles, and perm issions.
This sect ion addresses three of t hese topics. First , you learn about applicat ion
roles, which are a custom type of user-def ined roles that can provide unique
access to a database. Second, I explore techniques for working with linked
servers, which let your users from one SQL Server instance readily connect with
database resources on another SQL Server instance. Third, this sect ion includes
an exam inat ion of secur ity issues relat ing to v irt ual director ies, such as those
reviewed in Chapter 6 for Web data access and m anipulat ion v ia XML.

Applicat ion Roles

Applicat ion roles provide a database access route that com plem ents those
afforded by SQL Server secur ity accounts. I nstead of accessing a database with
logins and user accounts, an applicat ion role provides access to a database v ia
the applicat ion role’s nam e and password. Any database user with perm ission to
create a user-defined role can create an applicat ion role with t he sp_addapprole
system stored procedure. After creat ing an applicat ion role, assign perm issions to
it in the sam e way that you do for user-defined database roles. Users log in t o an
applicat ion role with t he sp_setapprole system stored procedure. There are no
role m em bership requirem ents to invoke sp_setapprole.
When a user invokes an applicat ion role, she loses all other security set t ings
associated with a database connect ion. A user m ust disconnect and reconnect to
regain standard secur ity for her login and user secur ity accounts. However, a user
of an applicat ion role does enjoy any r ights for t he guest user in t he current
database or any other database. Therefore, you m ust be careful t o adm inister
perm issions for the guest user t o m anage the perm issions available through an
applicat ion role.
One dist inct advantage of an applicat ion role is that it can provide a single point
of access for a database. All users m ust reference the sam e applicat ion role nam e
and password with sp_setapprole t o open an applicat ion role. Furtherm ore, with
the standard SQL Server secur ity features, you can rest r ict access to a database
so that t he only way for users to gain access to it is through the applicat ion role.
I n that case, you can uniform ly define the perm issions for all users of a database
(except for sysadm in m em bers, who have unrest r icted access to all resources on
a database server) .

Linked Servers

Linked servers are an alternat ive technique to t he OPENROWSET funct ion for
im plem ent ing rem ote server access and heterogeneous quer ies. See the “Views
for Rem ote and Heterogeneous Sources” sect ion in Chapter 4 for sam ples
illust rat ing the use of the OPENROWSET funct ion. As that sect ion dem onst rates,
this capabilit y facilitates perform ing queries for a data source on another
com puter, such as a SQL Server instance running on another com puter, or
quer ies against a different database, such as Oracle or Access. Linked servers
readily support quer ies to any data source for which there is an OLE DB data
provider with the proper feature set . Microsoft explicit ly tested linked servers with
five OLE DB providers: Microsoft OLE DB provider for SQL Server, Microsoft OLE
DB provider for Jet , Microsoft OLE DB provider for Oracle, Microsoft OLE DB
provider for ODBC, and Microsoft OLE DB provider for I ndexing Service.
One advantage of t he OPENROWSET funct ion over a linked server is that the
OPENROWSET funct ion requires only your exist ing user credent ials for t he rem ote
or heterogeneous data source. While the syntax for specify ing dist r ibuted quer ies
with linked servers is sim pler t han that for the OPENROWSET funct ion, a m em ber
from eit her t he sysadm in or setupadm in f ixed server role m ust add the linked
server before you can use it . With the OPENROWSET funct ion, any user with the
credent ials t o connect t o a rem ote or heterogeneous data source can im m ediately
m ake the query.
Your init ial query from a linked server requires three steps. First you m ust create
a linked server reference on the current com puter running SQL Server 2000.
Second you m ust m ap a login on the current com puter to a login for t he rem ote
or heterogeneous data source. Third you m ust specify t he query for t he rem ote or
heterogeneous data source with a four-part nam ing convent ion. The f irst part
denotes the linked server reference. The second, t hird, and fourth part s com plete
the unique ident if icat ion of t he source; how you specify t hese parts can vary
depending on the source. The fourth part typically specifies the table or v iew in
the target data source. After the init ial query, using a linked server is easier than

using the OPENROWSET funct ion because the linked server syntax is m ore
st raight forward, and you no longer have to perform the first two steps.
Create a linked server for a rem ote or heterogeneous data source with the
sp_addlinkedserver system stored procedure. This procedure can take as m any
as seven argum ents, but you can use as few as two argum ents for creat ing a
reference to a rem ote SQL Server source and as few as four argum ents for a
linked server point ing to an Access data source. After correct ly init ializing the
linked server reference with t he sp_addlinkedserver system stored procedure,
invoke sp_addlinkedsrvlogin for m apping logins on the current SQL Server 2000
instance to logins for t he rem ote or heterogeneous data source. When a user runs
a query on the local server against t he linked server, t he local server logs in t o
the linked server with the credent ials specified when the sp_addlinkedsrvlogin
system stored procedure was last run for t he linked server. You can invoke the
sp_linkedservers system stored procedure to item ize in a result set t he linked
servers def ined on a local server.

Security for Vir tual Director ies

Virtual directories are necessary for Web data access to SQL Server data sources
via XML. Each database that requires Web access via XML m ust have a virtual
directory point ing to it . As described in t he “Virt ual Directory Managem ent”
sect ion of Chapter 6, you m ust designate a login for the virt ual directory. All
access to the database is m apped through the login t hat you specify on the
Secur ity tab of t he Propert ies dialog for a directory.
Figure 7-1 shows the Propert ies dialog box used for t he MyNwind v irt ual directory
that served as the source for m ost of t he sam ples in Chapter 6. Not ice that the
Secur ity tab specifies I USR_CCS1 in t he User Nam e text box. The User Nam e text
box contains the login nam e for the v irt ual directory. Select ing Windows as the
Account Type autom at ically installs I USR_servernam e as the login. Windows 2000
Server autom at ically installs the I USR_servernam e user account . I I S
autom at ically uses this Windows user account for anonym ous login. Since the
sam ples for Chapter 6 ran from a server nam ed ccs1, the dialog replaced
servernam e with CCS1.

Figure 7 - 1 . Use the Security tab for a vir tual directory to specify the login
by w hich users of the virtual directory w ill gain access to a SQL Server.

I f you decide to allow access to your database through the I USR_servernam e
Windows account , you m ust m anually create a login for t he Windows user on
your SQL Server instance. Then you m ust create a user secur ity account in t he
database to which the v irt ual directory points. Finally you m ust assign
perm issions to the I USR_servernam e security account appropriate t o t he needs of
your applicat ion. For exam ple, if you want to enable browsers to read from any
row source in t he database, you can assign the I USR_servernam e user account t o
the db_datareader fixed database role. I f you have m ore rest r ict ive requirem ents,
use the T-SQL GRANT statem ent to specify m ore granular perm issions, such as
the abilit y to view just one table or v iew. Make sure the database has perm issions
for the public role t hat don’t allow the I USR_servernam e account t o access the
database with a different set of perm issions than the one you specify explicit ly for
the v irt ual directory user account .
When you decide to perm it updates, inserts, and deletes to a database through a
virtual server, the user security account for t he virtual directory ’s login m ust
enable these act ions. My advice is to carefully rest r ict the row sources that you
m ake available for updat ing over t he Web. Avoid assigning the I USR_servernam e
account t o the db_datawriter f ixed database role. I nstead, assign I NSERT,
UPDATE, or DELETE perm issions with the T-SQL GRANT statem ent for whichever
database objects require m odificat ion over the Web.

Sam ples for Logins and Users

Login and user secur ity accounts com plem ent one another. Recall that a login
authorizes access to a server, but a user account grants access to a database on
a server. The users of your applicat ions typically need both types of secur ity
accounts to access a database on a SQL Server instance. I n addit ion, there are
two dist inct types of logins. The sam ples in t his sect ion explore the different k inds
of logins for SQL Server and how they relate to user secur ity accounts. All t he
scripts in this sect ion are in the LoginAndDropUsers.sql sam ple file.

Add a SQL Server Login and User

Recall t hat a login gets a user into a server but not necessarily into any databases
on the server. This is because a login typically requires a m atching securit y
account for each database to which a user is to have access. However, t here are
two ways in which a user can access a database without a user account for t he
database. First , the database can have a guest account . The user will t hen enjoy
any perm issions assigned explicit ly t o t he guest account or indirect ly to the guest
account t hrough perm issions for a database’s public role. Second, if a login is a
m em ber of t he sysadm in fixed server role, it can access any database on a server
without any rest r ict ions on it s funct ionalit y . For this reason, you want to lim it t he
num ber of logins with m em bership in t he sysadm in role. I f you need to carefully
specify how the user of a login can interact with a database, you m ust create a
user security account for the login in the database.
I nvoke the sp_addlogin system stored procedure to create a new SQL Server
login. With the sp_addlogin system stored procedure, you can create a login t hat
SQL Server m anages. When users at tem pt t o gain access to a SQL Server
instance with t his login, they m ust explicit ly designate both the login nam e and
its associated password. To create a SQL Server login, you m ust be a m em ber of
either the sysadm in or securityadm in fixed server role. Any user can change her
own password with t he sp_password system stored procedure. Only m em bers of
the sysadm in and secur ityadm in fixed server roles can invoke sp_password t o
change the password for a login different from their own.

Note

While a SQL Server login enables a user to connect to a SQL
Server instance by specify ing a login name and password, it
is the SID (secur ity ident ifier) that SQL Server uses to
ident ify and t rack the user. SQL Server internally generates a
GUID to represent the SI D for SQL Server logins.
I nvoke the sp_grantdbaccess system stored procedure to create a user secur ity
account in a database for a login. Only m em bers of t he sysadm in fixed server role
as well as the db_owner and db_accessadm in fixed database roles can run
sp_grantdbaccess. Before running sp_grantdbaccess, m ake sure the database
context is set to t he database in which you want to create a user security
account . For exam ple, invoke the USE statem ent for a database nam e before
running sp_grantdbaccess.
The following T-SQL script uses sp_addlogin to create a new SQL Server login. I t
is m andatory to specify the @loginam e and @passwd argum ents for t he
sp_addlogin system stored procedure. You can opt ionally specify several other
argum ents to change the default set t ings derived from your SQL Server
configurat ion. For exam ple, t he script dem onst rates the syntax for designat ing a
default database of Chapter07, the sam ple database for t his chapter. I f the script
didn’t m ake this assignm ent for t he @defdb argum ent , the default database

would have been the m aster database. The m aster database is one of the built - in
databases that SQL Server uses to adm inister it self. While all users require access
to this database, you probably don’t want to m ake it t he default database for
typical users.
Not ice that the scr ipt explicit ly references the m aster database before invoking
sp_addlogin. This reference isn’t st rict ly necessary since you can create a login
secur ity account from any database on a server. However, the sam ple script
invokes the USE statem ent two m ore t im es, and these two references are
necessary. You m ust invoke the USE statem ent before running the
sp_grantdbaccess system stored procedure. Recall that t his system stored
procedure creates a user secur ity account . Set t ing the database context before
invoking sp_grantdbaccess determ ines the database for which the system stored
procedure creates a user secur ity account .
--LoginAndDropUsers
--Create a SQL Server login with access
--to the Chapter07 and Northwind databases.
USE master
EXEC sp_addlogin
 @loginame = ’vbdotnet1’,
 @passwd= ’passvbdotnet1’,
 @defdb = ’Chapter07’
USE Chapter07
EXEC sp_grantdbaccess ’vbdotnet1’
USE Northwind
EXEC sp_grantdbaccess ’vbdotnet1’

The vbdotnet1 login doesn’t st r ict ly require a user secur ity account for t he
Northwind database because this sam ple database has a guest account , and the
public role for the database grants perm issions to all database objects in t he
init ial version of t he database. However, creat ing a user account for t he
vbdotnet1 login allows you to rem ove the guest account for the database and st ill
m aintain data access privileges. I n addit ion, a user account for the vbdotnet1
login enables a database designer to fine- tune the perm issions available t o the
login relat ive to other database users.

Rem ove a SQL Server Login and User

I n the norm al course of database m anagem ent , it becom es necessary to rem ove
as well as add database users. Since a SQL Server database user has two
different secur ity account types, you m ust rem ove both to flush a user com pletely
from a database server. To prevent orphaned user accounts, SQL Server doesn’t
allow you to delete t he login for a user without delet ing the user accounts
associated with t hat login. Rem oving the user accounts without elim inat ing their
login st ill allows a user t o access a database server, and the login can access any
databases with a guest account .

Note

I n addit ion to being unable to remove a login with one or
more associated user accounts, you cannot rem ove a login
that is current ly in use, owns a database, or owns a job in
the msdb database. A job is a sequence of steps for
automat ing a task that is defined in the msdb database, one
of the built - in databases that SQL Server uses to manage
itself. As m ent ioned previously, you can never remove the sa

login from a SQL Server instance.
Before you at tem pt to rem ove a login, it ’s useful to survey any associated user
secur ity accounts associated with the login. This perm its you to m ake sure that
you can rem ove all of the user security accounts associated with a login before
at tem pt ing to rem ove the login. I nvoke the sp_helplogins system stored
procedure with t he nam e of t he login for which you’re seeking inform at ion, as
shown in the following code. The system stored procedure returns a result set
com prising two recordsets. The first recordset contains a single row for the login
that you specify. The second recordset contains a row for each user account
associated with t he login nam ed as the argum ent for the sp_helplogins system
stored procedure. I f you don’t specify a login nam e as an argum ent when you
invoke sp_helplogins, t he system stored procedure st ill returns two recordsets.
However, t hese recordsets return inform at ion for all the logins on the current SQL
Server instance.
--Return info about a login, including
--its database user accounts.
EXEC sp_helplogins @LoginNamePattern=‘vbdotnet1’

Figure 7-2 shows the two recordsets that result from running sp_helplogins
vbdotnet1 aft er f irst invoking the scr ipt in t he preceding sect ion. The first
recordset starts with t he login nam e followed by a part ial display of t he login’s
SI D. The next two colum ns indicate the default database and language for t he
login. The next - to- last colum n, AUser , is yes when the login has at least one
corresponding user account . The last colum n, ARem ote, indicates whether t he
login specifies a rem ote login for a linked server. The second recordset provides
inform at ion about each user account for the login. The first and third colum ns
denote, respect ively, t he login nam e and the user nam e. By default , t hese are the
sam e, but you can override this convent ion. The second colum n designates the
database to which the user account belongs. The last colum n specifies whether
the user account is for an indiv idual user or a role.

Figure 7 - 2 . Use the sp_ helplogins system stored procedure to learn about
a login on a database server .

Arm ed with t he inform at ion in Figure 7-2, you can const ruct a T-SQL script like
the following to rem ove the vbdotnet1 secur ity accounts from the server. Start by
invoking the sp_revokedbaccess system stored procedure in each database with a
user account for the vbdotnet1 login. Specify t he user account nam e as the
argum ent for the sp_revokedbaccess system stored procedure. Not ice that t he
script invokes sp_revokedbaccess twice— once in each database for which the
vbdotnet1 login has a user account . The scr ipt closes by running the sp_droplogin
system stored procedure. This system stored procedure requires just one
argum ent specify ing the nam e of t he login t o rem ove. The perm issions for
rem oving user accounts and logins m atch those for adding them : a login
at tem pt ing to rem ove a login m ust be a m em ber of t he sysadm in or
secur ityadm in f ixed server role to run sp_droplogin.
--Drop a SQL Server login,
--first revoking its user accounts.
USE Northwind

EXEC sp_revokedbaccess ’vbdotnet1’
USE Chapter07
EXEC sp_revokedbaccess ’vbdotnet1’
EXEC sp_droplogin @loginame = ’vbdotnet1’

Adding and Rem oving Logins for a W indow s User

Managing a login based on a Windows user account for Windows NT, Windows
2000, or Windows XP is sim ilar to m anaging a SQL Server login. By a Windows
user account , I m ean the account by which Windows validates a user. From a
user perspect ive, the m ain difference is that a login based on a Windows user
account doesn’t have to specify a login and password when connect ing to a SQL
Server instance. For a database user with a login based on a Windows user
account , all a user has to do is select the Windows Authent icat ion opt ion in the
Connect To SQL Server dialog box of Query Analyzer. I f the target SQL Server
instance has a login for the Windows user account , t he connect ion at tem pt
succeeds. However, a m em ber of t he sysadm in group m ust f irst create a login for
the Windows account in order for the at tem pt to succeed.
The process for creat ing login and user secur ity accounts based on a Windows
user account is sim ilar t o that for m anaging SQL Server logins. When creat ing a
login for a Windows user account , invoke the sp_grant login system stored
procedure to create a login for the Windows user. When you designate a login
nam e for a Windows user account , the nam e m ust have two parts delim ited by a
backslash (\) . The part before the backslash is the nam e of the Windows server.
The part aft er t he backslash is t he nam e of t he Windows user.
The sp_grant login system stored procedure is analogous to t he sp_addlogin
system stored procedure. Both of t hese system stored procedures create a new
login. SQL Server saves both of the logins in t he syslogins table. SQL Server also
reports both types of logins in t he sam e colum n of t he result set from the
sp_helplogins system stored procedure. However, the login created with
sp_grant login is authent icated by a Windows 2000 or Windows NT server. When a
Windows user at tem pts to connect , SQL Server stores the Windows secur ity
ident if ier for t he Windows user. The Windows secur ity ident if ier is analogous to
the SQL Server SI D. However, t he Windows security ident if ier is m anaged by the
Windows server, and the Windows secur ity ident if ier is longer than the SQL
Server SI D (85 bytes for Windows and 16 bytes for SQL Server) .
After you create a login for a Windows user account , the login cannot connect to
any database without a user secur ity account unless the database has a guest
account . You can create a user secur ity account for a login based on a Windows
user account with the ident ical procedure for a SQL Server login. First set the
database context for the user secur ity account . For exam ple, invoke the USE
statem ent t o specify t he nam e of t he database for which you want to create a
user account . Second run sp_grantdbaccess with t he nam e of the login as it s
argum ent .
The following short script dem onst rates the syntax for creat ing a login based on a
Windows user account . The Windows user account resides on a Windows 2000
Server nam ed CCS1. The nam e of t he account on the Windows server is
winvbdotnet1. The last two lines of the script create a user secur ity account in t he
Chapter07 database based on the login created with sp_grant login.
--Create a Windows login with
--access to Chapter07 database.
EXEC sp_grantlogin ’CCS1\winvbdotnet1’
USE Chapter07
EXEC sp_grantdbaccess ’CCS1\winvbdotnet1’

Note

I f the Windows user account is for a Windows server that
isn’t a domain server but merely an applicat ion server, you
must create a local account on a Windows NT Workstat ion or
Windows 2000 Professional client computer with the same
name and password as on the Windows server.
Rem oving the login is a two-step process because the login has a single user
secur ity account associated with it . First rem ove the user account for t he
Chapter07 database. The system stored procedure for elim inat ing a user secur it y
account based on a login for a Windows user account is t he sam e as for delet ing a
user account based on a SQL Server login. Second revoke the login. When
dropping a login, you use a different system stored procedure for one based on a
Windows user account t han for one created by SQL Server. Here is t he T-SQL
code for im plem ent ing the steps.
--Drop a Windows login with sp_revokelogin,
--but first revoke its user accounts.
USE Chapter07
EXEC sp_revokedbaccess ’CCS1\winvbdotnet1’
EXEC sp_revokelogin ’CCS1\winvbdotnet1’

W ho’s Using Your Applicat ion?

By now, you should feel com fortable with the idea that there
are actually two reasonable answers to this quest ion. The first
answer is the login name. This name ident ifies a user as she
enters a SQL Server instance. The second answer is the name
of the user security account . This ident if ies a user within a
database. I f a login doesn’t have a user security account
assigned explicit ly to it for a database and the database has a
guest account , the login can enter the database with the guest
user account .
SQL Server 2000 offers two built - in funct ions for telling you
the login name and user account name of the user perform ing
a task in your database. The SYSTEM_USER funct ion returns
the login name. The CURRENT_USER funct ion returns the user
account name. Before discussing a list ing to clar ify the
operat ion of these funct ions, I want to ment ion the DB_NAME
funct ion. When you enter DB_NAME() in a SELECT statement,
it returns the nam e of the current database.
The following short scr ipt invokes the SYSTEM_USER and
CURRENT_USER funct ions in three different databases—
master, Northwind, and Chapter07. I f you run this script after
connect ing to a SQL Server instance with the
CCS1\ winvbdotnet1 login, you obtain an ident ical result set
from each SELECT statement . However, two different values
are displayed for the CURRENT_USER funct ion. I n the master
and Northwind databases, the CURRENT_USER funct ion

returns guest . I n the Chapter07 database, the
CURRENT_USER funct ion returns CCS1\ winvbdotnet1. This is
because the login has a user account named after it in the
Chapter07 database.
--
Demonstrate functions telling who’s using a database.
USE master
SELECT DB_NAME(), SYSTEM_USER, CURRENT_USER
USE Northwind
SELECT DB_NAME(), SYSTEM_USER, CURRENT_USER
USE Chapter07
SELECT DB_NAME(), SYSTEM_USER, CURRENT_USER

Processing Logins Based on W indow s Groups

I n addit ion to basing a login on an indiv idual Windows user account , you can also
create a login for a Windows group account . The lat ter type of Windows account
provides a single nam e for referencing m ore than one indiv idual Windows
account . When you create a login based on a Windows group, all the indiv idual
m em bers of the group inher it the login assigned to t he group. I n addit ion, you
can create separate logins for a subset of t he indiv idual m em bers of a Windows
group. These logins for indiv idual Windows accounts com plem ent t he login based
on the Windows group account by providing an alternat ive route into a SQL
Server instance and the databases on it .
The sam ple for t his sect ion works with a Windows group nam ed winvbdotnet . The
group contains two individual Windows user accounts nam ed winvbdotnet1 and
winvbdotnet2. All t he accounts reside on a CCS1 Windows 2000 server. The
following T-SQL script shows the code for creat ing dist inct logins for the Windows
group and the indiv idual Windows accounts that belong to t he Windows group.
After the execut ion of t he script , both the winvbdotnet1 and winvbdotnet2 users
connect to t he SQL Server instance with t heir own logins as well as the login for
the Windows group. I n addit ion, both individual Windows user accounts have
their own user accounts in t he Chapter07 database, and the Windows user
accounts m ap to the Chapter07 user account for the Windows group.
--Create login for winvbdotnet Windows group.
EXEC sp_grantlogin ’CCS1\winvbdotnet’
USE Chapter07
EXEC sp_grantdbaccess ’CCS1\winvbdotnet’

--Also create logins for group members individually.
EXEC sp_grantlogin ’CCS1\winvbdotnet1’
EXEC sp_grantdbaccess ’CCS1\winvbdotnet1’
EXEC sp_grantlogin ’CCS1\winvbdotnet2’
EXEC sp_grantdbaccess ’CCS1\winvbdotnet2’
GO

There are actually two ways to m ake a login unavailable for use. First , you can
run the sp_revokelogin system stored procedure as dem onst rated in t he
preceding sect ion. This approach rem oves the login for t he Windows user from
the database server. With this approach in the current context , revoking the
CCS1\ winvbdotnet1 Windows user login st ill perm its the winvbdotnet1 Windows
m em ber of t he winvbdotnet group to connect to the database server. This
capabilit y is possible because the Windows user can access the database server
through the login for t he winvbdotnet Windows group.

The following scr ipt shows the syntax for a second approach. I t denies login
perm ission to an exist ing login— in this case, the one for t he winvbdotnet1
Windows user. This approach st ill perm its the winvbdotnet2 Windows user to
access the database server. However, by denying the login perm ission for the
CCS1\ winvbdotnet1 login, t he script overrides the abilit y of the winvbdotnet1
Windows user t o access the database server t hrough the CCS1\ winvbdotnet login.
--This does not affect winvbdotnet2,
--which is a member in winvbdotnet group.
EXEC sp_denylogin ’CCS1\winvbdotnet1’
GO

The following one- line script blocks the winvbdotnet2 Windows user from
accessing the database server. The logins for t he winvbdotnet1 and winvbdotnet2
Windows users are st ill on the database server. I n addit ion, the
CCS1\ winvbdotnet login st ill author izes it s m em bers to log in t o the server. A
deny set t ing (inst it uted by the sp_denylogin system stored procedure) for t he
indiv idual Windows accounts overr ides the access granted by the sp_grant login
system stored procedure for the CCS1\ winvbdotnet Windows group account . This
general rule is t rue for all perm issions. A deny set t ing overr ides a grant set t ing.
--This does affect winvbdotnet2,
--which is a member in winvbdotnet group.
EXEC sp_denylogin ’CCS1\winvbdotnet2’
GO

To rem ove the logins for the indiv idual Windows users and the Windows group to
which the users belong, you should revoke the database access to the user
secur ity accounts corresponding to logins. Then you can revoke the specific logins
for the Windows users and Windows group. The following scr ipt shows the syntax
for accom plishing these tasks. While t he sp_denylogin system stored procedure
disables a login from accessing a server, this system stored procedure doesn’t
rem ove the login from a SQL Server instance— instead, you need the
sp_revokelogin system stored procedure to accom plish the task.
--Cleanup account settings.
USE Chapter07
EXEC sp_revokedbaccess ’CCS1\winvbdotnet’
EXEC sp_revokedbaccess ’CCS1\winvbdotnet1’
EXEC sp_revokedbaccess ’CCS1\winvbdotnet2’
EXEC sp_revokelogin ’CCS1\winvbdotnet’
EXEC sp_revokelogin ’CCS1\winvbdotnet1’
EXEC sp_revokelogin ’CCS1\winvbdotnet2’
GO

Sam ples for Assigning Perm issions

This sect ion dem onst rates the essent ial T-SQL statem ents for organizing
perm issions within a database. Specif ic techniques exist for object and statem ent
perm issions. I n addit ion, the final t opic in t he sect ion reveals how to m anage
perm issions when a user account can possess a perm ission direct ly as well as
indirect ly t hrough its m em bership in one or m ore Windows accounts or SQL
Server roles.
The sam ples in this sect ion rely on a version of the Em ailContacts table. The
“Scr ipt ing Tables” sect ion of Chapter 2 init ially presented the T-SQL code for this
table. For t he purposes of t his chapter, you can re-create this table in the
Chapter07 database sim ply by changing the references to t he Chapter02
database in Chapter 2 to the Chapter07 database. A copy of the m odified code

exists in the sam ple f ile CreateEm ailContactsTable.sql for your easy reference.
This sect ion also relies on the existence of t he four logins with their m atching
user security accounts created so far in t his chapter. Recall that one login is a
SQL Server login (vbdotnet1) , another two are Windows user logins
(CCS1\ winvbdotnet1 and CCS1\ winvbdotnet2) , and a fourth login is a Windows
group login (CCS1\ winvbdotnet) com prising each of t he two Windows user
accounts. This sect ion presents the T-SQL code for assigning perm issions to the
user accounts for t he logins. The perm issions relate t o t he Em ailContacts table.
Therefore, create the Em ailContacts table with a m em ber of the sysadm in fixed
server role, such as the Windows Adm inist rator user account or the SQL Server
sa login.

Select , I nsert , and Delete Perm issions for a Table

To evaluate the effect of perm ission assignm ents, you will need two concurrent
act ive connect ions to your database server. Connect once as a m em ber of t he
sysadm in fixed server role, and connect a second t im e with a SQL Server login—
nam ely, vbdotnet1. Note that if you ran the code shown ear lier t o drop the
vbdotnet1 login account , you’ ll need to rerun the code that creates the account .
To confirm that the user account for t he vbdotnet1 login has no perm issions in
the Chapter07 database, at tem pt t o run the following script wit h the user account
for the login. Not ice that the at tem pt returns an error m essage saying, in effect ,
that SELECT perm ission is denied on the Em ailContacts obj ect in t he Chapter07
database.
--SelectInsertDeletePermission
--The SELECT succeeds if the user has
--SELECT permission.
USE Chapter07
SELECT * FROM EmailContacts

To rem edy the error condit ion, you need to assign SELECT perm ission for t he
Em ailContacts table to t he vbdotnet1 user account . From your session init iated by
a sysadm in m em ber, run the following line of T-SQL. You m ust invoke this line of
code from your session for the sysadm in role m em ber. You can also always
assign perm issions from a session with any m em ber of the db_owner fixed
database roles. Sessions for selected other user accounts will work in special
circum stances; see the “GRANT” topic in Books Online for details. Recall also that
m em bers of the sysadm in role have perm ission to perform all tasks on a
database server.
--Assign SELECT permission for the EmailContacts
--table to the vbdotnet1 user account.
GRANT SELECT ON EmailContacts TO vbdotnet1

Not ice that you can assign a SELECT perm ission with t he GRANT T-SQL
statem ent . The sam ple in the preceding T-SQL statem ent uses the SELECT
keyword. This keyword denotes the perm ission to run a SELECT statem ent , such
as the sam ple to select all colum ns for all rows from the Em ailContacts table. You
can opt ionally assign I NSERT, UPDATE, DELETE, and REFERENCES perm issions
for a table. When concurrent ly assigning m ore than one perm ission, delim it t he
item s in your list of perm issions with com m as. After the perm issions, use the
keyword ON and then specify the row source, which is the Em ailContacts table in
this dem onst rat ion. Conclude the GRANT statem ent with the TO keyword followed
by the account t o which you are grant ing perm ission. The preceding GRANT
statem ent designates the user secur ity account for the vbdotnet1 login. You can
alternat ively specify a SQL Server role for one or m ore user accounts or the user
secur ity accounts for a Windows user or a Windows group account .

After invoking the preceding GRANT statem ent , the session for the vbdotnet1
user can execute a SELECT statem ent against the Em ailContacts table. However,
the following at tem pts from the vbdotnet1 connect ion to insert a row and then
delete the row fail w ith a pair of error m essages about denied I NSERT and
DELETE perm issions. Again, t he problem is that the vbdotnet1 user doesn’t have
the proper perm issions.
--Run from Chapter07 database context for vbdotnet1 user.
INSERT INTO EmailContacts
 VALUES(3,’Tony’, ’Hill’, ’thill@cabinc.net’)
SELECT * FROM EmailContacts
GO

DELETE
FROM EmailContacts
WHERE Email1 = ’thill@cabinc.net’
SELECT * FROM EmailContacts
GO

Running the following statem ent from the sysadm in session enables the
vbdotnet1 user account with t he proper perm issions to execute the preceding
script . Not ice that t he syntax for adding m ult iple perm issions is the sam e as for
adding a single perm ission except that you delim it perm issions with a com m a.
The following statem ent adds INSERT and DELETE perm issions to the exist ing
SELECT perm ission for t he vbdotnet1 user account .
--Delimit more than one permission in a GRANT
--statement by using a comma.
GRANT INSERT, DELETE ON EmailContacts TO vbdotnet1

You can drop all perm issions for t he vbdotnet1 user account by revoking or
denying them . When you are working with an indiv idual user account that doesn’t
belong to any role, you can either revoke or deny exist ing perm issions for the
account . Use the REVOKE statem ent with t he ALL keyword to rem ove any exist ing
perm issions from a user account . The following one- line script dem onst rates the
syntax for dropping the SELECT, I NSERT, and DELETE perm issions from
vbdotnet1.
--Use the ALL keyword to concurrently
--drop all existing permissions.
REVOKE ALL ON EmailContacts TO vbdotnet1

Perm ission to Create a Table

When you assign the perm ission to create a table to user accounts for any login
not in t he sysadm in fixed server role, you com plicate how an applicat ion m ust
refer to tables. This is because all m em bers of t he sysadm in fixed server role are
the dbo user. This dbo user belongs to all databases. You cannot drop the dbo
user from a database— just as no one can drop the sa login from an instance of
SQL Server. The rules for referencing tables created by the dbo user are different
than those for tables created by any other database user.
Every user can refer im plicit ly t o tables created by the dbo user. When the
sam ples in the preceding sect ion referenced Em ailContacts, t hey im plicit ly
referred to dbo.Em ailContacts because the table was created by a m em ber of the
sysadm in fixed server role. SQL Server requires you to explicit ly refer to tables
created by other users.
When a user who doesn’t qualify as a dbo user creates a table, other users can
refer to the table by the nam e of t he table’s owner and the table’s nam e. For
exam ple, if vbdotnet1, who isn’t a dbo user, creates a table nam ed Em ailContacts
in the Chapter07 database, other users m ust refer to t he table as

vbdotnet1.Em ailContacts. The vbdotnet1 user can refer t o the Em ailContacts
table that it created as either vbdotnet1.Em ailContacts or just Em ailContacts.
However, if that user wants to reference the dbo Em ailContacts table, he m ust
specify dbo.Em ailContacts. I f any other user, who didn’t herself create a table
nam ed Em ailContacts, refers to a table with Em ailContacts, SQL Server
autom at ically interprets this as a reference to dbo.Em ailContacts.

Note

When you perm it non-dbo users to create tables, a best
pract ice is always to use the owner qualifier when referr ing
to a table. I f a dbo user creates a table nam ed
EmailContacts, refer to it as dbo.EmailContacts. I f a non-dbo
user, such as vbdotnet1, creates a table nam ed
EmailContacts, refer to it as vbdotnet1.Em ailContacts.
Because users who write their own T-SQL statem ents can
deviate from these rules and the rules lengthen T-SQL
statements in any event , restr ict the perm ission to create
tables to the dbo user if at all possible.
The following line of script shows the syntax for enabling the vbdotnet1 user to
create a table. Set the database context if it isn’ t already set to the database for
which you want t o grant the perm ission. Not ice that the syntax for grant ing
perm ission to execute a statem ent is slight ly dif ferent t han for an object
perm ission. After t he GRANT keyword, you list the statem ent for which you are
grant ing perm ission, but there’s no need to follow this statem ent with the ON
keyword. I n addit ion to CREATE TABLE, you can reference CREATE DATABASE,
CREATE VI EW, CREATE PROCEDURE, CREATE FUNCTI ON, and selected other
statem ents. (See the “GRANT” topic in Books Online for the com plete list .) As
with grant ing obj ect perm issions, you can use a com m a delim iter when
concurrent ly grant ing perm ission for m ore than one statem ent . Close the GRANT
statem ent with t he TO keyword followed by the nam e of t he account that is to
receive the statem ent perm ission.
--PermissionToCreateATable
--Set the database context before invoking.
GRANT CREATE TABLE TO vbdotnet1

After execut ing the preceding GRANT statem ent , the vbdotnet1 user can create a
table, such as one nam ed Em ailContacts. Because vbdotnet1 owns
vbdotnet1.Em ailContacts, it can autom at ically insert and delete rows from the
table— just like m em bers of the sysadm in fixed server role and the db_owner
fixed database role. However, owning an object doesn’t autom at ically convey
m em bership in any role. Since the vbdotnet1 login isn’t a m em ber of t he
sysadm in fixed database role, t he vbdotnet1 user cannot be a dbo user. The
following scr ipt shows the code for creat ing the vbdotnet1.Em ailContacts table.
Running the script from the session connect ion based on the vbdotnet1 login
m akes the vbdotnet1 user the table’s owner.
--Invoke the DROP TABLE statement if the EmailContacts
--table already exists for the vbdotnet1 user.
CREATE TABLE EmailContacts
(
ContactID int Not Null PRIMARY KEY,
FirstName nvarchar(20) NULL,
LastName nvarchar(35) NULL,
Email1 nvarchar (255) NULL
)

List ing the tables from the sysadm in session now shows two tables with the nam e
Em ailContacts. Use the following scr ipt to display the list of tables with
Em ailContacts as their nam e located in the Chapter07 database. Figure 7-3 shows
the result set from the script . One row in t he result set is for the dbo user, and
the other is for the vbdotnet1 user.
--List the EmailContacts tables after creating
--a second one with the vbdotnet1 user.
USE Chapter07
SELECT *
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = ’EmailContacts’

Figure 7 - 3 . The Table_ Schem a colum n in the result set from the
I NFORMATI ON_ SCHEMA.TABLES view denotes a table ow ner’s user

nam e.

Note

You cannot drop a user and its corresponding login if the
user owns an object , such as a table, in a database. I f the
objects for a user are no longer required, simply drop them
and then drop the user and its login. I f you require the
objects that are owned by a user who must be dropped,
invoke the sp_changeobjectowner system stored procedure
to t ransfer object ownership to a user who will remain in the
database. Then drop the user and login.
You can add rows to and delete rows from the vbdotnet1.Em ailContacts table with
a script such as the following. Because the script references the table with it s
owner qualif ier, you can run the script from any connect ion based on a login with
a user having perm ission to select , insert , and delete rows from the table— for
exam ple, t he dbo user or t he vbdotnet1 user. The script generates a result set
with t hree recordsets. The f irst recordset is em pty because the preceding script
creat ing the table doesn’t insert any rows. The second recordset shows the new
row for Tony Hill. The third row shows the table em pty again aft er the delet ion of
the row for Tony Hill.
--Run from Chapter07 database context.
SELECT * FROM vbdotnet1.EmailContacts
INSERT INTO vbdotnet1.EmailContacts
 VALUES(3,’Tony’, ’Hill’, ’thill@cabinc.net’)
SELECT * FROM vbdotnet1.EmailContacts

DELETE
FROM vbdotnet1.EmailContacts
WHERE Email1 = ’thill@cabinc.net’
SELECT * FROM vbdotnet1.EmailContacts

W indow s Users and Groups

Windows users that are part of Windows group accounts in SQL Server create
special challenges for set t ing secur ity . This is because an indiv idual Windows user
account can derive it s perm ission for a task from m ult iple sources. Even if you
revoke a perm ission from the user account for a Windows user, the Windows user
m ay st ill be able to perform the task cont rolled by the perm ission. This can
happen because the user account for a Windows group, to which a Windows user
belongs, grants the sam e perm ission revoked for the indiv idual Windows user
account . I n fact , this sam e scenar io applies to SQL Server user-defined roles. A
SQL Server account can belong to m ult iple roles and have perm issions applied
direct ly to it . Revoking one perm ission m ay not fully close all t he routes by which
a SQL Server user account can der ive perm ission to perform the task.

Note

When work ing with a Windows user account that can belong
to a Windows group or a SQL Server user account that can
belong to one or more user-defined roles, consider using a
DENY statement to remove a perm ission. This statement
blocks the perm ission to perform a task even if the account
is granted perm ission for the task by virtue of its
membership in another Windows group or SQL Server role.
The sp_helprotect system stored procedure helps you m onitor t he perm ission
assignm ents for user accounts. By default , sp_helprotect returns a result set with
the object and statem ent perm issions for all the user accounts in all databases on
a database server. You can f ilter the result set by specify ing selected argum ents.
For exam ple, designat ing a database in the @nam e argum ent returns the
perm issions for j ust that database. You can also filter by type of perm ission
(object or statem ent) , by account to whom a perm ission is granted, and by who
granted the perm ission. I f you assign f ilters so that t he result set from
sp_helprotect is em pty, the procedure returns an error m essage for t he condit ion.
The following scr ipt t racks the assignm ent of perm issions in t he Chapter07
database. Before the execut ion of any GRANT statem ent in t he script , a database
connect ion to the Chapter07 database that is based on the login for
CCS1\ winvbdotnet1 cannot perform a SELECT statem ent on the
dbo.Em ailContacts table. After t he first set of GRANT statem ents, t he
CCS1\ winvbdotnet1 user account can perform a SELECT statem ent based on two
dist inct perm issions. One perm ission is granted direct ly to t he user in the second
GRANT statem ent . The other perm ission is granted to t he user account through
the CCS1\ winvbdotnet Windows group because CCS1\ winvbdotnet1 is a m em ber
of t his Windows group. The invocat ion of the sp_helprotect system stored
procedure after t he first three GRANT statem ents confirm s these two perm issions
and one m ore for t he CCS1\ winvbdotnet2 Windows user account .
The next T-SQL statem ent in t he script revokes the SELECT perm ission for t he
dbo.Em ailContacts table for t he CCS1\ winvbdotnet1 Windows user. This rem oves
the perm ission from the collect ion of perm issions in the database. The execut ion
of sp_helprotect in the next statem ent confirm s that the perm ission is m issing.
However, rem oving the perm ission doesn’t block the CCS1\ winvbdotnet1
Windows user from perform ing a SELECT statem ent with the dbo.Em ailContacts
table as it s source. This is because the CCS1\ winvbdotnet1 Windows user der ives
SELECT perm ission for t he table from its m em bership in t he CCS1\ winvbdotnet
Windows group.
Revoking SELECT perm ission for t he CCS1\ winvbdotnet Windows group account
in the database will block the CCS1\ winvbdotnet1 Windows user from perform ing
a SELECT statem ent on the Em ailContacts table. However, this act ion will also
rem ove SELECT perm ission for t he CCS1\ winvbdotnet2 Windows user. The script

instead invokes a DENY statem ent for SELECT perm ission on the
dbo.Em ailContacts table for t he CCS1\ winvbdotnet1 user account . This statem ent
rest r icts j ust the abilit y of t he CCS1\ winvbdotnet1 Windows user t o perform a
SELECT statem ent with Em ailContacts as the source. Any other user in the
CCS1\ winvbdotnet Windows group st ill retains perm ission for a SELECT statem ent
against the dbo.Em ailContacts table. The final execut ion of sp_helprotect reveals
an explicit perm ission denying the CCS1\ winvbdotnet1 user account from
perform ing a SELECT statem ent on the dbo.Em ailContacts table.
--DenyPermission
--Before granting SELECT permissions, SELECT statements from
--either CCS1\winvbdotnet1 or CCS1\winvbdotnet2 were denied.

--Grant SELECT permission for dbo.EmailContacts for
--a Windows group and its two individual Windows accounts.
GRANT SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet]
GRANT SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet1]
GRANT SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet2]

EXEC sp_helprotect @name=‘dbo.EmailContacts’

--After granting SELECT permission, SELECT statements from
--either CCS1\winvbdotnet1 or CCS1\winvbdotnet2 were granted.

--Revoke SELECT permission for dbo.EmailContacts
--for CCS1\winvbdotnet1.
REVOKE SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet1]

EXEC sp_helprotect @name=‘dbo.EmailContacts’

--After revoking SELECT permission for CCS1\winvbdotnet1, the
--account could still perform a SELECT statement for EmailContacts.

--Deny SELECT permission for dbo.EmailContacts
--for CCS1\winvbdotnet1.
DENY SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet1]

EXEC sp_helprotect @name=‘dbo.EmailContacts’

--Denying SELECT permission makes it impossible
--for CCS1\winvbdotnet1 to SELECT from EmailContacts.

--Clean up permission assignments.
REVOKE SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet]
REVOKE SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet1]
REVOKE SELECT ON dbo.EmailContacts TO [CCS1\winvbdotnet2]

Chapter 8 . Overview of the .NET
Fram ew ork
This book is aim ed at professional developers who have an interest in
program m ing SQL Server 2000 with Visual Basic .NET. Up to t his point , the
book’s focus was pr im ar ily on SQL Server. I believe that you cannot opt im ally
program SQL Server in any language without a firm understanding of it s basic
workings. Chapters 2 t hrough 7 provide a foundat ion in SQL Server that will serve
you especially well for data access and m anipulat ion tasks, as well as related data
def init ion tasks.
Chapter 1 int roduces you to beginning Visual Basic .NET and ADO.NET techniques
so that you have som e context for understanding how to apply the SQL Server
2000 topics presented in Chapters 2 t hrough 7. This chapter builds on the init ial
exposure to technologies for t he .NET Fram ework that appears in Chapter 1. I f
you jum ped to t his chapter without any pr ior exposure to the .NET Fram ework,
now is a great t im e to look over Chapter 1. To take m axim um advantage of Visual
Basic .NET for creat ing SQL Server solut ions, you need this background. Chapter
1 starts to convey this background, and this chapter finishes the task so you are
ready to dig into the .NET Fram ework code sam ples throughout the rest of the
book.
Visual Basic .NET is one of t he core program m ing languages for t he .NET
Fram ework, which Microsoft defines as “a new com put ing plat form designed to
sim plify applicat ion developm ent in the highly dist r ibuted environm ent of t he
I nternet .” Microsoft is taking a whole new init iat ive with t he .NET Fram ework that
radically redefines how businesses can program and deploy solut ions as well as
access resources over corporate int ranets or the I nternet . I n m any presentat ions
on the beta versions, it was popular to hear t hat Microsoft was bet t ing it s
business on the .NET Fram ework. Whether or not this is precisely t rue, it is clear
that Microsoft has invested heavily in providing a com prehensive new st ructure
for building solut ions, and the f irm has changed in a m ajor way it s m ost popular
program m ing language— Visual Basic. The scope and m agnitude of t he changes
provide Visual Basic database developers with challenges and opportunit ies.
This chapter at t em pts to fam iliar ize you with t he architecture of the .NET
Fram ework and related technologies, including ASP.NET and XML Web services.
See Chapter 1 for int roductory m ater ial on Visual Basic .NET and ADO.NET. My
goal in this chapter isn’t to em power you as a program m er with t hese
technologies. I nstead, I aim to show how the technologies com plem ent one
another. I n the process, I feel you will develop an appreciat ion of why it is
im portant for you to adopt the .NET Fram ework and start program m ing it wit h
Visual Basic .NET. This book’s rem aining chapters exam ine the program m ing you
use for the topics int roduced conceptually in this chapter and Chapter 1. This
chapter contains a program m ing sam ple, but I put it there j ust for reference
purposes. This chapter is about concepts— not code. ADO.NET, ASP.NET, and XML
Web services each are covered in a separate chapter that drills down into
techniques for developing solut ions with t hem . Plus, there’s another chapter—
Chapter 12— on m anaging XML with Visual Basic .NET.

An I ntroduct ion to the .NET Fram ew ork

This sect ion int roduces you to core .NET Fram ework concepts. I t starts with an
overview of the .NET Fram ework archit ecture. Next it m oves on to what ’s new

about source code com pilat ion. This is a natural ent ry point to discussing how you
m anage the referencing of solut ions by clients and how to deploy solut ions. The
sect ion closes with brief looks at selected .NET Fram ework features that build on
m ater ial covered earlier in t he sect ion and are im portant to how you will use .NET
Fram ework solut ions.

.NET Fram ew ork Architecture

Perhaps the m ost dom inant archit ectural elem ent of the .NET Fram ework is it s
com m on language runt im e. The runt im e sit s on top of t he operat ing system .
Program m ers wr ite t o t he runt im e in any com pliant language. The runt im e
eventually wr ites what is called m anaged code t o the specific operat ing system on
which it runs. As I wr it e this chapter, t he operat ing system s that support the
com m on language runt im e include those based on the 32-bit versions of
Windows, including Windows 98, Windows Millennium , Windows NT, Windows
2000, and Windows XP. Microsoft has a Windows .NET Server operat ing system in
beta that likely will include the .NET Fram ework. I n addit ion, you can expect the
runt im e to produce code suitable for t he forthcom ing 64-bit version of Windows.
While the com m on language runt im e runs on top of Windows system s, one of t he
great st rengths of runt im e-com pliant solut ions is their interoperabilit y with other
operat ing system s. This follows from runt im e support for XML and XML Web
services. The core technologies for XML and XML Web services rely on
indust rywide standards. Because other vendors are endorsing these standards
along with Microsoft , you can be assured of a level of interoperabilit y for the
solut ions that you create with the runt im e. I f vendors follow through on their
endorsem ents for t he standards and you build your solut ions with code m anaged
by the runt im e, you can achieve levels of interoperabilit y across operat ing
system s not previously enjoyed by applicat ion developers.

Note

Learn more about XML in Chapter 6 and Chapter 12. XML
Web services is the topic of the closing sect ion in this chapter
as well as the whole of Chapter 1 3 .
When you develop solut ions for SQL Server, you will benefit from the fact that the
com m on language runt im e can be hosted by SQL Server 7 and later versions and
Microsoft I nternet I nform at ion Services versions 4.0 and later ; I I S is the
Microsoft Web server for Windows NT and Windows 2000. This gives you a chance
to integrate t ight ly your database and Web solut ions with the m anaged code
generated by the runt im e. For exam ple, the .NET Fram ework ships with m anaged
providers for SQL Server and OLE DB data sources. The SQL Server provider
offers substant ial perform ance advantages because of it s opt im izat ion for SQL
Server 7 and SQL Server 2000. I n addit ion, ASP.NET is a part of t he .NET
Fram ework that I I S hosts. ASP.NET is the next generat ion of developm ent
techniques for t hose creat ing solut ions with ASP now. I n order for ASP.NET pages
to run, t hey m ust be com piled by the runt im e. ASP.NET is an integral part of I I S
4, just as I I S 3 hosts the ASP object m odel. I n addit ion, ASP.NET can interact
with SQL Server t hrough the .NET Fram ework data providers. (See Chapter 11.)
Figure 8-1 shows a sim plif ied schem at ic of the path from source code in Visual
Basic .NET (or another runt im e-com pliant language) through to interact ions with
SQL Server and browsers on a Web. The com m on language runt im e t ranslates
the source code to m anaged code. This m anaged code can, in turn, interact with
the Windows operat ing system , SQL Server, and browsers. With t he aid of a
m anaged provider, such as the one for SQL Server, your solut ions can access and
m anipulate data. You can use the ASP.NET com ponent of t he .NET Fram ework to

create ASP.NET pages that reside on an I I S server. These pages can serve
dynam ic elem ents to browsers on a Web. I n addit ion, t he pages can offer the
browsers the opportunit y to access and m anipulate data on a SQL Server.

Figure 8 -1 . A schem at ic illustrat ing the role of the com m on language
runt im e and its m anaged code in interact ing w ith the W indow s operat ing

system , SQL Server, and I I S.

Com piling Source Code

The .NET Fram ework supports m ult iple program m ing languages in a com m on
way. I n addit ion to Visual Basic .NET, Visual Studio .NET supports the preparat ion
of source code in other languages, such as C# and Visual C+ + . Web developers
who are used to building solut ions in JScr ipt w ill appreciate t he fact that they can
create ASP.NET solut ions with JScript .NET. I n fact , these developers can use
JScr ipt .NET to im plem ent solut ions across the full range of .NET Fram ework
capabilit ies because JScript .NET is runt im e-com pliant . I n addit ion, third-party
vendors are readying other languages for runt im e com pliance. This proliferat ion
of languages will offer developers a wide range of opt ions in which they can
program the .NET Fram ework.

Note

JScript .NET is an extension of the Microsoft JScr ipt
language, which was based on ECMAScript (ECMA-262) .
ECMA is the European Computer Manufacturers Associat ion.
JScript .NET is explicit ly developed for use with the runt im e.
Since JScr ipt .NET generally follows the ECMAScript
convent ions, it offers a standards-based route to creat ing
.NET Framework solut ions with a popular script ing language
among Web developers.
A wonderful t hing about the .NET Fram ework is that all languages can have the
sam e capabilit ies if t hey are fully runt im e-com pliant . For exam ple, Visual Basic
.NET has the sam e capabilit ies as C# (and so does JScr ipt .NET) . I n addit ion,
developers in one language can freely use objects created by developers in other
languages. This cross- language funct ionalit y wasn’t always easy to im plem ent
before the .NET Fram ework because of slight incom pat ibilit ies in source code
language com pilat ion processing. The .NET Fram ework actually readies source
code for execut ion through a series of two com pilat ions. The first com pilat ion

converts the source code to Microsoft I nterm ediate Language (MSI L) . The second
com pilat ion converts MSI L to CPU-specific code for t he com puter running the
code.
The first com pilat ion from source code to MSI L generates a representat ion of your
program that captures it s program m ing inst ruct ions and m etadata about the
program . The com pilat ion stores it s output in a portable execut ion (PE) file. MSI L
is a language- independent way of expressing your program m ing logic. The
m etadata describes the types that your code creates as well as their m em bers,
such as m ethods, propert ies, and events. A t ype is an elem ent , such as a class.
Another im portant m etadata elem ent is the descript ion of t he assem bly for an
applicat ion. An assem bly is t he unit for stor ing a solut ion in t he .NET Fram ework.
The assem bly descript ion in t he m etadata includes an ident it y specificat ion for t he
assem bly, exported types, referenced types, and secur ity perm issions needed to
run. A reference to a t ype is like a reference to a class in a type library. Because
the m etadata for an assem bly includes internal types and externally referenced
types, there is no need for references to t ype librar ies in Visual Basic .NET and
other runt im e-com pliant languages.
The second com pilat ion from MSI L to m achine code readies your code for
execut ion on a specific processor. The .NET Fram ework can accom plish this with a
Just - I n-Tim e (JI T) com piler. JI T com pilers are specific to each supported CPU
architecture. JI T com pilat ion com piles the contents of t he PE file as a user
references it s elem ents dur ing a session. PE file elem ents, such as a type
m em ber, aren’t com piled unt il a user references them . After the init ial
com pilat ion, t he runt im e autom at ically refers to the com piled version, thus
reducing the t im e to execute the code. This process also saves com pilat ion t im e
by not com piling those elem ents that a user doesn’t reference dur ing a session.
Unless an adm inist rator explicit ly designates otherwise, the com pilat ion to
m achine code exam ines the MSI L and its m etadata to determ ine whether it is
type safe. The term t ype safe refers t o the fact that a type accesses only m em ory
locat ions for which it has access perm ission. This securit y check allows the .NET
Fram ework to enforce secur ity rest r ict ions.

Assem blies and Manifests

Assem blies and their m anifests are an excit ing innovat ion int roduced with the
.NET Fram ework. They are excit ing because they can clear ly elim inate m any
opportunit ies for .dll conflicts— popular ly referred to as “dll hell.” A .dll conflict can
em erge when a user installs a new applicat ion that wr ites over an exist ing .dll file
with a new version that isn’t fully backward com pat ible. I f another, previously
installed, applicat ion relies on a type m em ber that is changed or elim inated in the
new .dll, t he previously installed applicat ion will fail. Assem blies and m anifests
offer a couple of workarounds to t his problem for solut ions based on COM
com ponents.
A .NET Fram ework solut ion exists as an assem bly of one or m ore files. These f iles
can include the MSI L as well as other resources, such as im age f iles or other
docum ent files that a solut ion references. An assem bly m ust include a m anifest ,
which contains m etadata about the assem bly. This m etadata describes the files in
the assem bly. I n t he case of a single- file assem bly, the m anifest resides within
the solut ion’s .dll f ile, but otherwise an assem bly ’s m anifest resides in a separate
file. A solut ion’s assem bly can consist of up to four types of elem ents.

• The assem bly’s m anifest
• The MSI L code for the solut ion
• The type m etadata for the MSI L code
• Resource files required by the solut ion

The assem bly is the deploym ent unit for solut ions in t he .NET Fram ework.
Because all t he elem ents for a solut ion can exist wit hin a single assem bly, you
can deploy a solut ion by dist r ibut ing the solut ion’s assem bly of f iles. Store the
assem bly as a directory or subdirectory on a target workstat ion. The com m on
language runt im e m ust be installed on the workstat ion in order t o t ransform the
MSI L to nat ive m achine code. This approach is part icular ly convenient where a
solut ion perform s tasks that you don’t care to share with other solut ions.
Som e solut ions are ut ilit ies. When these ut ilit y solut ions are likely to be a part of
m any other solut ions, you can store the ut ilit y solut ions in the Global Assem bly
Cache (GAC). There is one GAC per com puter. When you place an assem bly in
the GAC for shar ing by one or m ore other solut ions, t he shared assem bly in t he
GAC m ust have a st rong nam e. The st rong nam e uniquely ident if ies an assem bly
in the GAC to avoid conflicts from two assem blies that m ay have the sam e text
for a nam e. Visual Studio .NET includes tools to sim plify t he creat ion of st rong
nam es that are based on the text for an assem bly’s nam e, it s version num ber,
cult ure inform at ion, public key, and a digital signature.
The .NET Fram ework SDK discourages locat ing assem blies in the GAC unless
essent ial because it can com plicate deploym ent and adm inist rat ion. For exam ple,
deploying a solut ion can require copying two director ies— one for t he m ain
assem bly and the other for the shared assem bly in the GAC. I n addit ion, the GAC
resides in the system directory. This directory often has rest r icted access. These
access rest r ict ions m ay necessitate perm issions for copying an assem bly to t he
GAC that the user installing an applicat ion doesn’t have.

Deploy a Solut ion—XCOPY a Folder

You can create .NET Framework solut ions for Windows that
are totally self- contained in a single folder. When you create
a .NET Framework solut ion using the Windows Applicat ion
template, Visual Studio .NET by default creates a folder for
your solut ion in the last directory in which you saved a
previous solut ion. This folder has a root folder and at least
two subfolders— bin and obj . You can store the resources for
your solut ions, such as custom classes, image files, and XML
schema files, anywhere you need in the root folder (or even
outside the root) . The advantage of stor ing all f iles for a
solut ion in the root folder, or any of its subfolders, is that
you can then deploy your solut ion with an XCOPY command,
or any equivalent technique, that copies the solut ion’s folder.
All the Visual Basic .NET solut ions included in this book ’s
sample files are available as folders that you can copy to
your computer. I f you copy them to a m achine with the
proper configurat ion— for example, one with the com mon
language runt ime— you can run the solut ions from the folder
to which you copy them.
While I am talk ing about solut ion folders, it is probably worth
ment ioning a couple of special files within a solut ion folder.
The solut ion’s .exe file resides in the bin subfolder. You can
launch the solut ion by invoking this f ile. By default , t he .exe
file has the same nam e as the solut ion. Therefore, if your
solut ion has the name WindowsApplicat ion1, the .exe file for

star t ing the solut ion has the name WindowsApplicat ion1.exe.
To open the solut ion for edit ing in Visual Studio .NET, you
can open a file with the solut ion’s name and the extension
.sln, such as WindowsApplicat ion1.sln. This file resides in the
root folder for the solut ion.

Note

Whether you deploy an assembly in a directory or in the
GAC, there is no need to add set t ings to the system regist ry
in order to be able to use the solut ion based on the
assembly. Just reference the solut ion assembly in the client
applicat ion.

Selected .NET Fram ew ork Features

Even from the short int roduct ion to the .NET Fram ework to t his point , it should be
clear that the .NET Fram ework is m assive in scope. This sect ion presents a few of
the features that I find m ost worthy of br ief m ent ion and discussion. I n order to
m anage the book’s length, I leave out m any that also are worthy of your
considerat ion.
The runt im e garbage collector can autom at ically m anage the release of m em ory
for an applicat ion, and it can cut back on the incidence of m em ory leaks for long-
running applicat ions. This is because the garbage collector can autom at ically
recover m em ory for reference types— things such as classes and arrays— that
consum e m em ory when there are no longer pointers to t hem in m em ory.
The runt im e garbage collector recovers unused m em ory based on several rules,
one of which has to do with no m ore space available for recent ly created
reference t ypes. The good news is that you no longer have to worry about
clearing m em ory for inact ive reference types. The bad news is that you cannot
tell precisely when the garbage collector will recover m em ory. I n addit ion, t he
collector doesn’t work for unm anaged resources, such as references to files. I n
this case, you can invoke the Dispose m ethod, but you should also disable the
garbage collector , checking for any objects explicit ly disposed of. You can invoke
the System .GC.SuppressFinalize m ethod for t he object disposed of to accom plish
this task. Another approach is t o use the Close m ethod, which calls the Dispose
m ethod. You can also use the Close m ethod to prom pt ly rem ove selected
m anaged obj ects, such as SQL Server database connect ion objects. Alt hough the
garbage collector will eventually rem ove such m anaged item s as SQL Server
connect ion objects, you can im prove the responsiveness of your applicat ions by
elim inat ing them when you know they are no longer needed.
Nam espaces are a m eans of organizing and referr ing to groups of elem ents in the
runt im e. I n addit ion, your own custom applicat ions have nam espaces— by default ,
these nam espaces bear the solut ion’s nam e. The .NET Fram ework SDK lists the
nam es of all t he runt im e nam espaces. As a database developer, you are likely t o
have special interest in the System .Data, System .Data.SqlClient ,
System .Data.SqlTypes, and System .Data.OleDb nam espaces. Table 8-1 includes
brief sum m aries of each of t hese nam espaces. Not ice that the nam es of the
nam espaces follow a hierarchical nam ing convent ion. The System .Data
nam espace represents t he broadest grouping of elem ents in Table 8-1. The
Sytem .Data.SqlClient , System .Data.SqlTypes, and System .Data.OleDb
nam espaces denote subsets of the broader System .Data nam espace.

7DEOH������6HOHFWHG�5XQWLPH�1DPHVSDFHV�IRU�'DWDEDVH�'HYHORSHUV�

1DPH� 6XPPDU\�
System .Data Represents m ost ly elem ents in the ADO.NET architecture.
System .Data.SqlClient Represents elem ents in the SQL Server .NET data

provider.
System .Data.SqlTypes Represents elem ents for SQL Server nat ive data types.
System .Data.OleDb Represents elem ents in the OLE DB .NET data provider.
The nam espaces parallel t he k ind of funct ionalit y that Visual Basic developers
used to enable by adding references to type libraries. You can now accom plish
the sam e thing by using the I m ports statem ent for a nam espace, where the
elem ents in a nam espace are analogous to t he classes and m em bers of a type
library. Look in Chapter 10 for code sam ples illust rat ing the use of t he
System .Data.SqlClient nam espace. As indicated in a note in t he “Assem blies and
Manifests” sect ion, t he way to reference a server solut ion assem bly in a client
solut ion is to reference the server solut ion assem bly from the client assem bly. An
Im ports statem ent in t he client solut ion assem bly perm its you to reference the
nam espace for t he server solut ion assem bly. Chapter 9 dem onst rates the syntax
for this statem ent . You will f ind num erous code sam ples im plem ent ing the
Im ports statem ent t hroughout the rest of t his book.
By now, you should understand that t he .NET Fram ework is the way of t he future
for those developing solut ions with Microsoft products. Nevertheless, it is likely
that you eit her have built or are using solut ions based on the previous Microsoft
developm ent fram ework— COM. Therefore, Microsoft int roduced technology to
help ease you through the t ransit ion per iod. For exam ple, Visual Studio .NET
offers graphical techniques for im port ing COM objects within .NET Fram ework
solut ions. Visual Studio .NET also offers graphical t ools for export ing .NET
Fram ework solut ions so they can interoperate with your previously created COM
solut ions. Because there are fundam ental incom pat ibilit ies between COM and the
.NET Fram ework, these tools don’t always work perfect ly. See the
“Troubleshoot ing I nteroperabilit y” t opic in t he Visual Studio .NET Help files for an
enum erat ion of som e issues that you m ay encounter along with suggested
rem edies.

An Overview of ASP.NET

ASP.NET is a specialized com ponent of the .NET Fram ework. You can use
ASP.NET to create Web applicat ions that are accessible from browsers that can
connect to t he page. The sam e basic techniques (plus som e m ore) apply t o t he
creat ion of XML Web services solut ions. This chapter aim s to or ient you to .NET
Fram ework Web technologies.

How Does ASP.NET Relate to ASP?

ASP.NET is sim ilar but not ident ical t o ASP (Act ive Server Pages) . Many
professional Visual Basic developers found ASP a serv iceable way to create Web
solut ions. One im portant reason for t his is t hat ASP can create form s on Web
pages that any browser can read. Nevertheless, ASP has drawbacks. For
exam ple, ASP m ixes HTML page design code and program m ing logic in the sam e
file. This leads to a type of spaghet t i coding that is diff icult t o read and interpret .
I n addit ion, you can create your program m ing logic in any of a var iet y of
languages, but pure Visual Basic isn’t one of t hem . The closest you can get is
VBScr ipt . Furtherm ore, the Visual Basic developm ent environm ent isn’t suitable
for creat ing ASP Web pages. Som e Visual Basic developers adopted Visual

I nterDev , and these developers could use the Visual I nterDev developm ent
environm ent . However, the Visual I nterDev developm ent environm ent had a
different look and feel than the one for Visual Basic. As a consequence, m any
developers used Notepad or another favor ite text editor t o create ASP Web pages
from scratch.

Note

What do you need to create solut ions with ASP.NET? First ,
you need any Windows operat ing system that installs I I S
automat ically or allows you to install it opt ionally. This is
because I I S is the Web server for ASP.NET solut ions, and it
contains the ASP.NET object model, just as it does the ASP
object model. Second, you need the .NET Framework. I f you
installed Visual Studio .NET on your m achine, your computer
already has it . Visual Studio .NET provides a fr iendly, fam iliar
development environment for creat ing ASP.NET solut ions.
Third, you need MDAC version 2.6 or later for data access
and manipulat ion. Visual Studio .NET installs MDAC version
2.7, which is more than sufficient . However, you can
download the latest MDAC version, free of charge, from the
Microsoft site at
ht tp: / / www.m icrosoft .com/ data/ download.htm .
I believe ASP.NET will becom e im m ensely popular with Visual Basic developers
because it solves the three problem s described in the preceding paragraph.

• ASP.NET separates page design and program logic into two separate but
related files. This ends the need to m ingle HTML layout code and program
logic code in the sam e f ile.

• You can create ASP.NET Web solut ions with Visual Basic. No longer do you
have to develop in another language that is alm ost like Visual Basic—
nam ely, VBScr ipt . I n addit ion, t he solut ions you develop with Visual Basic
.NET can interact with solut ions created by Web developers creat ing
solut ions in JScr ipt .NET because both languages are runt im e-com pliant .

• The Visual Studio .NET developm ent environm ent has the sam e look and
feel when you work with Web Form s as it does when you work with
Windows Form s. For exam ple, you have a Toolbox. You can drag and drop
cont rols on a Web page j ust as you do with a Windows form . I n addit ion,
the Toolbox insulates you from the HTML syntax under ly ing the cont rols
you use on Web Form s.

Note

Visual Basic developers m igrat ing to ASP.NET from ASP may
not ice that a couple of fam iliar tools are gone. First , you no
longer code solut ions in VBScr ipt— as indicated above, you
can create both Windows and Web solut ions with Visual Basic
.NET. Second, Visual InterDev is gone too. Now you can use
the same Visual Studio .NET development environment for
Windows and Web solut ions. I f you are a Visual Basic

developer who has been wait ing unt il the t ime was r ight to
do Web development , come on in— developing for the Web
will feel fam iliar and be just as much fun to construct as
Windows applicat ions. I f you are a Visual Basic developer
who is experienced at Web development, there’s no bet ter
t ime than r ight now to drast ically speed up your Web
development cycles by taking advantage of ASP.NET.

There is another cr it ical difference between ASP.NET and ASP that m er it s your
at tent ion. ASP.NET is com piled, and ASP code is interpreted. Com piled code runs
faster, so you are likely to enjoy perform ance benefits when you are running the
com piled code. Of course, the first t im e ASP.NET uses a m odule, t here is a delay
associated with t he com pilat ion of t he code. As a developer, you will likely
encounter t his com pilat ion delay m uch m ore than your users sim ply because your
job is t o f ine- tune the code for opt im al perform ance. Each f ine- tuning adjustm ent
requires a new com pilat ion.
I n spite of all t he differences between ASP and ASP.NET, there are m any
sim ilar it ies. You can run ASP and ASP.NET pages side by side on the sam e Web
server. Your ASP Web pages have an .asp extension. Your ASP.NET pages will
t ypically have an .aspx extension. This side-by-side capabilit y allows you to
gradually int roduce new funct ionalit y with ASP.NET into a previously exist ing
solut ion init ially created with ASP.
Selected objects, such as Applicat ion and Session, ex ist in both ASP and ASP.NET.
Applicat ion objects serve as global var iables across an applicat ion. When you
need to m ake sure that som e values are available to all users of an applicat ion,
Applicat ion objects represent an opt ion. ASP.NET also offers t he ASP.NET cache
as a m eans of shar ing data across all t he users of an applicat ion. As in the past ,
Session state var iables allow the shar ing of inform at ion between HTTP (Hypertext
Transport Protocol) requests of a browser within a session. ASP.NET im proves on
the Session var iables available in ASP by allowing you to share Session var iables
across a Web farm with m ult iple com puters designed to offer t he sam e Web
applicat ion. I f an applicat ion saves a Session variable in response to an HTTP
request to one com puter in a Web farm , a second request from the sam e user to
a dif ferent com puter in the Web farm can st ill gain access to that sam e Session
variable.

Creat ing an ASP.NET W eb Applicat ion

You can create a new ASP.NET solut ion by click ing the New Project link on the
Visual Studio Start Page and choosing the ASP.NET Web Applicat ion tem plate.
When you do this, Visual Studio suggests a default locat ion for the solut ion’s
assem bly on the local I I S server, such as ht tp: / / localhost / WebApplicat ion1 . You
can choose any other solut ion nam e on any other I I S to which you can connect .
(You need the .NET Fram ework installed on any com puter from which you plan to
run ASP.NET pages.) Clicking OK opens two folders— one on the Web server and
another in t he default locat ion where Visual Studio stores it s solut ion assem bly
folders. I f the applicat ion has the nam e WebApplicat ion1, launching a new
ASP.NET Web applicat ion creates a new folder nam ed WebApplicat ion1 within the
wwwroot directory of the inetpub directory.

Note

To remove an ASP.NET solut ion from your computer and
elim inate it from appearing in the Visual Studio Star t Page,
you m ust delete both of its folders.

When Visual Studio .NET opens your applicat ion, you see a blank page. Solut ion
Explorer shows that the page’s t it le is WebForm 1.aspx. You can assign a m ore
m eaningful nam e for the page’s t it le property from the Propert ies window. The
page init ially opens with a pageLayout propert y set t ing of GridLayout . This set t ing
lets you align cont rols on the Web page according to the gr id m arks. You can
change the pageLayout property in the Propert ies window. The other possible
pageLayout property set t ing is FlowLayout . I n t his m ode, Visual Studio arranges
your cont rols from top to bot tom in classic Web page layout m ode— like a word
processor. Not ice that the Solut ion Explorer and Propert ies windows serve the
sam e kinds of funct ions for this Web applicat ion as they do for other, non-Web,
applicat ions.
Choosing the HTML tab at the bot tom of t he page exposes the em pty Web page in
HTML view. Between the body tags on the Web page, not ice the form t ags. The
form tag has a runat set t ing of server. ASP.NET pages are designed to accept
form s and cont rols that run on the server.

Adding Controls to an .aspx Page

Switch back to Design v iew by clicking the Design tab at the bot tom of the page.
Choose Toolbox from the View m enu. I f the Toolbox isn’t open to t he Web Form s
sect ion, click t hat sect ion heading. This act ion perm its you to add Web server
cont rols to your .aspx Web page. Web server cont rols are highly abst racted for
program m ing in your Visual Studio developm ent environm ent . They insulate you
from HTML convent ions and provide r icher funct ionalit y t han is available through
standard HTML form cont rols, such as < input> elem ents. I n addit ion, t he Web
server cont rols offer a wider array of cont rol opt ions than is available with HTML
form cont rols. For exam ple, t he Web server cont rols include a Calendar cont rol
and a configurable RadioBut tonList cont rol. I n spite of the abst ract ing, Web
server cont rols render HTML to a browser.

Note

I n som e cases, Web server cont rols require client -side
scr ipt ing to perform proper ly. For this reason or performance
reasons, you may care to switch to another type of Web
cont rol for selected applicat ions.
You can add a cont rol to a Web form by double-click ing the cont rol in t he
Toolbox. Then you can drag the cont rol t o where you want it on the form . Add a
but ton cont rol and a label cont rol from the Toolbox to the Web form ,
WebForm 1.aspx.

Adding Code Behind an .aspx W eb Page

Now you’re ready to work with t he code behind the Web form and its cont rols. On
the form , double-click t he but ton cont rol. This opens the Code Editor for t he file
that contains the form code. The f ilenam e is WebForm 1.aspx.vb, which appears
on a tab at t he top of the Code Editor. You should be able to see
WebForm 1.aspx.vb in Solut ion Explorer. I f not , click t he Show All Files icon on the
Solut ion Explorer toolbar and then click t he + next t o WebForm 1.aspx. (Recall
that Windows displays the nam e of a toolbar icon when you hold the m ouse
pointer over it .)
Enter the code in Figure 8-2 in t he Code Editor for WebForm 1.aspx.vb. When the
page opens init ially, t here is no code in eit her t he Page_Load or But ton1_Click
event procedure. The Page_Load event procedure init ializes the page by assigning
a capt ion to the but ton and insert ing an em pty st r ing for t he label cont rol. The

But ton1_Click event procedure assigns the text Hello World to t he label when the
user clicks the but ton. This page works in very old browsers. For exam ple, I used
I nternet Explorer 4 t o v iew the WebForm 1.aspx page, and it worked perfect ly .
The com puter running the browser didn’t have the .NET Fram ework installed
either.

Figure 8 -2 . A pair of event procedures for an ASP.NET W eb applicat ion
w ith a version of the classic Hello W orld sam ple.

XML W eb Services

XML Web services facilit ate com puter- to-com puter interact ion in the sam e
general way as ASP.NET facilitates com puter- to-hum an interact ion through an
.aspx Web page. This sect ion t r ies to acquaint you with why XML Web services
are a part of the .NET Fram ework. The content in this sect ion provides an
overview of the technologies used to im plem ent XML Web services. See Chapter
1 3 for m ore coverage of XML Web services, with specific at t ent ion to how you
create, test , and deploy XML Web services as well as how clients use an XML Web
service.

W hat Can XML W eb Services Do for Me?

As a professional developer, you should be very interested in XML Web services.
This is because XML Web services can expand the reach of your exist ing
solut ions. The m ore folks your applicat ions serve, t he m ore those applicat ions are
worth (and the m ore m oney you can m ake from them) .
I n the preceding sect ion on ASP.NET, you gained som e exposure on how to
create classic Web solut ions with the .NET Fram ework, or m ore specifically
ASP.NET. I n ASP.NET, you create a Web-based solut ion for an indiv idual t o read
and interact with t hrough a browser. Whether users access your Web page for
solv ing a problem over an int ranet or an ext ranet , t he end result is t hat it
appears in a browser. A user, which is another nam e for a person, has to do
som ething with it . XML Web services provide an environm ent for creat ing
solut ions that m achines— not people— consum e. However, both classic Web pages
and solut ions created with XML Web services work over the Web. To be m ore
specific, XML Web services let m achines interact with each other and share

inform at ion across the Web. The beauty of the underly ing XML Web services
architecture is that t he m achines can be using different operat ing system s
(Windows vs. Unix, for exam ple) , and the program m ing language used to create
a solut ion on one m achine can be different from the program m ing language in
which a client solut ion accepts results from a server (Java vs. Visual Basic .NET) .
So again, how are XML Web services going to help you? XML Web services
prom ise to deliver universal access to your software solut ions no m at ter what t he
operat ing system or program m ing language on client and server m achines. I n
addit ion, t his isn’t j ust a Microsoft init iat ive. I t is an open init iat ive with sponsors
from leading software firm s. For exam ple, one of t he technologies under ly ing XML
Web services is UDDI (Universal Descript ion, Discovery, and I ntegrat ion). I ’ ll
describe this technology in a m om ent , but I m ent ion it here because it s
developers include I BM, I ntel, SAP, Ar iba, and Microsoft . I n addit ion, t he
technology rests on indust ry standards, such as those published by the W3C
(World Wide Web Consort ium) . By building new solut ions that take advantage of
XML Web services or ret rof it t ing XML Web services to exist ing solut ions, you are
posit ioning your efforts to support t he leading inform at ion technology firm s and
the m ost widely accepted com put ing indust ry standards.

Overview of the XML W eb Services I nfrast ructure

XML Web services perm it client and server m achines to interact with each other
as if t hey were two m achines on the sam e LAN with all com pat ible system s—
except t hat the m achines can be connected over a Web with incom pat ible
system s. The client m achine can request the server m achine to perform a
t ransact ion, such as m ove m oney from one account t o another. I n this scenar io,
the client passes the param eters for the t ransact ion. I n return, the server can
perform the t ransact ion and return an outcom e to t he client workstat ion.
Alternat ively, a client can request som e inform at ion from a server, such as a
docum ent . The server can ret r ieve the docum ent from its archives and return it to
the client over popular t ransport protocols as a self-describing, text -based
m essage (think XML docum ents described by XSD schem as). XML Web services
support a couple of popular protocols— nam ely HTTP (both PUT and GET m ethods)
as well as SOAP (Sim ple Object Access Protocol) , which is a W3C standard. I f I
were a different k ind of author and this were a different k ind of book, I would say
XML Web services developers can use SOAP to clean up their applicat ions.
A couple of other really cool features about XML Web services deserve m ent ion.
One of t hese is that t he technology helps you find XML Web services; UDDI
im plem ents this feature. The other bit of t echnology is a language that enables an
XML Web service running on a server to describe it self so that a client m achine
can determ ine how to interact with it . This language has the nam e Web Services
Descript ion Language (WSDL) .

A Closer Look at the Underlying Technologies

The preceding overview confirm s that XML Web services rely on three m ain
technologies.

• UDDI can provide a way of discovering what ’s available as a Web service.
• WSDL is an XML-based gram m ar for describing XML Web services.
• SOAP is another XML-based standard, but t his standard targets t he

exchange of inform at ion between two loosely coupled com puters.

UDDI

UDDI offers a directory serv ice capabilit y . The UDDI online directory service
allows firm s to publish contact inform at ion for t heir organizat ion, sum m aries of
XML Web services offered, and standards with which clients m ust com ply t o
access their XML Web services. You can discover m ore about t he UDDI
im plem entat ion from its organizat ion sit e at ht t p: / / www.uddi.org. Those who
want t o m ake their XML Web services available for use can register with a UDDI
directory serv ice. Those searching for an XML Web service can go to t he UDDI
site to discover XML Web services that m eet t heir search cr iter ia. The UDDI
returns URLs for learning m ore about XML Web services. A searcher can use the
URLs to discover the locat ion of one or m ore docum ents in WSDL describing each
XML Web service.

Note

At the t ime that I write this chapter , you can register your
business and its XML Web services at
ht tp: / / www.uddi.org/ register.htm l.

W SDL

A WSDL docum ent describes the things that an XML Web service does. Such a
docum ent also declares where and how to get t he XML Web service to m ake
those things happen. A WSDL docum ent is expressed in XML. The W3C form al
specificat ion is available at ht tp: / / www.w3c.org/ t r / wsdl. This docum ent describes
and dem onst rates the object ives of WSDL as well as specify ing the XML syntax,
elem ents, and at t r ibutes for a WSDL docum ent . A WSDL docum ent describes an
XML Web service in t erm s of six elem ents, as shown in Table 8-2.

7DEOH������:6'/�(OHPHQWV�
(OHPHQW� 'HVFULSWLRQ�

t ypes Encloses data type definit ions used in m essages exchanged between the
XML Web service and its clients.

m essage Specifies an abst ract definit ion of t he m essage exchanged between the
XML Web service and its clients.

portType Refers to an abst ract set of operat ions— each operat ion has an
associated input m essage and one or m ore output m essages.

binding Designates a concrete protocol and data form at specificat ion for
operat ions and their m essages relat ing to a specific portType. The
binding can be to HTTP, SMTP (Sim ple Mail Transport Protocol) , or som e
other com m unicat ion protocol or m edium .

port Designates a single com m unicat ion endpoint , nam ely, the com binat ion
of a binding and an address, for an operat ion.

service Refers to a collect ion of related ports.

SOAP

SOAP (version 1.1) is the third m ain technology underpinning XML Web services.
Go to ht tp: / / www.w3c.org/ t r / soap for the standard’s specificat ion. The SOAP
standard is an XML-based m echanism for exchanging m essages between two
com puters. SOAP is a one-way m essaging form at for rem ote procedure calls, but
you can adapt it for a request / response m essage paradigm as well as a
request / m ult iresponse paradigm .

The SOAP specif icat ion has three parts, but only the first is m andatory. This part
designates what ’s in a m essage, who the m essage is for, and whether the
m essage is opt ional or m andatory. The SOAP specificat ion refers to t his first part
as the SOAP Envelope elem ent .
The second and third parts aren’t m andatory. I n it s second part , the SOAP
specificat ion designates a ser ializat ion schem e for exchanging applicat ion-specific
data types that are outside the scope of nat ive XML data types. The third part of
the specificat ion denotes techniques for represent ing rem ote procedure calls and
their responses. The client for an XML Web service is likely t o call som e m ethod
for the XML Web service. This m ethod can opt ionally require a response.
Visual Studio .NET perm its you to create XML Web services and clients without
working int im ately with the UDDI , WSDL, and SOAP standards. Nevertheless,
having a basic grasp of the issues that accom pany these underly ing standards will
equip you to understand bet ter how XML Web services work and how to create
them .

Chapter 9 . Creat ing W indow s
Applicat ions
Windows applicat ions in the .NET Fram ework are applicat ions based on one or
m ore Windows Form s. These applicat ions target com puters that can run code
behind a form and provide a r ich environm ent t o the user. Each form in a
Windows applicat ion is an instance of t he Windows Form class. This class behaves
sim ilar ly t o the form s in prior versions of Visual Basic (and other Microsoft
developm ent environm ents such as Microsoft Access form s) , but t he Windows
Form class in the .NET Fram ework is dist inct and independent of form s in ear lier
Microsoft developm ent environm ents. I t is convenient to t hink of t he Form class
as a die or a m old from which you der ive specific instances of a form . Like other
classes, the Form class is a collect ion of propert ies, m ethods, and events. The
form s in your Windows applicat ions inher it t he Form class propert ies, m ethods,
and events.
This chapter covers creat ing solut ions with Windows applicat ions and m anaging
the Windows Form s in t hose applicat ions with Visual Basic .NET code. The focus
of t he chapter is on interm ediate to advanced topics, such as creat ing and using
classes, inheritance, event program m ing, and handling run-t im e errors with
st ructured except ion handling. For each topic covered, I ident ify what ’s new for
the topic with Visual Basic .NET. I n som e cases, such as inheritance and
st ructured except ion handling, the em phasis is wholly on what ’s new because
Visual Basic .NET int roduces these capabilit ies t o Visual Basic program m ers.

Gett ing Started w ith W indow s Form s

Windows Form s exist within Windows applicat ions. You can create the shell for a
Windows applicat ion from a tem plate within Visual Studio .NET. Windows
applicat ions are for environm ents that f ind it eff icient to take advantage of the
local processing power of client workstat ions. When developing solut ions based
on the Windows Applicat ions tem plate, you will often use Windows Form s to
m anage interact ion with users and display inform at ion to users. This sect ion
int roduces you to the basics of creat ing and m anaging solut ions based on
Windows Form s.

Start w ith Form 1 in a W indow s Applicat ion

You can create a Windows applicat ion from the Visual Studio .NET Start Page. I f
you followed the inst ruct ions in Chapter 1 for configuring Visual Studio .NET and
the Start Page, you can open the Start Page by click ing the Windows Start
but ton, choosing Program s, select ing the Microsoft Visual Studio .NET folder, and
then select ing Microsoft Visual Studio. Begin a new Windows applicat ion by
click ing New Project on the Start Page and select ing the Windows Applicat ion
tem plate in t he New Project dialog box. Next enter a project nam e, such as
StartWithForm 1 . Visual Studio assigns a default folder for your project ’s assem bly
of f iles, but you can overr ide the default locat ion for a solut ion’s assem bly folder
by eit her typing the path to the alt ernate folder or browsing to it . Figure 9-1
illust rates the New Project dialog box set to create a new Windows applicat ion
nam ed StartWithForm 1 in the VisualStudioProjects folder of t he C: \ Docum ents
and Set t ings\ Adm inist rator\ MyDocum ents path.

Figure 9 - 1 . St art a W indow s applicat ion by select ing W indow s
Applicat ion in the New Project dialog box.

Click OK in the New Project dialog box to create a new proj ect for a Windows
applicat ion. Visual Studio opens the Windows Form s Designer environm ent . The
Windows Form s Designer window, Form 1.vb[Design] , enables you to graphically
m anipulate t he form for an applicat ion. For exam ple, you can use the Toolbox to
add cont rols to a form , and you can add code behind the overall form as well as
the cont rols on a form in the Windows Form s Designer. The overall Visual Studio
.NET developm ent environm ent should show three windows at t his point . I n
addit ion to the Windows Form s Designer, you should see to the r ight Solut ion
Explorer and the Propert ies window. Solut ion Explorer provides a t ree view, m uch
like Windows Explorer, of t he item s in the proj ect for a solut ion. The Propert ies
window provides an interface for m anually v iewing and updat ing the set t ings for
selected item s in Solut ion Explorer or the item s on a form .
Figure 9-2 shows a blank form — Form 1—in the Windows Form s Designer. Solut ion
Explorer displays the Form 1.vb f ile. This f ile contains your graphical design
changes as well as any code behind the form . The Assem bly.vb file in the Visual
Studio .NET developm ent environm ent enables you to v iew assem bly at t r ibutes,
such as version num bers for a solut ion. I expanded the References folder in
Solut ion Explorer so you can see selected references available t o Form 1 , including
the System .Windows.Form s nam espace. The Propert ies window below Solut ion
Explorer shows that the Text property set t ing for t he form is Form 1. You can type
over t he Text property set t ing to assign a m ore m eaningful capt ion to your form .

Figure 9 -2 . The in it ia l layout for a W indow s applicat ion includes a blank
form and a few references to selected nam espaces.

Managing W indow s Form s

You can m anage Windows Form s in at least t hree standard ways. First ,
m anipulate t he propert ies of the form . Second, add cont rols to a form that
facilitates com m on tasks, such as user input . Third, add code behind a form .
The form in Figure 9-2 inher its it s init ial propert ies, m ethods, and events from the
Form class in the System .Windows.Form s nam espace. Use a form ’s Text property
to set it s capt ion, for exam ple, from Form 1 to My First Form . You can posit ion a
form with the DesktopLocat ion and Locat ion propert ies. Form class m ethods let
you m anipulate form instances. Use the ShowDialog m ethod to open a m odal
form instance. When you open a form with t his m ethod, you m ust close the form
(with the Close m ethod) before you can navigate to another open form . By
opening a form with the Show m ethod, you enable users to navigate to another
form without closing the m odeless form opened with t he Show m ethod.

Note

A namespace can serve as a reference to a type library in
Visual Basic 6. I t is the reference to System .Windows.Forms
that prov ides the propert ies, methods, and events for a
Windows form , such as the one in Figure 9-2.
To m ake a form part of a Windows applicat ion, you can add cont rols to the form .
I n addit ion, you can wr ite code for t he form and the cont rols on it . Choose
Toolbox from the View Menu in Visual Studio .NET to open a window with m ult iple
sect ions, or tabs, from which you can drag cont rols and other object classes onto
your form s. I n t he Windows Form s sect ion of t he Toolbox, you can select from
several different types of cont rols.

• A wide var iety of fam iliar cont rols facilitate t he input and output of
inform at ion and user interact iv it y. These fam iliar cont rols include but ton,
text box, com bo box, slider or t rackbar, label, t ab, radio but ton, check
box, two different list box cont rols, and data grid.

• Another set of item s in t he Windows Form s sect ion of the Toolbox includes
cont rols that aren’t t ypical, but they st ill help you m anage the way a form
displays inform at ion and operates. For exam ple, use the Toolt ip class to
provide help to a user about t he purpose of cont rols on a form when a
m ouse hovers over a cont rol. Other special Toolbox item s facilitate t he
creat ion and m anagem ent of m enus, t he highlight ing of cont rols with
invalid data, and the provision of Help.

• A final set of elem ents in t he Windows Form s sect ion of the Toolbox
includes a num ber of com m on dialog boxes. Applicat ion developers can
use these Toolbox elem ents to give their custom applicat ions the look and
feel of a standard Windows applicat ion. There are seven of these cont rol
item s: OpenFileDialog, SaveFileDialog, FontDialog, ColorDialog,
PrintDialog, PrintPreviewDialog, and PageSetupDialog.

The Toolbox m akes other sets of select ions available from its Com ponents and
Data sect ions. You can use the Com ponents sect ion of t he Toolbox to insert built -
in com ponents that ship with t he .NET Fram ework. You can also add to this
Toolbox sect ion com ponents t hat you acquire from third-party sources or develop
internally. I will dem onst rate t he use of one of t hese com ponents, t he system
t im er, later in this chapter. The Toolbox’s Data sect ion offers com ponents that
facilitate ADO.NET tasks, such as m aking a connect ion with a data source,
passing a SQL com m and to a data source, and returning a result set from a data
source. The item s in t he Data sect ion of the Toolbox are covered in Chapter 11.
You can init ialize selected form propert ies and respond to user act ions with form
cont rols through event procedures. For exam ple, in a Load event procedure for a
form , you can set the form ’s DesktopLocat ion property. With the Click event
procedure for a but ton, you can run Visual Basic .NET code to perform com m on
act ions, such as opening a m essage box. Double-click a form ’s capt ion or a
cont rol on a form to open the Code Editor window and display the shell, or stub,
for an event procedure. The event is t he default one for t he form or cont rol.
When you double-click a form , Visual Studio .NET opens the shell for t he Load
event procedure. You can place any code your applicat ion requires in t he shell.
The next t im e the form opens, it runs that code. Double-clicking a but ton creates
the shell for t he but ton’s Click event .
As with the Start Page and the Windows Form Designer, Visual Studio .NET opens
the Code Editor on a tab, which in the case of Form 1 is labeled Form 1.vb. I n m ost
ways, the Code Editor is like a standard code window. You can enter code into

event procedure shells. You can also add sub procedures and funct ion procedures
to the code behind a form . You can use the Project m enu to add other it em s to a
Windows applicat ion, such as m ore form s or new custom classes. Use the drop-
down lists at the top of the Code Editor to select a class, such as a but ton, and
then see all t he events for t he class. Select ing an event from the list on the r ight
opens an event procedure shell for t hat event . Visual Basic .NET uses the fam iliar
nam ing convent ion of a class nam e followed by an underscore and the event
nam e for event procedure shells. Therefore, the Click event procedure for But ton1
has the nam e But ton1_Click .

A W indow s Form w ith Tw o But ton Controls

Developers often place but tons on form s to let users interact with an applicat ion.
This sect ion presents a Windows applicat ion with two but tons— one for saying
hello and a second for m oving the form around on the desktop. When the
applicat ion opens, t he Form 1_Load event procedure posit ions Form 1 on the
desktop and sets a capt ion for t he form . Form 1 is the default startup object for a
Windows applicat ion. The sam ple for t his sect ion com pletes the StartWithForm 1
applicat ion init ially launched in t he com m entary for Figures 9-1 and 9-2.
Figure 9-3 shows three event procedures for t he StartWithForm 1 applicat ion. The
event procedures appear in the Code Editor , on the Form 1.vb tab. Recall t hat you
don’t have to wr it e t he shell— just the contents— of an event procedure. I did
insert a line cont inuat ion character (_) in the shell so you could see all the code
generated autom at ically . Not ice a rectangle around Windows Form s Designer
generated code. You can expand the sect ion by click ing the “+ ” next t o it ; click
the “- ” next to the top line of t he expanded code to hide the sect ion. This region
contains code necessary for a form . For exam ple, t he code instant iates an
instance of t he Form class. The sect ion also persists, or saves, your m anual
changes to t he form and cont rol property set t ings. Visual Studio m anages the
code in this sect ion. Don’t m ake your changes to the form from this sect ion.
I nstead, use the Propert ies window for a selected class, such as the form or any
of it s cont rols, or use code in event procedures to assign property set t ings at run
t im e.

Note

The Windows Forms Designer generated code region can be
a convenient way for learning the syntax and nam ing
convent ions for manipulat ing form and control propert ies.
Make changes graphically in the Windows Forms Designer
and the Propert ies window. Then expand the Windows Form s
Designer generated code region to view how Visual Studio
creates the set t ing programmat ically.
The Form 1_Load event procedure uses two lines to set t he init ial locat ion of
Form 1 on the desktop. These lines set t he form ’s top left edge in 450 pixels from
the desktop’s left border and down 450 pixels from the desktop’s top border. The
syntax relies on the DesktopLocat ion property for Form 1 (referred to by it s Me
keyword) and the Point st ructure. The Form 1_Load event procedure assigns the
st r ing Capt ion for Hello World to t he form .

Note

The Point st ructure represents values for a pair of xy-
coordinates in a two-dimensional plane. A st ructure is like a

data pr im it ive in that it contains values and you can assign
var iables to those values (for example, MyStartPoint in
Figure 9-3) .

Figure 9 - 3 . Three event procedures for m anaging the init ia l display of a
form and how an applicat ion responds to clicks for each but ton on the

form .

The Click event procedure for But ton1 displays a m essage box. The MsgBox
statem ent in t he event procedure takes three param eters. The first assigns a
st r ing for t he m essage box to display, nam ely, Hello World. The second
param eter specifies the types of but tons that will be displayed in the m essage
box. The statem ent designates a single OK but ton. The closing param eter
indicates a capt ion for t he m essage box. As with Visual Basic 6, t he I ntelliSense
feature in Visual Basic .NET helps you specify t he MsgBox statem ent . For
exam ple, as you type the MsgBox statem ent you can choose from an array of
but ton specificat ions for the m essage box.
The But ton2_Click event procedure reposit ions the form on the screen from its
init ial point of (450, 450) t o a new point of (150, 450) . The event procedure
m oves the form 300 pixels to t he left . You will f ind this capabilit y useful when you
need to act ively m anage where form s appear on your desktop. The event
procedure’s syntax uses a Point st ructure to specify t he new locat ion for the form .
However, t his event procedure specifies t he posit ion for t he form with t he
Locat ion property instead of t he DesktopLocat ion property used in the
Form 1_Load event procedure. I f a user docks the Windows taskbar (with the

Start but ton) on the top, DesktopLocat ion w ill y ield super ior perform ance, but t he
two propert ies otherwise let you set a posit ion anywhere on the desktop. I f the
taskbar is at t he screen’s top or left border, posit ioning a form with a Locat ion
property set t ing of (0, 0) can obscure part of t he form . However, t he
DesktopLocat ion property set t ing assigns posit ion relat ive to t he taskbar.
Therefore, a DesktopLocat ion property set t ing of (0, 0) posit ions a form f lush with
the taskbar.
After populat ing a form with cont rols and code behind the form , you will want t o
test your applicat ion. There are a couple of ways to do this. First , you can choose
Start from the Debug m enu. This will com pile your applicat ion and launch it s start
object . I n this case, t hat object is Form 1 . I f the code com piles without error, your
applicat ion launches. You can then start to test it . Second, you can choose to
com pile your applicat ion without at t em pt ing to run it im m ediately. You can
com pile a program into Microsoft I nterm ediate Language (MSI L) by choosing
Build Solut ion from the Build m enu. I n this case, that process returns a file
nam ed StartWithForm 1.exe in the bin folder of the solut ion’s assem bly folder. The
assem bly folder has the nam e StartWithForm 1. You can run the solut ion’s .exe
file by double-click ing it in Windows Explorer or by typing the file’s nam e and
path in the Run dialog box and then clicking OK. The Run dialog box is available
by choosing Run from the Windows Start m enu.
Deploying a solut ion can be as sim ple as copying the StartWithForm 1.exe to
another com puter running the .NET Fram ework. You don’t need Visual Studio
.NET installed on the other com puter. The .NET Fram ework is available as a
separate download for com puters without Visual Studio .NET. See
m sdn.m icrosoft .com / net fram ework/ prodinfo/ getdotnet .asp for inform at ion on
how to download the fram ework from MSDN or order it on CD.

Opening One W indow s Form w ith Another

A form can open another form as a m odal form or a m odeless form . A m odal form
doesn’t allow the user t o act ivate another form unt il the m odal form is closed. A
m essage box is an exam ple of a m odal form . Users have to respond to the
m essage box before they can proceed to any other form . A m odeless form does
allow users to act ivate another form before they close the m odeless form . A
toolbar is an exam ple of a m odeless form . The Find dialog box that you can open
by choosing Find And Replace and then Find from the Edit m enu in Visual Studio
is an exam ple of a m odeless form . You can search for a st r ing, switch the focus
away from the Find dialog box, and then t ransfer the focus back to the Find
dialog box to search for another incidence of a st r ing.
A form doesn’t have a m odal or m odeless property. I nstead, you can open a form
with m ethods that expose it as either a m odal or a m odeless form . I nvoke the
ShowDialog m ethod for a form to open it as a m odal form . To open a form as a
m odeless form , invoke it s Show m ethod.
Figure 9-4 shows a pair of form s with t he capt ions Form 1 and Form 2. These
form s belong to a Windows applicat ion nam ed CallOneForm From Another. When a
user clicks the but ton on Form 1 , the but ton’s Click event procedure invokes a
procedure nam ed OpenForm 2. This procedure can open Form 2 as eit her a m odal
or a m odeless form . Form 1 also has a label cont rol. This label cont rol accentuates
the form ’s nam e beyond the inform at ion in t he form capt ion. Form 2 contains
three cont rols: a label, a text box, and a but ton. The label in Form 2 serves the
sam e purpose as the one in Form 1 . The text box in Form 2 is for displaying
whether the form is open as a m odal or a m odeless form . The applicat ion assigns
the Text property of TextBox1 at run t im e. But ton1 closes Form 2 in response to a
click.

Figure 9 - 4 . A design view of a pair of form s used in the
CallOneForm From Another sam ple.

Som e of the form cont rols for the Windows applicat ion have stat ic property
set t ings that don’t change at run t im e. When you have cont rols like this, you can
assign the propert y set t ings at design t im e. For exam ple, you can change the
Text property of Label1 in eit her form in t he Propert ies window.
When a form or it s cont rols have dynam ic property set t ings that can change at
run t im e in response to user act ions, your applicat ion’s code m akes the property
set t ings. The following list ing contains two event procedures and a sub procedure.
These procedures, which m ake up the custom code behind Form 1 , m ake dynam ic
property set t ings and handle interact ion with t he user.
The Form 1_Load event procedure m akes three dynam ic property set t ings. First it
posit ions the form toward the upper left corner of t he desktop with a set t ing that
is 100 pixels down and 100 pixels to t he left from the upper left corner. Next the
procedure widens the width of But ton1 from its default set t ing of 75 pixels to a
new set t ing of 85 pixels. This ext ra width perm its the display of t he full Text
property set t ing for But ton1 , which the procedure’s last line assigns.
The But ton1_Click event procedure contains a single line of code that invokes the
OpenForm 2 procedure. This standard sub procedure presents as m any as two
m essage boxes. The f irst m essage box asks whether to open Form 2 as a m odal
form . I f the user clicks the Yes but ton, the procedure executes a block of code to
achieve that purpose. Not ice the use of t he ShowDialog m ethod to open the form
in this code block. Otherwise, the second m essage box appears with a prom pt t o
open Form 2 as a m odeless form . I f the user clicks the OK but ton, t he applicat ion
opens Form 2 as a m odeless form with t he Show m ethod. The user can close the
m essage box without opening Form 2 by click ing the Cancel but ton. Recall that a
m essage box is a m odal form . Therefore, you m ust offer an opportunity to close a
m essage box for an applicat ion to proceed.
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Position the form toward top left area of desktop,
 ’widen Button1’s width from its default setting of 75 pixels
 ’and assign a caption for Button1 as its Text property.
 Me.DesktopLocation = New Point(100, 100)
 Button1.Width = 85
 Button1.Text = “Open Form 2"

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Invoke the OpenForm2 procedure.
 OpenForm2()

End Sub

Sub OpenForm2()

 ’Declare a pointer reference for Form2.
 Dim MyFormPointer As New Form2()

 ’Assign Text property for Button1 in Form2.
 MyFormPointer.Button1.Text = “Close"

 ’Open a new instance of Form2 as a modal form or a modeless form.
 ’When opening Form2 as a modal form,
 ’ 1. Assign a value to the Text property of TextBox1.
 ’ 2. Assign a start position 400 pixels down the page.
 ’ 3. Use the ShowDialog method for the object reference.
 ’ pointing at Form2
 ’When opening Form2 as a modeless form,
 ’ 1. Assign a start position 200 pixels down the page
 ’ 2. Use the Show method for the object reference
 ’ pointing at Form2.
 ’ 3. Assign a value to the Text property of TextBox1.
 If MsgBox(“Open Form2 as Modal", MsgBoxStyle.YesNo) = _
 MsgBoxResult.Yes Then
 MyFormPointer.TextBox1.Text = “I am modal."
 MyFormPointer.Downpix = 400
 MyFormPointer.ShowDialog()
 ElseIf MsgBox(“OK, I am opening Form2 as a Modeless form.", _
 MsgBoxStyle.OKCancel) = MsgBoxResult.OK Then
 MyFormPointer.Downpix = 200
 MyFormPointer.Show()
 MyFormPointer.TextBox1.Text = “I am modeless."
 End If

End Sub

The code blocks for opening Form 2 as a m odal or m odeless form vary in m ore
ways than just t he use of t he m ethod to open the form . For t he block that opens
Form 2 as a m odal form , the block starts by set t ing the Text property of TextBox1
on Form 2 . Visual Basic doesn’t allow you to dynam ically set the Text property of
TextBox1 when Form 2 is open as a m odal form . Therefore, t he applicat ion m akes
the set t ing before opening the form . I n the case of a m odeless form , the
applicat ion sets the Text propert y for TextBox1 after the form opens. Downpix is
the custom Form 2 property that determ ines how far down on the desktop Form 2
appears. By vary ing the value of Downpix depending on whether Form 2 opens as
a m odal or m odeless form , the applicat ion m akes it easier t o ident ify how Form 2
is open. Because the Downpix property determ ines where the form opens on the
desktop, you naturally have to specify t he property’s value before opening the
form .
The custom code behind Form 2 consists of the two event procedures in the
following code sam ple along with a Public var iable declarat ion. The Public
declarat ion is for t he Downpix var iable. The Form 2_Load event procedure uses
the value of this var iable to specify the posit ion for opening Form 2 on the
desktop. The event procedure also dynam ically sets the Text property for
But ton1 . The But ton1_Click event procedure dem onst rates the syntax for closing
a form program m at ically without using the standard Close but ton on form s. Using

the Close m ethod is appropr iate for sit uat ions in which you have to perform som e
special funct ions at the t im e that a form closes.

Note

You can suppress the display of the standard Close but ton on
a Windows form by set t ing the form ’s FormBorderSty le
property to None in the Propert ies window.
Public Downpix As Integer
Private Sub Form2_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Position the form 450 pixels from the desktop’s left border,
 ’and Downpix units from the desktop’s top border.
 Dim MyStartPoint As New Point(450, Downpix)
 Me.DesktopLocation = MyStartPoint
 Button1.Text = “Close"

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Close the current form (Form2).
 Me.Close()

End Sub

Creat ing and Using Class References

A firm grasp of class developm ent pr inciples is m ore im portant when creat ing
solut ions with Visual Basic .NET than for pr ior versions of Visual Basic. I n
addit ion, t hrough nam espace designat ions you can refer with a com m on syntax to
both custom classes and built - in .NET Fram ework classes. Built - in classes are
m ore prom inent t han in any pr ior version. For exam ple, even data types behave
as classes in t hat you can instant iate a data type when you declare a variable
based on it . Nam espaces and classes underpin one another, so a good grasp of
either requires a working knowledge of both. This sect ion contains a m ix of
com m entary on class and nam espace issues along with sam ples especially
designed to j um p-start your use of classes with Visual Basic .NET.

Creat ing a Class to Perform Calculat ions

A typical reason for using classes is to ensure that selected calculat ions are
always perform ed exact ly t he sam e way throughout an organizat ion. A calculat ion
can be for taxing author it ies, account ing reports, or scient if ic applicat ions. Rather
than have every applicat ion that needs the calculat ions separately code the
expression for a calculat ion, your applicat ions can reference a class with the
calculat ions accurately perform ed. This applicat ion for classes elim inates possible
errors by j unior program m ers who m ay not have the experience to code the
calculat ion proper ly. I n addit ion, t he pract ice of coding calculat ions in classes
m akes for easy updat ing of t he com putat ions because there is a single point t o
m odify when an update is necessary (for exam ple, because of a new tax rate) .

Although you can create a com putat ional class as part of a Windows applicat ion,
you will t ypically der ive m ore value from the class by creat ing a stand-alone .dll
file for it . Then any proj ect can create a reference to t he class through its .dll.
This sect ion dem onst rates the overall process of creat ing a .dll for a class that
perform s calculat ions.

Note

To create a Class project , choose the Class Library template
from the New Project dialog box (which, as you’ll recall,
opens when you click the New Project but ton on the Visual
Studio Start page) . Assign a name for your class. Visual
Studio .NET creates an assembly folder for the class. The .dll
file in the assembly folder with the sam e filename as the
project for the Class Library contains the compiled code for
the class.
To keep the focus on the const ruct ion of t he class .dll f ile, I const ruct a sim ple
sam ple class nam ed Class1 with it s com piled code in Arit hm et icClass.dll. (See the
following code for the class, which is available for v iewing in Class1.vb.) Class1
exposes two propert ies and four m ethods. The propert ies represent two num bers
that serve as input for one of four calculat ions also def ined in t he class. The
propert ies are designated as WriteOnly because applicat ions referencing the class
m erely need to copy values to the propert ies, which is another way of saying
assign values to the propert ies. The class returns values through its four funct ion
procedures, which im plem ent the four m ethods for the class. The funct ions,
respect ively, add, subt ract , m ult iply, and div ide the two num bers represented by
the class property values.
Because the class calls for WriteOnly propert ies, we cannot use a Public var iable
declarat ion. I nstead, t he class uses a property procedure to enforce write-only
access to each property. When you use only t he Get clause or only t he Set clause
in a propert y procedure, you m ust also declare the property with either the
ReadOnly keyword or the WriteOnly keyword. The sam ple dem onst rates the
syntax for using the WriteOnly keyword with t he Set clause for the dblFirst and
dblSecond propert ies of Class1 . These property nam es are for external
com m unicat ion with t he Class1 in t he Arit hm et icClass proj ect . The class internally
m anipulates dbl1 and dbl2 , which correspond to dblFirst and dblSecond. The Set
clauses for each propert y accept values through their dblValue input argum ent .
After the propert y procedures for dblFirst and dblSecond, the list ing shows the
four funct ion procedures for im plem ent ing the add, subt ract , m ult iply, and div ide
operat ions between the two property values. Visual Basic .NET perm its you to
return a value from a funct ion procedure in eit her of two ways. First , you can
assign a value to the funct ion nam e, as you did in previous versions of Visual
Basic. Second, you can designate the funct ion’s value with an expression serv ing
as the argum ent for a Return statem ent . The syntax for both approaches appears
in the Add2dbls funct ion procedure. I com m ented out the t radit ional approach
that assigns a value based on the funct ion’s nam e. The other three funct ion
procedures dem onst rate use of t he t radit ional approach for specify ing a return
value.
Public Class Class1
 Private dbl1 As Double
 Private dbl2 As Double

 ’WriteOnly property named dblFirst.
 Public WriteOnly Property dblFirst() As Double
 Set(ByVal dblValue As Double)
 dbl1 = dblValue

 End Set
 End Property

 ’WriteOnly property named dblSecond.
 Public WriteOnly Property dblSecond() As Double
 Set(ByVal dblValue As Double)
 dbl2 = dblValue
 End Set
 End Property

 ’Add dbls.
 Function Add2dbls() As Double
 ’Add2dbls = dbl1 + dbl2
 Return (dbl1 + dbl2)
 End Function

 ’Subtract dbls.
 Function Diff2dbls() As Double
 Diff2dbls = dbl1 - dbl2
 End Function

 ’Multiply dbls.
 Function Mult2dbls() As Double
 Mult2dbls = dbl1 * dbl2
 End Function

 ’Divide dbls.
 Function Div2dbls() As Double
 Div2dbls = dbl1 / dbl2
 End Function

End Class

Referencing a Class from a W indow s Applicat ion

The class const ructed in the preceding sect ion has no v isual interface. I n order to
use the class in an interact ive applicat ion, you need to team the class project with
another t ype of project , such as a Windows applicat ion. When a Windows
applicat ion refers to the proj ect , you get t he best of both. The Windows
applicat ion offers a r ich graphical environm ent for gather ing input and displaying
results to users. The class project offers an environm ent t hat can efficient ly
perform calculat ions and share it s com putat ional engine with m any clients
concurrent ly . Each client can sim ply m ake an instance of the class to gain access
to it s propert ies and m ethods.
Figure 9-5 shows a Windows applicat ion with one form that uses Class1 in t he
Arit hm et icClass project . The form that appears in Figure 9-5 resides in t he
Arit hm et icForm proj ect . When the user clicks one of the four but tons on the form ,
the Windows applicat ion takes the values in the top two text boxes and passes
them to t he dblFirst and dblSecond propert ies in the class. Then it invokes a class
m ethod that corresponds to the clicked but ton. For exam ple, Figure 9-5 shows
that the + but ton was selected last . Therefore, the applicat ion invoked the
Add2dbls funct ion procedure and inserted the return value from the procedure in
the bot tom text box on the form .

Figure 9 - 5 . A W indow s applicat ion for using the Arithm et icClass class
library project .

The cont rols on the form in Figure 9-5 have property set t ings to m ake the
applicat ion’s user interface v isually appealing. Many developers m ight prefer to
m ake m ore refinem ents while using those here as a base. The but tons, for
exam ple, have a slight ly enlarged font over t he default size that appears in
boldface. Of course, the but ton size is reduced to accom m odate the side-by-side
display of all four but tons above the text boxes. The TextAlign propert y of t he
text boxes is set to Right . This set t ing displays the text box contents with an
alignm ent t hat is typical for num bers as opposed to st r ings, which is t he default
TextAlign property value.
Because the class in t he preceding sect ion resides in a standalone .dll f ile, t he
Windows applicat ion whose form appears in Figure 9-5 m ust have a reference to
that .dll f ile. This reference perm its the form to interface with the class propert ies
and m ethods defined in the Visual Basic .NET code for the class. (See the
preceding sect ion.) There are two techniques to help you m anage a reference to a
.dll file within a Windows applicat ion. First , you can choose to add a reference to
the .dll f ile. After you add the reference, you can refine how your applicat ion
refers to t he referenced .dll f ile with the I m port s statem ent , which defines the
second technique. The I m ports statem ent groups the class elem ents as item s in a
nam espace sim ilar t o t he way the System .Windows.Form s nam espace groups the
elem ents under ly ing the funct ionalit y in a Windows form . I nstead of using the full
proj ect nam e and class nam e to designate a collect ion of it em s, you can def ine an
alias as a m ore fam iliar nicknam e for the class. I f the nam es of elem ents in your
class conflict w ith those in your proj ect or another referenced nam espace, using
the nicknam e resolves conflict s.

Note

Visual Basic doesn’t st r ict ly require the use of an alias
defined by an I mports statem ent to resolve nam ing conflict s
between different namespaces. However, the abilit y to help
resolve conflicts combined with the opportunity to define a
custom fam iliar nam e defined by the alias is a very at t ract ive
pair of features.
To add a reference for a proj ect , choose Add Reference from the Project m enu in
the Code Editor. For exam ple, if you are working with a Windows applicat ion, you
can choose Project and then Add Reference from the Form 1.vb tab. Next select
the Projects tab. Then click Browse and navigate to the .dll t o which you want t o

form a reference. For t his exam ple, you can navigate to t he bin folder of the
Arit hm et icClass project assem bly. Select t he .dll f ile, which has the nam e
Arit hm et icClass.dll in our exam ple, and click Open in the Select Com ponent dialog
box. Then click OK to close the Add Reference dialog box.
After creat ing a reference to the .dll f ile, you m ust st ill instant iate the class in t he
code behind a form before you can refer to it s elem ents. Use the I m port s
statem ent ’s alias for t he class library in t he Dim statem ent that instant iates the
class. You m ust posit ion the I m ports statem ent im m ediately after t he Opt ion
statem ent , which is the first statem ent within t he code m odule behind a form .
The following sam ple list ing shows an I m ports statem ent t hat creates an alias
nam ed clsArith for t he Class1 class in the Ar it hm et icClass project .

Note

Although the Opt ion statement isn’ t st r ict ly required, its use
can help you manage your code. For example, the Opt ion
St r ict On declarat ion embraces and extends the Opt ion
Explicit statement. With an Opt ion Str ict On declarat ion, you
must declare var iables with a type before using them. In
addit ion, this Opt ion statement prohibits data type
conversions that can lead to data loss. Although a run- t im e
error accompanies these conversions, the Opt ion St r ict On
declarat ion flags these conversions at compile t ime. The
Opt ion St r ict On statement also prohibit s m ost references to
the Object type, which serves as a catchall type, much like
the Variant data type in ear lier versions of Visual Basic.
After the Dim statem ent , the code behind the form relies on four Click event
procedures and one sub procedure, PassTextBoxValues, called by each event
procedure. The PassTextBoxValues procedure passes the values from the text
boxes on the form to the propert ies for t he clsArit h class. As the procedure
passes the contents of t he text boxes, it t ransform s them from st r ing values into
num eric values with the CDbl funct ion. All t he event procedures for t he four
but tons have the sam e general st ructure. They differ by funct ion nam e and the
class m ethod invoked. For exam ple, the first event procedure is for But ton1 with
it s Text property set to + . This event procedure invokes the Add2dbls m ethod for
the clsArith class. Before insert ing the return value from the m ethod into the
bot tom text box on the form , t he procedure t ransform s the Double data type into
a St r ing data type for com pliance with t he Text property of a t ext box.

Note

The applicat ion in the following list ing is a bare-bones
demonstrat ion of how to reference a class. For example, the
form fails if you don’t enter values in both of the text boxes
for input before clicking an arithmet ic funct ion but ton. You
can remedy this situat ion by assigning default values for the
input boxes or prompts in the input boxes with the Load
event procedure for Form1.
Option Strict On
Imports clsArith = ArithmeticClass.Class1
Public Class Form1
 Inherits System.Windows.Forms.Form

‘Windows Form Designer generated code goes here.

 ’Instantiate Class1 from ArithmeticClass for use
 ’with all the code behind Form1.
 Dim MyClass1 As New clsArith()

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Pass text box values to class.
 PassTextBoxValues()

 ’Convert Add2dbls function to a string in TextBox3.
 Me.TextBox3.Text = MyClass1.Add2dbls.ToString()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Pass text box values to class.
 PassTextBoxValues()

 ’Convert Diff2dbls function to a string in TextBox3.
 Me.TextBox3.Text = MyClass1.Diff2dbls.ToString()

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Pass text box values to class.
 PassTextBoxValues()

 ’Convert Mult2dbls function to a string in TextBox3.
 Me.TextBox3.Text = MyClass1.Mult2dbls.ToString()

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button4.Click

 ’Pass text box values to class.
 PassTextBoxValues()

 ’Convert Div2dbls function to a string in TextBox3.
 Me.TextBox3.Text = MyClass1.Div2dbls.ToString()

 End Sub

 Sub PassTextBoxValues()

 ’Pass text box values to class.
 MyClass1.dblFirst = CDbl(Me.TextBox1.Text)
 MyClass1.dblSecond = CDbl(Me.TextBox2.Text)

 End Sub

End Class

.NET Nam espace Architecture

Nam espaces are the m eans by which the .NET Fram ework carves up and m akes
available it s fundam ental funct ionalit y . Nam espaces correspond to types. I n the
preceding two sect ions, Class1 in t he Ar it hm et icClass proj ect was a type. H-
owever, this type was a user-defined type. The .NET Fram ework includes it s own
built - in nam espace architecture. This architecture includes two general categor ies
of types.
The first of these general categor ies is value types. Value types contain values as
well as the descript ion for a value. For exam ple, a st r ing is a value t ype. The
Str ing value is a sequence of Unicode character codes for represent ing the
characters t hat m ake up the st r ing. The contents in a text box are represented as
a St r ing value t ype. A Double value type is a 64-bit f loat ing-point num ber. There
is a core set of these .NET Fram ework value t ypes. Visual Basic .NET has data
types that correspond to m any of the .NET Fram ework data types.
The second general category of types is reference types. A reference t ype can be
your custom class, such as Arit hm et icClass.Class1 or any of the built - in .NET
Fram ework nam espaces. The System nam espace contains near ly 100 classes that
facilitate core .NET Fram ework funct ionalit y, such as the garbage collector and
except ion handling. The .NET Fram ework offers except ion handling for t he
processing of run- t im e errors; I dwell on this m ore deeply in this chapter ’s last
m ajor sect ion. The System nam espace contains m any second- level and third-
level nam espaces that handle im portant funct ionalit y. For exam ple,
System .Windows.Form s is a t hird- level nam espace that supports the instant iat ion
and m anipulat ion of form classes within a Windows applicat ion. The System .Web
nam espace enables the ASP.NET infrast ructure. The System .Data nam espace
perform s corresponding funct ions for ADO.NET.
Table 9-1 lists the m ain value types for t he System nam espace. This table
includes a System nam espace class nam e, a m atching Visual Basic data type
when there is one, and a br ief descript ion of t he value type.
One im portant difference between value types and reference t ypes is t hat value
types retain values with them , but reference t ypes point to values. This sim ple
statem ent can lead to som e significant differences in the behavior of variables
declared as value vs. reference types. An equalit y assignm ent statem ent between
two var iables point ing to value types sets the values of t he var iables equal. I f you
subsequent ly assign a new value for one of t hese var iables, it ’s no longer equal to
the other var iable. With reference types, the rules are different . When you assign
two var iables point ing to reference t ypes equal to one another, you set their
object references to t he sam e obj ect . Subsequent ly, set t ing one var iable equal t o
a quant ity assigns that quant ity to both var iables. This is because the var iables
point t o t he sam e object . Alt hough the behavior of t hese var iable references is
substant ially different , t he syntax for m anipulat ing them is sim ilar. Just
rem em ber, value types store actual values, but reference t ypes store pointers to
objects. The reference types don’t store values. I nstead, the reference types
der ive value from the objects to which they point .

7DEOH������6XPPDU\�RI�6HOHFWHG��1(7�)UDPHZRUN�9DOXH�7\SHV�
6\VWHP�

1DPHVSDFH�
&ODVV�1DPH�

9LVXDO�%DVLF�
'DWD�7\SH�

'HVFULSWLRQ�

Byte Byte 8-bit unsigned integer
I nt16 Short 16-bit signed integer
I nt32 I nteger 32-bit signed integer
I nt64 Long 64-bit signed integer

Single Single 32-bit f loat ing point num ber
Double Double 64-bit f loat ing point num ber
Boolean Boolean A value that can be either True or False
Char Char Unicode characters with hexadecim al values ranging

from 0x0000 through 0xFFFF
Decim al Decim al A signed integer num ber with a m axim um of 96 bits

of precision and up to 28 digits after t he decim al
point

I ntPt r No built - in
type

A signed integer whose size depends on the
plat form ; for exam ple, it can be a 32-bit value on a
32-bit plat form or a 64-bit value on a 64-bit plat form

DateTim e Date Dates and t im es in the range from 0: 00: 00 January
1, 0001, t hrough 11: 59: 59 Decem ber 31, 9999

Str ing Str ing An im m utable fixed- length sequence of Unicode
characters

Object Object Root of t he type hierarchy; all other classes in t he
.NET Fram ework der ive from this one

To highlight t his dist inct ion, I const ructed the TypeTests Windows applicat ion. I t
contains a Windows form with a but ton that invokes a procedure when you click
it . The procedure dem onst rates the potent ial variable references pit falls as well as
a rem edy. The TypeTests project also contains a built - in class. This class is a
reference t ype. The class definit ion includes a custom const ructor funct ion for
init ializing the class’s property value as well as a property procedure with both
Get and Set clauses for reading and wr it ing to it s sole property.
The following Visual Basic code sam ple shows the syntax for the class definit ion.
TypeRef is t he class nam e. I ts only property has the nam e Value. The Sub New
const ructor init ializes Value to m yI nput whenever an applicat ion instant iates a
new instance of t he TypeRef class. The syntax for t he Value propert y procedure
dem onst rates how to specify a read/ wr ite property for a funct ion.
Public Class TypeRef
 Private intLocal

 ’Intialize Value to myInput.
 Public Sub New(ByVal myInput As Integer)
 Dim Value As Integer = myInput
 End Sub

 ’Read/Write property named Value.
 Public Property Value() As Integer
 Get
 Return intLocal
 End Get
 Set(ByVal Value As Integer)
 intLocal = Value
 End Set
 End Property

End Class

The next code excerpt from the TypeTests proj ect shows the code for
dem onst rat ing the problem as well as a workaround to t he problem . The code
excerpt invokes the ValueReferenceTypeTest procedure when a user clicks
But ton1 . The procedure has three sect ions. Each sect ion pauses by present ing a
m essage box that shows the result of var iable assignm ents for either value or
reference t ypes.
 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click
 ValueReferenceTypeTest()
 End Sub

 Sub ValueReferenceTypeTest()
 ’Declare and assign values to a type instance (Integer).
 Dim val1 As New Integer()
 Dim val2 As Integer = val1
 val2 = 123
 MsgBox(“val1 = “ & CStr(val1) & vbCrLf & _
 “val2 = “ & CStr(val2), _
 MsgBoxStyle.DefaultButton1, _
 “Type Assignments Test”)

 ’Declare and assign values to a class reference.
 Dim ref1 As New TypeRef(0)
 Dim ref2 As TypeRef = ref1
 ref2.Value = 123
 MsgBox(“ref1 = “ & CStr(ref1.Value) & vbCrLf & _
 “ref2 = “ & CStr(ref2.Value), _
 MsgBoxStyle.DefaultButton1, _
 “Reference Assignments Test1”)

 ’Declare and assign values to two different class references.
 Dim ref3 As New TypeRef(0)
 Dim ref4 As New TypeRef(0)
 ref4.Value = 123
 MsgBox(“ref3 = “ & CStr(ref3.Value) & vbCrLf & _
 “ref4 = “ & CStr(ref4.Value), _
 MsgBoxStyle.DefaultButton1, _
 “Reference Assignments Test2”)
 End Sub

The results in each m essage box reveal the outcom e of t he assignm ent
statem ents. Figure 9-6 shows each m essage box. Because the boxes have unique
t it les, you can m ap the outcom es to t he different syntact ic const ruct ions.

Figure 9 - 6 . Sim ilar assignm ent statem ents can yield different outcom es
for value and reference type variable declarat ions.

The first m essage box in Figure 9-6 presents the contents of two variables
point ing to value references. Both val1 and val2 point to I nteger data t ypes,
which are value types. The .NET Fram ework init ializes an I nteger value to 0.
Therefore, the Dim statem ent for val1 sets t he var iable to 0. The Dim statem ent
for val2 sets the val2 variable equal to t he current value of val1 , which is 0 from
the preceding statem ent . Next the procedure assigns the value 123 to val2 and
then pr ints the values of val1 and val2 in a m essage box. As you can see, val1
equals 0, but val2 equals 123. This is because the value goes with t he var iable for
variable assignm ents to value types.
The second m essage box in Figure 9-6 shows the outcom e for the next block of
statem ents. These begin by defining a new var iable reference to t he TypeRef
class. This statem ent explicit ly init ializes the var iable to 0. (See the New
const ructor for TypeRef.) Next the procedure uses a Dim statem ent t o set ref2
equal to ref1. Because ref1 equals 0, ref2 also equals 0 aft er t he statem ent . Then
the procedure assigns 123 to t he Value propert y of the ref2 var iable reference.
The statem ent assigns 123 to t he Value property of ref1 as well. This is because
the preceding statem ent sets the two var iables, ref1 and ref2, equal to the sam e
object instance of the TypeRef class. Because there is j ust one instance, it can
have just one Value property. Therefore, the m essage box for t he second sect ion
shows both var iables equal to the sam e value. This is so even though the second
Dim statem ent has the sam e syntax in t he f irst and second sect ions. When
working with variables point ing to reference types, you m ust separately
instant iate a class object for each var iable if you want t o m ake dist inct
assignm ents to each of them . The final sect ion in t he ValueReferenceTypeTest
procedure dem onst rates the syntax for achieving this outcom e. The final m essage
box in Figure 9-6 confirm s the result .

Convert ing Betw een Value Types

The value types denoted in Table 9-1 have fundam entally different ways of
represent ing values within a com puter. Nevertheless, applicat ions frequent ly need
to pass values back and forth between different value types. Any text box has a
Text property, which relies on a St ring value type for represent ing it s contents.
However, applicat ions will som et im es need to gather num eric input or display

num eric output via a text box. The num eric representat ion of a num ber in a text
box can require a t ranslat ion from a Str ing t ype to another t ype, such as Double
or I nteger . The t ranslat ion is necessary because it is only in a num eric
representat ion that a com puter can perform ar it hm et ic calculat ions with value
t ypes. I f you don’t explicit ly perform the t ranslat ion, the .NET Fram ework will
perform it im plicit ly. You should understand that you m ight not always be able to
work perfect t ranslat ions between all value types. This sect ion and the next one
include som e sam ples to acquaint you with the kinds of issues that affect
t ranslat ions between data types.
Visual Basic offers a r ich array of funct ions for convert ing between value types. A
ser ies of inline conversion funct ions can t ransform any appropriate expression
into a corresponding value type. For exam ple, CInt(63.4) returns an integer
equal to 63. The CI nt funct ion rounds fract ions. The full set of inline conversion
funct ions com prises CBool, CByte, CChar , CDate, CDbl, CDec, CI nt , CLng, CObj ,
CShort , CSng, and CStr . For t hese funct ions to work proper ly, t heir argum ent
m ust be suitable for the value they return. At tem pt ing to return a value from
CByte(256) raises an except ion, or run- t im e error, because 256 is outside the
range of legit im ate byte values. The CType funct ion can explicit ly convert an
expression (or constant) t o a value type. For exam ple, you can use CType(63.4,
Integer) to convert a value with a decim al point to one without a decim al point .
A convenient approach for convert ing a num ber to a st r ing is to append the
ToSt r ing funct ion nam e to the end of t he num eric value, such as 45.ToString .
Addit ional t ransform at ion funct ions in the sty le of ToSt r ing are available for other
value types.
I updated Form 1 in t he TypeTests proj ect by adding another but ton, But ton2, and
a text box, TextBox1 . I n addit ion, t his sam ple relies on Opt ion St r ict On being the
first statem ent in the m odule behind Form 1 for the project . The code involves two
event procedures. (See the following list ing.) The Form 1_Load event procedure
labels t he but ton Add 1 because click ing it adds 1 to t he text box value. The
procedure also assigns the st r ing 1 to t he Text property of the text box. The Click
event procedure for But ton2 adds 1 to t he value in the text box. Without two
conversions, the ar it hm et ic for the conversion will fail. First the Click event
procedure t ransform s the st r ing property of t he value in the text box into an
integer. Second the expression in t he event procedure uses the ToSt ring funct ion
to convert t he num eric value in the addit ion expression to a st r ing. Without both
of t hese conversions, you will generate a com pilat ion error when Opt ion St r ict On
is the first statem ent in the m odule.
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Initialize button and text box text settings.
 Button2.Text = “Add 1"
 TextBox1.Text = “1"

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Transformations required by Option Strict On.
 TextBox1.Text = (CInt(TextBox1.Text) + 1).ToString
 End Sub

From Long to Hexadecim al and Back Again

Visual Basic has long had the Hex funct ion for convert ing integer num eric values
to hexadecim al st r ings that represent t he num eric value of the Hex funct ion
argum ent . The .NET docum entat ion explicit ly states that t he funct ion will work for
Byte, Short , I nteger , Long, and Object data types. As it t urns out , the m axim um
value that the Hex funct ion will convert is 9,223,372,036,854,775,807, which is
the m axim um Long value type. Values above this raise an except ion.

Note

I f you aren’t fam iliar with conversions between hexadecim al
numbers and base 10, you can use the Windows Calculator
to help ver ify the operat ion of the samples in this sect ion.
The following pair of procedures dem onst rates how to use the Hex funct ion to
convert t he Long value in t he text box from the preceding sam ple to a Hex value
that appears in a m essage box. Click ing But ton3 on the form in t he TypeTests
proj ect launches the ConvertLngToHex procedure. This procedure’s list ing
dem onst rates the syntax for specify ing a condit ional com pilat ion, which includes
the # before keywords. The value of BoundCheck is True, so the com piler inserts
the opt ional code that perform s a bound check to abort t he conversion if t he Hex
funct ion argum ent is greater t han the m axim um value that t he built - in funct ion
can convert . Condit ional com pilat ion was init ially int roduced into Visual Basic with
version 5. The conversion procedure concludes by displaying the return value of
the Hex funct ion (unless the procedure aborts because the argum ent is too
large) .

Note

Set t ing the BoundCheck compiler constant to False perm its
you to generate an except ion for values greater than the
maximum conversion value— for exam ple,
9,223,372,036,854,775,808.
Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Call procedure to convert text box value
 ’from long to hexadecimal.
 ConvertLngToHex()

End Sub

Sub ConvertLngToHex()
 #Const BoundCheck = True

 #If BoundCheck Then
 ’Bound check on input; use CDec to accommodate values
 ’beyond bound check.
 If CDec(TextBox1.Text) > 9223372036854775807 Then
 MsgBox(“Number too large for Hex function.”)
 Exit Sub
 End If
 #End If

 ’Convert from string representation of Long number to
 ’hex character representation of number.
 MsgBox(“Hex value of text box equals:” & vbCrLf & _
 Hex(CLng(TextBox1.Text)))

End Sub

Going from a hexadecim al value to a Long value is m ore com plicated for a couple
of reasons. First , there is no built - in funct ion. Second, hexadecim al num bers need
to be converted on a character-by-character basis that ref lects the character ’s
posit ion in t he hexadecim al num ber. This task is further com plicated by that fact
that characters go outside the decim al range of 0 through 9 to t he hexadecim al
range of 0 through F. The following sam ple perform s a check to ver ify that the
hexadecim al st r ing value doesn’t exceed the m axim um Long value. The hex
representat ion for the m axim um Long value is 7FFFFFFFFFFFFFFF.
After perform ing a bound check for the m axim um hexadecim al value, the
ConvertHexToLng procedure starts a loop that iterates through successive
characters in t he hexadecim al num ber. Start ing at the far r ight character , the
loop evaluates each character. The evaluat ion m ult iplies the hex character ’s
decim al value by a power of 16. The powers range in value from 0 for the far
right character to up to 15 for t he sixteenth hex character (if t here is one) . When
the ConvertHexToLng procedure finishes looping through the characters in the
hexadecim al num ber, t he procedure presents a m essage box with the decim al
value of t he hexadecim al num ber in TextBox1 .
Private Sub Button4_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button4.Click

 ’Call program to convert a hexadecimal number to
 ’a Long number.
 ConvertHexToLng()
End Sub

Sub ConvertHexToLng()

 ’Assign TextBox1 contents to hexStr.
 ’Dim strValue As String = TextBox1.Text
 Dim hexStr As String = TextBox1.Text

 ’If hexStr greater than 7FFFFFFFFFFFFFFF, then abort.
 Dim hexchars As Integer = Len(hexStr)
 If (hexchars = 16 And hexStr.Chars(0) > “7”) Or _
 hexchars > 16 Then
 MsgBox(“Hex values beyond 7FFFFFFFFFFFFFFF “ & _
 “generate an exception. Enter a smaller “ & _
 “hex value.”)
 Exit Sub
 End If

 ’Variable lnghexstr stores long of hex string in TextBox1,
 ’and i is a loop counter value.
 Dim lnghexstr As Long
 Dim i As Integer

 ’Loop through characters to compute decimal equivalent
 ’of hex string.
 lnghexstr = 0
 For i = 0 To hexchars - 1
 Select Case Mid(UCase(hexStr), hexchars - i, 1)
 Case “0"
 lnghexstr += CLng(0 * (16 ^ i))
 Case “1"
 lnghexstr += CLng(1 * (16 ^ i))
 Case “2"
 lnghexstr += CLng(2 * (16 ^ i))
 Case “3"

 lnghexstr += CLng(3 * (16 ^ i))
 Case “4"
 lnghexstr += CLng(4 * (16 ^ i))
 Case “5"
 lnghexstr += CLng(5 * (16 ^ i))
 Case “6"
 lnghexstr += CLng(6 * (16 ^ i))
 Case “7"
 lnghexstr += CLng(7 * (16 ^ i))
 Case “8"
 lnghexstr += CLng(8 * (16 ^ i))
 Case “9"
 lnghexstr += CLng(9 * (16 ^ i))
 Case “A"
 lnghexstr += CLng(10 * (16 ^ i))
 Case “B "
 lnghexstr += CLng(11 * (16 ^ i))
 Case “C"
 lnghexstr += CLng(12 * (16 ^ i))
 Case “D"
 lnghexstr += CLng(13 * (16 ^ i))
 Case “E"

 lnghexstr += CLng(14 * (16 ^ i))
 Case “F"
 lnghexstr += CLng(15 * (16 ^ i))
 End Select
 Next i

 ’Display long value for hex string.
 MsgBox(“Long value for text box equals:” & vbCrLf & _
 lnghexstr.ToString)
End Sub

I nherit ing Classes

Classes are great because they package blocks of Visual Basic code for easy
reuse. Class inheritance m ult iplies that core benefit of classes by let t ing one class
inherit the propert ies, m ethods, and events of another class. I nher itance for
custom classes is new to Visual Basic program m ers with Visual Basic .NET. This
sect ion begins with an overview of design issues and keywords for im plem ent ing
class inher itance. Next I cover a couple of sam ples that dem onst rate the syntax
for im plem ent ing inher it ance with different keywords. At t he sect ion’s close, you
will discover a discussion of over loading. This feature can m ake one m ethod or
property within a class easily accept m any different types of value inputs. I nstead
of building capabilit ies into applicat ions by layering one class on top of another or
m anually coding a class to t est m ult iple value t ypes and then respond
appropriately t o t he input value type, t he Overloads keyword expands the
capabilit ies of a single class. I cover the Overloads keyword in t his sect ion
because of it s resem blance to the Overr iding keyword— one of t he keywords for
m anaging inher itance— and because Overloads widens the capabilit ies of a class
m uch as inheritance can.

Overview of I nher itance

I nher itance is for classes. I t lets one class inher it t he propert ies, m ethods, and
events of another class. My discussion of inherit ance focuses on propert ies and
m ethods to sim plify t he presentat ion. (See the “Program m ing Events” sect ion
later in t his chapter for m ore on m anaging class events.) When Class B inher its
Class A, Class B can offer the sam e m ethods, propert ies, and events of Class A.
I n addit ion, Class B can offer new propert ies and m ethods as well as m odif ied
versions of t he propert ies and m ethods in Class A. Visual Basic developers didn’t
have this capabilit y for custom stand-alone classes with versions of Visual Basic
prior to the .NET version. Therefore, it is natural t hat you need to learn som e new
concepts and syntax to take advantage of inheritance. We can start our new
inheritance vocabulary by referr ing to t he inher ited class as the base class. The
class that inher its a base class is a derived class.
When one class inher its from another class, the der ived class m ust contain a
declarat ion stat ing from which class it inherits propert ies and m ethods. Visual
Basic .NET uses an I nherits statem ent t o m ake the declarat ion. The I nher its
statem ent takes as it s argum ent the nam e of t he base class. You can have j ust
one class nam e as the argum ent for I nher its. Therefore, a class can inher it from
at m ost one other class at a t im e. I f the der ived class adds any new m ethods, it
can offer t he m ethods of the base class along with it s own new m ethods. I n
addit ion to offer ing new m ethods, the derived class can offer m odified
im plem entat ions of one or m ore m ethods from the base class. Another new
inheritance term in Visual Basic .NET is polym orphism . I t describes the abilit y of a
der ived class to change the im plem entat ion of a base class m em ber, such as a
property or a m ethod. An applicat ion can instant iate instances for a der ived class
and its base class. I n this way, the applicat ion can invoke an unm odified m ethod
from a base class and an updated m ethod with the sam e nam e from a der ived
class.
I n order for Visual Basic .NET to m odify a base class m ethod in a der ived class,
your class m ethods require special keywords. First , t he base class m ust m ark the
m ethod nam e with the Overridable keyword, such as in the following code:
Class MyBaseClass
 Overridable Function One () As Double
 ’Code for returning a value.
 End Function
End Class

I n addit ion to a keyword in t he base class, you need a corresponding keyword,
Overrides, in the der ived class. This keyword m ust be applied to a m ethod in t he
der ived class with the sam e nam e as the one in t he base class whose
im plem entat ion you want to change. For exam ple
Class MyDerivedClass
 Inherits MyBaseClass
 Overrides Function One () As Double
 ’New code for returning a value.
 End Function
End Class

As you can see, im plem ent ing polym orphism requires planning. That is, you m ust
m ark the base class that you want overr idden in der ived classes with t he
Overridable keyword. You m ust also synchronize m ethod nam es between the
base and der ived classes. The m ethod nam es within a class— either base or
der ived— should generally be dist inct . I n general, you should also keep the
m ethod and property nam es dist inct between base and derived classes. Using the
sam e nam e for a m ethod or a property in both base and der ived classes has a
special m eaning that we will consider short ly .
I n order for a der ived class to refer back to a m ethod or property in a base class,
you need to use the special MyBase keyword. You will t ypically use the MyBase
keyword within a funct ion in a der ived class that overr ides an ident ically nam ed

funct ion in a base class. You can also use the MyBase keyword to set and get
property values for a base class from a der ived class. Then you can use the
MyBase keyword to invoke a m ethod with the values that you passed to the base
class. For exam ple, MyBase.One() in a derived class invokes the One m ethod in
the base class.
The Shadows keyword can apply to propert ies and m ethods in a der ived class.
This keyword essent ially blocks the availabilit y of ident ically nam ed propert ies
and m ethods in a base class. I n a sense, the Shadows keyword for a property or
m ethod in a derived class casts a shadow over an ident ically nam ed property or
m ethod in a base class. The Shadows keyword is m ore flex ible and powerful t han
the Overridable/ Overr ides keywords. For exam ple, t he Overridable/ Overr ides
keywords apply only t o m ethods im plem ented with sub procedures or funct ion
procedures. The Shadows keyword apples to m ethods as well as propert ies. I n
addit ion, you can shadow a m ethod in a base class with a property in a der ived
class. The Shadows keyword rem oves the dependence of a der ived class on an
ident ically nam ed object in a base class. This insulates the derived class from any
changes to t he base class that could inadvertent ly cause an error in t he der ived
class. The Overr idable/ Overrides keywords don’t offer t his protect ion for a der ived
class from changes m ade in a base class.
The Overloads keyword isn’t st r ict ly an inher itance topic, but t his keyword
pertains to classes, and it s nam e is sim ilar to Overr ides. I n addit ion, using the
Overloads keyword on a funct ion procedure, sub procedure, or property
procedure can alter t he behavior of t he procedure. However, t he Overloads
keyword can apply to m ethods or propert ies within the sam e class. A com m on
use of t he Overloads keyword is to enable m ult iple versions of a funct ion
procedure to operate as one. Each funct ion procedure in a set of overloaded
funct ion procedures has the sam e nam e. However, the argum ent types change
for each funct ion procedure within a set . Therefore, one version of a m ethod can
accept a st r ing argum ent , but another version can accept a double data type as
an ar-gum ent . The .NET Fram ework will autom at ically invoke the r ight funct ion
procedure based on an input ’s data type! That ’s the power of t he Overloads
keyword.

An I nherit ing and Overr iding Sam ple

Any Windows applicat ion apply ing class inher itance will contain at least three
units of code. You need two units of code for the classes: one for t he base class
and a second for t he derived class. A third unit of code is necessary to instant iate
one or m ore classes and invoke the m ethods or m anipulate t he procedures in the
der ived class or it s base class. I n a Windows applicat ion, you can instant iate
classes and m anipulate the instances from event procedures for but tons on a
form . One or m ore text boxes on a form can provide vehicles for users to specify
input values as argum ents for m ethods and propert ies.
The sam ple for t his sect ion is a Windows applicat ion that includes a form (Form 1)
wit h m ult iple but tons and text boxes for users t o m anipulate. The first sam ple
uses But ton1 along with TextBox1 and TextBox2 . Click ing But ton1 launches an
event procedure that instant iates a base class, Arit hm et icClass1 , and a der ived
class, Class1. The procedure m anipulates these class instances in various ways
with input from the ent r ies in TextBox1 and TextBox2 . I will detail t he
m anipulat ions by describing the But ton1_Click event procedure after discussing
the code in t he Arit hm et icClass1 and Class1 classes.

Note

The sample for this sect ion and the next two sect ions
demonstrat ing inheritance with Visual Basic .NET all use the

same solut ion, I nherit ingSample. You can double-click
I nherit ingSam ple.sln in Windows Explorer to open the
solut ion in Visual Studio. To run the applicat ion from
Windows Explorer, invoke the I nherit ingSam ple1.exe file.
The filename for the .exe file retains the original name for
the solut ion.
Arit hm et icClass1 is a variat ion of t he stand-alone class in t he Ar ithm et icClass
project discussed in t he “Creat ing and Using Class References” sect ion. This base
class resides in t he I nherit ingSam ple solut ion. The code for t he base class follows.
I t begins by specify ing two wr ite-only propert ies.
Arit hm et icClass1 also specifies two m ethods— both based on funct ion procedures.
The Add2dbls m ethod follows direct ly from the Arit hm et icClass presented earlier
in this chapter; t he m ethod adds two values with a Double value type. A sub
procedure im plem ents this m ethod. The input for t he funct ion procedure is from
the WriteOnly propert ies, which specify the double values to add. A funct ion
procedure im plem ents the second m ethod, Add2dbls2, in Arit hm et icClass1 . Using
argum ents for t he funct ion procedure elim inates the need to rely on propert ies t o
specify t he values to add. The Overr idable keyword appears at the start of the
Add2dbls2 m ethod specificat ion. This m eans that another class inher it ing
Arit hm et icClass1 can overr ide the code for the m ethod that appears below.
Public Class ArithmeticClass1
 Private dbl1 As Double
 Private dbl2 As Double

 ’WriteOnly property named dblFirst.
 Public WriteOnly Property dblFirst() As Double
 Set(ByVal dblValue As Double)
 dbl1 = dblValue
 End Set
 End Property

 ’WriteOnly property named dblSecond.
 Public WriteOnly Property dblSecond() As Double
 Set(ByVal dblValue As Double)
 dbl2 = dblValue
 End Set
 End Property

 ’Add dbls.
 Function Add2dbls() As Double
 Return (dbl1 + dbl2)
 End Function

 ’Overridable version of Add dbls.
 Overridable Function Add2dbls2(ByVal MyNum1 As Double, _
 ByVal MyNum2 As Double) As Double
 Add2dbls2 = MyNum1 + MyNum2
 End Function

End Class

The code for Class1 has three m ajor sect ions; t he full list ing for t he class appears
next . The first sect ion inher its Arithm et icClass1 . The I nher its statem ent m akes
Class1 a der ived class with Arit hm et icClass1 as it s base class. Class1 can
reference all the propert ies and m ethods of Arit hm et icClass1 through the MyBase
keyword.

The next sect ion in Class1 adds a new m ethod with t he NthPower funct ion. The
funct ion com putes the value of the base value to a power, such as 23 equaling 8.
This funct ion accepts argum ents for t he base and power var iable values.
The final sect ion of code in Class1 defines a new im plem entat ion for t he
Add2dbls2 m ethod init ially specif ied in the base class. (See the preceding code for
Arit hm et icClass1.) The Overrides keyword at the beginning of the m ethod
specificat ion in Class1 along with t he m atching Overridable keyword for the sam e
m ethod nam e in Arit hm et icClass1 perm its the overr ide. The new im plem entat ion
for the Add2dbls2 m ethod doubles the value com puted in t he base class. The
MyBase keyword facilitates the reference back to the base class. The argum ents
passed to the Add2dbls2 m ethod in Class1 t ransfer t o t he base class through the
argum ents in t he expression containing the MyBase keyword.
Public Class Class1
 ’Class1 class inherits from ArithmeticClass1.
 Inherits ArithmeticClass1

 ’Added method to complement inherited method
 ’from ArithmeticClass1.
 Public Function NthPower(ByVal base As Double, _
 ByVal power As Double) As Double
 NthPower = (base ^ power)
 End Function

 ’The Add2dbls2 method in Class1 overrides the
 ’overridable Add2dbls2 method in ArithmeticClass1.
 Overrides Function Add2dbls2(ByVal MyNum1 As Double, _
 ByVal MyNum2 As Double) As Double
 ’The following code calls the original method in the base
 ’class, and then modifies the returned value.
 Add2dbls2 = MyBase.Add2dbls2(MyNum1, MyNum2) * 2
 End Function

End Class

The Click event for But ton1 , which appears next , begins by hiding som e cont rols
that aren’t necessary for this use of t he form . Then the event procedure
instant iates Arit hm et icClass1 as the arclass1 variable and Class1 as the c1
variable. The procedure uses two text boxes on the form so that users can specify
double values for the m ethods in t he classes. Because the text box values require
conversion to m ake them Double values for t he procedures im plem ent ing the
m ethods, the sam ple com putes the conversion once and stores the results in two
variables with a Double value specificat ion.
After concluding the preceding prelim inary steps, the event procedure starts
com put ing and displaying results. I nit ially t he procedure passes the Double
values saved in num 1 and num 2 to the propert y procedures assigning values to
the dblFirst and dblSecond propert ies in Arit hm et icClass1 . Next the procedure
invokes the Add2dbls m ethod within the Arithm et icClass1 and co-nvert s the
outcom e to a st r ing with t he ToSt r ing m ethod for display in a m essage box. After
a user clears the m essage box from the screen, the event procedure invokes the
NthPower m ethod in Class1 . Again, the m essage box argum ent convert s the
num ber to a st r ing for display. The last pair of MsgBox funct ions in the event
procedure invokes the Add2dbls2 m ethod. The first m essage box displays the
Add2dbls2 m ethod outcom e from its base class im plem entat ion (in
Arit hm et icClass1) . The procedure concludes by invoking the sam e m ethod from
Class1 . This result appearing in t he second m essage box will be twice as large as
it s predecessor. This is because different funct ion procedures im plem ent the
m ethod in each class. (Cont rast the code for Add2dbls2 in t he two preceding class
list ings.)

 ’Sample to demonstrate basic inheritance to add a
 ’new method or override an existing one.
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Hide unnecessary text controls.
 Button2.Visible = False
 Button3.Visible = False

 ’Instantiate objects based on the ArithmeticClass1
 ’and Class1 classes.
 Dim arclass1 As New ArithmeticClass1()
 Dim c1 As New Class1()

 ’Declare num1 and num2 variables and assign values
 ’to the variables based on text box entries.
 Dim num1 As Double
 Dim num2 As Double

 num1 = CDbl(TextBox1.Text)
 num2 = CDbl(TextBox2.Text)

 ’Set properties and invoke the Add2dbls method from
 ’the ArithmeticClass1 class.
 arclass1.dblFirst = num1
 arclass1.dblSecond = num2
 MsgBox(arclass1.Add2dbls.ToString, , _
 “Return from Add2dbls in ArithmeticClass1”)

 ’Invoke the NthPower method in Class1, which is a
 ’new method not in ArithmeticClass1.
 MsgBox(c1.NthPower(num1, num2).ToString, , _
 “Return from NthPower in Class1”)

 ’Invoke the Add2dbls2 method for the ArithmeticClass1
 ’and Class1 classes; the Add2dbls2 method in Class1
 ’overrides the Add2dbls2 method in ArithmeticClass1.
 MsgBox(arclass1.Add2dbls2(num1, num2).ToString, , _
 “Return from Add2dbls2 in ArithmeticClass1”)
 MsgBox(c1.Add2dbls2(num1, num2).ToString, , _
 “Return from Add2dbls2 in Class1”)

 End Sub

Figure 9-7 sum m arizes the results. On the left is the form after I entered values
in both text boxes and clicked But ton1 . Not ice that But ton2 and But ton3 aren’t
there; that ’s because the But ton1_Click event procedure m ade them invisible on
the form by set t ing their Visible property t o False. The four m essage boxes on the
right display the results in the order t hat the But ton1_Click event procedure
com putes them . The capt ion for each m essage box specifies t he source, including
the m ethod and the class, for the displayed result . Not ice in part icular t he last
two m essage boxes. These results in coordinat ion with the list ing for the
But ton1_Click event procedure docum ent and confirm how you can overr ide a
m ethod in a base class with a different im plem entat ion in a der ived class.

Figure 9 - 7 . By creat ing instances for both a base class and a derived
class, you can invoke m ethods for both classes, and som e of your m ethod

references in a derived class can overr ide those in a base class.

A Shadow ing Sam ple

As indicated in t he “Overview of I nher itance” sect ion, shadowing acts sim ilar ly to
overr iding but is m ore flex ible. The sam ple for t his sect ion dem onst rates the use
of t he Shadows keyword. You can use the Shadows keyword in a der ived class;
doing so doesn’t require any corresponding changes to a base class. The sam ple
in the preceding sect ion required the Overridable keyword in the base class for
the Overrides keyword in t he der ived class to funct ion proper ly.
The sam ple in t his sect ion uses the TypeRef1 class that follows as the base class.
Not ice that the list ing for TypeRef1 includes a property procedure for a property
nam ed Value. The procedure includes both Get and Set clauses. This class is
sim ilar to the TypeRef sam ple presented ear lier in t his chapter. The sole
dist inct ion between TypeRef1 and TypeRef is that TypeRef1 com m ented out the
New m ethod. Recall t hat in t he prior sam ple using TypeRef, the New m ethod was
helpful in set t ing an init ial value for a var iable instant iated on the class. However,
when you use a class as the base class for an I nherits statem ent , t he base class
cannot include a m ethod nam ed New . The inabilit y t o specify a New m ethod
within the class isn’t m ajor because an applicat ion can assign a value to a
variable based on the class im m ediately after instant iat ing the var iable.
Public Class TypeRef1
 Private intLocal

 ’Intialize Value to myInput -- not permissible in
 ’inherited class.
 ’Public Sub New(ByVal myInput As Integer)
 ’ Dim Value As Integer = myInput
 ’ MsgBox(Value.ToString, , “in new”)
 ’End Sub

 ’Read/Write property named Value.
 Public Property Value() As Integer
 Get
 Return intLocal

 End Get
 Set(ByVal Value As Integer)
 intLocal = Value
 End Set
 End Property

End Class

The shadowing sam ple also relies on a second sam ple nam ed Class2. This class
inherits TypeRef1 , so Class2 is a der ived class with TypeRef1 as it s base class.
Because TypeRef1 has j ust one property, Class2 m ust have a m em ber by the
sam e nam e if it is to shadow the property procedure in TypeRef1. I specif ically
used the term m em ber. This leaves open the possibilit y of t he shadowing elem ent
being either a property or a m ethod. The only requirem ent is that t he shadowing
elem ent have the sam e nam e as the m em ber t hat it shadows. Alt hough the
following list ing for Class2 dem onst rates the use of t he Shadows keyword, t he
use of t his keyword is opt ional for im plem ent ing shadowing. As you can see from
the following list ing, the shadowing version of t he property procedure for Value in
TypeRef1 adds 2 to t he input . The or iginal version of the property procedure for
the Value property in TypeRef m erely echoes the input .
Public Class Class2
 ’Class2 inherits from TypeRef1
 Inherits TypeRef1

 Private intLocal

 ’Read/Write property named Value in Class2
 ’shadows property with the same name in TypeRef1.
 Public Shadows Property Value() As Integer
 Get
 Return intLocal
 End Get
 ’New version adds 2 to initial input.
 Set(ByVal Value As Integer)
 intLocal = Value + 2
 End Set
 End Property

End Class

Clicking But ton2 on Form 1 in t he I nherit ingSam ple solut ion launches an event
procedure, which appears next . The procedure uses But ton2 and TextBox1 (along
with it s label) . Therefore, t he event procedure starts by hiding the other cont rols
on the form . Next the procedure converts and copies the contents of TextBox1 t o
num 1 , which the procedure declares as an I nteger variable. This value t ype
specificat ion for num 1 is consistent with t he Value property in TypeRef1 and
Class2 . After storing the converted text box ent ry in a var iable for t he event
procedure, the procedure assigns the value saved in num 1 to t he Value property
in TypeRef1 and Class2 . Finally, a pair of MsgBox funct ions echoes the quant ity in
the property.
 ’Sample to demonstrate shadowing with inheritance.
 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Hide unnecessary text controls.
 TextBox2.Visible = False
 Label2.Visible = False
 Button1.Visible = False
 Button3.Visible = False

 ’Instantiate objects based on the TypeRef1
 ’and Class2 classes.
 Dim trclass1 As New TypeRef1()
 Dim c2 As New Class2()

 ’Declare num1 variable and assign a value
 ’to the variable based on the text box’s entry.
 Dim num1 As Integer

 num1 = CInt(TextBox1.Text)

 trclass1.Value = num1
 c2.Value = num1

 MsgBox(trclass1.Value.ToString, , _
 “Return from Value property in TypeRef1”)
 MsgBox(c2.Value.ToString, , _
 “Return from Value property in Class2”)

 End Sub

Figure 9-8 shows the shadowing sam ple. On the left panel, you see the text box
and but ton for launching the event procedure. Not ice that the text box contains
the value 3. On the r ight side, you see the two m essage boxes containing the
echoed Value propert ies from TypeRef1 and Class2 . Alt hough the input to both
propert ies was the sam e, t he output is different because the one expression in
Class2 is dist inct from it s counterpart for a shadowed property in TypeRef1 .

Figure 9 - 8 . Shadow ing m akes it easier for a derived class to ret urn a
different result than a property w ith the sam e nam e in a base class.

An Overloading Sam ple

Both overr iding and shadowing are about doing m ore things with t he sam e
m ethods and propert ies. The Overloads keyword is one m ore exam ple of a
keyword that sim plif ies how you can do m ore with the code in your sam ples. I n
essence, it allows you to const ruct a set of procedures all of which have the sam e
nam e but with different argum ent type specificat ions. When a user invokes a
m ethod based on the set of procedures, t he .NET Fram ework autom at ically
detects the specific procedure that m atches the input data type. You don’t have
to use the Overloads keyword in an inheritance context , but it can work with

inheritance. For sim plicit y, this sect ion dem onst rates the use of the Overloads
keyword without involv ing inheritance.

Note

You can also achieve overloading without the Overloads
keyword. Just make sure all the procedure names are
ident ical, with different value type specificat ions for the
arguments in each member within the set of procedures.
However, if you use the Overloads keyword for at least one
member in the set , you m ust use it for all members.
The Class3 list ing shows a sim ple over loading sam ple. The class contains two
instances of the TenPercentOfI t funct ion procedure. These instances collect ively
im plem ent t he TenPercentOfI t m ethod for Class3 . I f a user enters an argum ent
with a Double value type, such as 55.5, in the TenPercentOfI t m ethod, Class3
responds by invoking the f irst funct ion procedure. This m ight happen if the user
invokes the m ethod from a database with a colum n of Double values. On the
other hand, when the input for the TenPercentOfI t funct ion is a st r ing, such as
55.5 , Class3 autom at ically invokes the second funct ion procedure. This m ight
happen if an applicat ion passes a value direct ly from a text box to t he class
m ethod. By using the Overloads keyword in front of both versions of t he funct ion,
the developer can leave it t o t he .NET Fram ework to figure out with which specif ic
funct ion procedure to im plem ent t he m ethod. As m ore potent ial data sources
becom e available, it is easy to add a new copy of the funct ion procedure with
different value type declarat ions for t he argum ents.
Public Class Class3
 Overloads Function TenPercentOfIt(ByVal It As Double) As Double
 Return (It * 0.1)
 End Function

 Overloads Function TenPercentOfIt(ByVal It As String) As Double
 Return (CDbl(It) * 0.1)
 End Function
End Class

The following Click event procedure for But ton3 dem onst rates a test of the
overloading feature im plem ented in Class3 . After hiding the unnecessary cont rols
on the form , t he applicat ion instant iates c3 as an instance of Class3. Next it
assigns a Double value of 55.5 to num 1 . The final pair of MsgBox funct ions
invokes the TenPercentOfI t m ethod in Class3 w ith the num 1 Double value type or
a St r ing value t ype based on the contents of TextBox1 . Because the return from
the m ethod is a Double value, t he argum ent for the MsgBox funct ions invokes the
ToSt r ing m ethod on the return value. The im portant point to note is t hat even
though the two MsgBox funct ions invoke the TenPercentOfI t m ethod with
different value types, they both invoke exact ly t he sam e m ethod with exact ly the
sam e syntax.
‘Sample to demonstrate overloading within a class.
Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Hide unnecessary text controls.
 TextBox2.Visible = False
 Label2.Visible = False
 Button1.Visible = False
 Button2.Visible = False

 ’Instantiate Class3 with overloaded functions and declare

 ’a variable with a Double type for one of the functions.
 Dim c3 As New Class3()
 Dim num1 As Double

 ’Assign a value to the Double variable type and
 ’invoke one version of the overloaded function.
 num1 = 55.5
 MsgBox(c3.TenPercentOfIt(num1).ToString, , _
 “Return based on a double input”)

 ’Invoke another version of the overloaded function with
 ’string input instead of numerical input.
 MsgBox(c3.TenPercentOfIt(TextBox1.Text).ToString, , _
 “Return based on a string input”)

End Sub

Figure 9-9 confirm s that you can obtain ident ical results from the TenPercentOfI t
overloaded set of funct ions based on two different input value t ypes. The form on
the left shows 55.5 in a text box. This t ext box contains a St r ing value. The two
m essage boxes on the r ight show ident ical return values. However, their capt ions
confirm that they have different input value t ypes, and all our code did to get t his
result was to use the Overloads keyword. Som et im es Microsoft can m ake life so
sweet !

Figure 9 -9 . Overloading autom at ically m atches the procedure invoked to
the data type of the argum ent in a statem ent calling a set of overloaded

procedures.

Program m ing Events

An event is a not if icat ion that som ething happened. As Visual Basic program m ers,
you are well aware of events from built - in objects, such as form s and but tons.
Many interm ediate and advanced program m ers regular ly create custom classes
that generate custom events with pr ior versions of Visual Basic. Adding events to
custom classes allows objects based on the classes to convey inform at ion back to
the applicat ions that instant iate t he objects.

Visual Basic .NET retains the event funct ionalit y from earlier versions while it
adds new capabilit ies as well, related to def ining custom event handlers and
working with new sources for events. This sect ion reviews the basics of event
program m ing to provide a standard background for m ore advanced topics,
including the abilit y to dynam ically define event handlers and new com ponents
that can raise events.

Event Program m ing Concepts

Even when working with built - in events for form s and their cont rols, it helps to
have a basic understanding of event program m ing concepts, but a knowledge of
this t opic is essent ial when you develop events for custom classes. Happily, a few
core concepts that are easy to grasp can enable you to declare and m anage
custom events.
Events have a source or a sender. This source is the elem ent that sends out the
not if icat ion that an event happened. A class that you create can be a source. A
form class can be a source. For exam ple, Visual Basic raises the Load event when
it opens a form instance. Sim ilarly, when a user clicks a but ton on a form
instance, t his raises the Click event for t he but ton. For a source to raise an event ,
two things m ust happen. First , the event m ust be declared for t he object . You can
declare an Event statem ent . Second, som e code inside the class for the object
instance m ust invoke the RaiseEvent statem ent . The RaiseEvent statem ent
t riggers an event declared with the Event statem ent . You can raise an event only
from the class in which it occurs. Therefore, a but ton cannot raise a Load event
for a form on which it resides. Sim ilarly , a der ived class cannot use the Raise-
Event statem ent to t r igger an event declared in it s base class.
Event handlers process an event . Just because a class instance raises an event
doesn’t m ean that an applicat ion has to acknowledge the event . Clicking a but ton
before you add a sub procedure to process the click has no effect . The sub
procedure is an event handler. Event handlers allow applicat ions to respond to
events raised by class instances. Visual Basic can autom at ically create em pty
event handlers for t he Windows Form s and their cont rols. These em pty event
handlers are called stubs. A stub includes the sub procedure declarat ion with a
nam e for the procedure, a list of argum ents, and a term inat ing statem ent for the
procedure (nam ely, End Sub) . Stubs also include a Handles clause that associates
them with a class instance and an event nam e. You can determ ine how your
applicat ion responds to an event by placing your own code inside the sub
procedure.
When you writ e event handlers for custom classes, you m ay need to create your
own stub. I f you use the WithEvents keyword when you instant iate an object
based on a class, you can use the Visual Studio developm ent environm ent to
create a stub for you autom at ically. When using the WithEvents keyword, you
m ust instant iate your object at the m odule level. Without the WithEvents
keyword, events don’t propagate from a class to an object instance based on it .
Establishing an associat ion between an event handler and an event with the
WithEvents keyword requires you to specify t he event handler at design t im e.
The AddHandler and Rem oveHandler statem ents allow you to dynam ically add
and rem ove a handler for an event at run t im e. You can also use these
statem ents at design t im e. With t hese two statem ents, you don’t have to
instant iate an object using the WithEvents keyword in order to process events
raised by the object . I n turn, t his m eans that you can instant iate within a
procedure or at t he m odule level. Recall that t he WithEvents keyword requires
instant iat ion at t he m odule level. When using the AddHandler statem ent to
associate an event with an event handler, you m ust wr ite your own stub for the
event handler. I will dem onst rate how to do this in a sam ple that illust rates the
use of the AddHandler statem ent .

Using Built - I n Form Events

There are a couple of ways of m anaging built - in events with Windows Form s and
their cont rols from the Windows Form s Designer. Double-clicking a form ’s capt ion
in the Windows Form s Designer opens the stub for t he form ’s default event , the
Load event , in t he Code Editor. This sam e technique works for the cont rols on a
form . For exam ple, double-click ing a but ton on a form opens the stub for t he
but ton’s default event , a Click event . After adding one or m ore cont rols on a
form , you can select any event for any cont rol in t he Code Editor. Choose the
cont rol nam e from the Class Nam e drop-down list at the upper left of t he Code
Editor , and choose the event nam e from the Method Nam e list at the r ight . After
you click an event for t he cont rol, a stub for t he event procedure appears
autom at ically. To display a nondefault event for the form , select (Base Class
Events) from the Class Nam e list and then choose a desired event from the
Method Nam e list .
I f you search through the events for a form or any of the cont rols on a form , you
will quickly discover an exceedingly large array of events. Alt hough the large
num ber of events is useful for f ine-grained cont rol over the operat ion of an
applicat ion, it m ay be difficult for som e program m ers to discern the order of the
events so they can know which one to use. The following excerpt from the Code
Editor for Form 4 in the EventsSam ples solut ion dem onst rates a st ratergy for
t racking events. Within each event procedure is a MsgBox funct ion indicat ing
which event generated the current m essage box in an applicat ion. For exam ple,
the m essage box for the form Load event f ires before Form 4 is displayed. When
you click t he form ’s Close but ton, you will not ice that the Closing event fires pr ior
to the Closed event . See the following note for detailed inst ruct ions on m aking
Form 4 t he startup object for the EventsSam ples solut ion.

Note

A Windows applicat ion starts by default with Form1, which is
the object that Visual Studio .NET makes after opening a
Windows applicat ion for design. By default , the Windows
applicat ion opens to this object when you run the solut ion.
However, you can choose another object for a Windows
applicat ion to open when it starts to run. Right -click the
solut ion’s name in Solut ion Explorer , and choose Propert ies
to open the Property Pages dialog box for the solut ion. Use
the Startup Object drop-down list to select another object .
For example, select ing Form4 will cause this form to open
init ially when a user chooses to run the solut ion.
Events som et im es fire so quickly that m essage boxes can pile up and m ake
discover ing their order confusing. I n cases like this, you can som et im es set a
property for an object on the form — and thus change its appearance— to help
indicate the order of events. The procedures for the MouseEnter , MouseHover ,
and MouseLeave events from But ton1 dem onst rate this approach. These event
procedures change the BackColor property for But ton1 . I nit ially posit ioning the
m ouse over But ton1 changes the BackColor property from its default set t ing to
System .Drawing.Color .Cyan. Because Visual Studio autom at ically creates a
reference to t he System .Drawing nam espace when it init ializes a Windows
applicat ion, you can abbreviate t he set t ing to Color.Cyan. Leaving the m ouse
over a but ton eventually invokes the MouseHover event , which changes the
BackColor set t ing to System .Drawing.Color.Red. Rem oving the m ouse from over
the but ton restores the default BackColor set t ing of

System .Drawing.System Colors.Cont rol. Clicking But ton1 displays a m essage box
and shifts the focus from Form 4 to the m essage box. This But ton1_Click event is
orthogonal to t he MouseEnter and MouseHover events in t hat click ing the but ton
can interrupt the t ransit ion from the MouseEnter event to t he MouseHover event .
Private Sub Form4_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 MsgBox(“Just before I load.”)
End Sub

Private Sub Form4_Closing(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles MyBase.Closing
 MsgBox(“From Closing event.”)
End Sub

Private Sub Form4_Closed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Closed
 MsgBox(“From Closed event.”)
End Sub

Private Sub Button1_MouseEnter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.MouseEnter
 Me.Button1.BackColor = System.Drawing.Color.Cyan
End Sub

Private Sub Button1_MouseHover(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.MouseHover
 Me.Button1.BackColor = System.Drawing.Color.Red
End Sub

Private Sub Button1_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.MouseLeave
 Me.Button1.BackColor = System.Drawing.SystemColors.Control
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox(“You clicked Button1”)
End Sub

Before proceeding to a second sam ple, it m ay be useful to review the syntax for
an event procedure. Not ice that t hey are sub procedures m eant for operat ion in
the current m odule, as specified by the use of t he Private keyword. Private m arks
the event procedure for exclusive use in the current m odule. The argum ents list
can offer you a way of changing the operat ion of the event procedure. The next
sam ple dem onst rates the use of an event argum ent to cont rol t he behavior of the
Closing event . After t he argum ent list , the Handles clause specifies the object and
event t hat t he sub procedure handles. You cont rol t he operat ion of t he event
procedure by placing custom code between the Sub and End Sub statem ents.
The next select ion of event procedures shows a pair of procedures for cont rolling
how a user can close a form . When a user chooses to close a form by clicking the
form ’s Close but ton, the applicat ion fires t he Closing event . This event occurs
before the form closes. By set t ing the Cancel event argum ent t o True in the
Closing event , you can block the Close event from occurr ing (nam ely, t he form
will rem ain open) . The default value for t he Cancel event argum ent is False. You
can use this feature to perform other act ions just before closing a form . For
exam ple, you can display a m essage blocking the operat ion of t he form ’s Close
but ton and inst ruct ing the user t o click a but ton that launches the other act ions
you want done before invoking the form ’s Close m ethod. Because the Close

m ethod raises the Closing event , you m ust const ruct the form ’s Closing event
procedure to opt ionally bypass set t ing the Cancel argum ent to True.
The following code excerpt for Form 5 dem onst rates how to disable a form ’s Close
but ton and redirect the user to a but ton on the form . The solut ion uses two
events. First the Form 5_Closing event procedure blocks the Close event from
occurr ing by set t ing the Cancel event argum ent to bolDisableClose. The m odule-
level declarat ion for bolDisableClose sets the variable’s default value to True. The
I f…Then…Else statem ent in t he procedure displays a m essage box direct ing the
user to click But ton1 to close the form . The Click event procedure for But ton1
sets bolDisableClose to False before invoking the Close m ethod for the Me
keyword that refers back to t he current form , which is Form 5 in t his case. The
invocat ion of t he Close m ethod, in t urn, launches the Form 5_Closing event
procedure, but t his t im e the procedure takes a different path through it s
I f…Then…Else statem ent because of t he new value for the bolDisableClose
variable.
‘bolDisableClose controls Cancel argument.
Dim bolDisableClose As Boolean = True

‘Conditionally block close of form.
Private Sub Form5_Closing(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles MyBase.Closing
 If bolDisableClose Then
 e.Cancel = bolDisableClose
 MsgBox(“Click Button1 to close form.", , _
 “After clicking Close button”)
 Else
 MsgBox(“From form’s Closing event.", , _
 “After clicking Button1”)
 End If
End Sub

‘Enable form close by setting bolDisableClose to False.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ’Perform any other necessary actions before closing Form5.
 bolDisableClose = False
 Me.Close()
End Sub

Processing Events Using the W ithEvents Keyw ord

The event processing techniques for this sam ple and the next two all em anate
from Form 1 in t he EventsSam ple solut ion. Figure 9-10 shows this form two
different ways. At left is the form as it looks in t he Windows Form Designer— in
design v iew. At r ight is the form as it appears when you run the
EventsSam ple.exe f ile. The differences between the two v iews of t he form are the
result of the Form 1_Load event procedure. (See the following sam ple.) This
procedure adds text to som e cont rols and clears it from other cont rols. I n
addit ion, it form ats the alignm ent for the label and text cont rols as well as resizes
the default Width property set t ing for t he but ton cont rols. This t ransform at ion
dem onst rates a use for the form Load event that m akes it easy to spot changes
to the default set t ings for t he cont rols on a form . I f you need to duplicate form
set t ings across m ult iple form s or system at ically change set t ings across m ult iple
form s, this k ind of procedure can prove especially convenient .

Figure 9 - 1 0 . Using a form Load event procedure to docum ent your form at
set t ings for a form can help in docum ent ing those set t ings and applying

those set t ings in a uniform w ay to m ult iple form s in an applicat ion.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’Set selected properties for form controls at load time.

 ’Set Text and Width properties for Button1.
 Button1.Text = “Add"
 Button1.Width = 90

 ’Set TextAlign property for text boxes.
 TextBox1.TextAlign = HorizontalAlignment.Right
 TextBox2.TextAlign = HorizontalAlignment.Right
 TextBox3.TextAlign = HorizontalAlignment.Right

 ’Set Text property for labels.
 TextBox1.Text = “"
 TextBox2.Text = “"
 TextBox3.Text = “"

 ’Set TextAlign align property for labels.
 Label1.TextAlign = ContentAlignment.MiddleRight
 Label2.TextAlign = ContentAlignment.MiddleRight
 Label3.TextAlign = ContentAlignment.MiddleRight

 ’Set Text property for text boxes.
 Label1.Text = “Byte1"
 Label2.Text = “Byte2"
 Label3.Text = “Sum"

 ’Set Text and Width properties for Button2.
 Button2.Text = “Open Form2"
 Button2.Width = 90

 ’Set Text and Width properties for Button3.
 Button3.Text = “Open Form3"
 Button3.Width = 90

 ’Set Text and Width properties for Button4.
 Button4.Text = “Close App"
 Button4.Width = 90

End Sub

The form at r ight in Figure 9-10 perm its a user to enter two Byte value type
quant it ies in t he Byte1 and Byte2 text boxes. When a user clicks the Add but ton,
the form returns the total of t he two quant it ies in t he Sum text box. I f t he sum
happens to exceed 255, which is the m axim um legit im ate Byte value, t he
applicat ion displays a m essage box with a rem inder of t he problem . Because the
applicat ion com putes the sum as a Decim al value type, return values greater than
the m axim um don’t generate a run- t im e error. However, you can raise an event
that ident if ies sum s greater t han 255. I f a user enters a value greater t han 255 in
either the Byte1 or Byte2 text box, Visual Basic raises an error because the Add
but ton’s Click event procedure uses the CByte funct ion to convert t he text box
values to Byte data t ypes.
Before reviewing the code behind Form 1 t hat m anages the operat ion of the form ,
it w ill be useful to exam ine the code list ing for the ByteArithm et ic class. Form 1
relies on the class to save the values in t he two input text boxes, com pute the
sum , and raise the event . The class list ing includes an event declarat ion, a Private
statem ent for declaring two internal var iables, two property procedures, and a
funct ion procedure. The Public accessibilit y qualif ier for t he event declarat ion at
the top of t he list ing m akes the event available throughout the EventsSam ple
solut ion assem bly. I f ByteArithm et ic ex isted as a stand-alone class proj ect with a
.dll extension, the Public declarat ion would perm it t he accessibilit y of t he event in
other proj ects that reference the .dll f ile.
The property procedures nam ed Byte1 and Byte2 can accept converted data from
text boxes on Form 1. The class represents these propert y set t ings internally with
the byt1 and byt2 var iables, which are declared direct ly below the event
declarat ion. A funct ion procedure, Add2byte, in ByteArit hm et ic com putes the sum
and condit ionally raises an error. This procedure com putes the sum of t he two
types as a Decim al value type, which it saves in the m ysum var iable. This design
feature avoids the potent ial of a run-t im e error from a sum that exceeds the Byte
value lim it . However, Add2byte also checks for sum s that exceed 255. When it
finds a sum that exceeds the m axim um Byte value, it raises the TooHigh event
and returns as an event argum ent t he m ysum variable value. The Add2byte
procedure list ing concludes with a Return statem ent that passes back the value of
m ysum to the procedure that invoked the ByteAr it hm et ic class instance.
Public Class ByteArithmetic
 ’You need to declare an event before you can raise it.
 Public Event TooHigh(ByVal ReturnValue As Decimal)

 ’Local variables for property values.
 Private byt1, byt2 As Decimal

 ’Property procedures for Byte1 and Byte2.
 Public Property Byte1() As Byte
 Get
 Return byt1
 End Get
 Set(ByVal Value As Byte)
 byt1 = Value
 End Set
 End Property

 Public Property Byte2() As Byte
 Get
 Return byt2
 End Get
 Set(ByVal Value As Byte)
 byt2 = Value
 End Set
 End Property

 ’Function procedure for the Add2byte method.
 Function Add2byte() As Decimal
 Dim mysum As Decimal

 ’Compute mysum.
 mysum = byt1 + byt2

 ’Raise event if sum is too high.
 If mysum > 255 Then RaiseEvent TooHigh(mysum)

 Return mysum

 End Function

End Class

The next code excerpt shows the code behind Form 1 that works with the
ByteAr it hm et ic class. The list ing starts with a declarat ion of an instance nam ed ba
for the ByteArit hm et ic class. There are two especially im portant features of this
declarat ion. First , the declarat ion includes the WithEvents keyword. This allows
Form 1 t o process events raised by ba. Second, the declarat ion occurs at the
m odule level. This is m andatory when you use the WithEvents keyword in the
declarat ion for a class instance.
I generated the stub for the But ton1_Click event procedure by double-clicking the
cont rol in the Windows Form s Designer. The event procedure is generated by the
double click on the cont rol because Click is the but ton’s default event . Within the
Click event are two blocks of code. First t he procedure converts the text box
ent r ies with t he CByte funct ion to Byte value types from their nat ive St ring value
types. Second the procedure invokes the Add2byte m ethod for the ba class
instance and stores the return value as a st r ing in TextBox3.
The second procedure is the event handler for the TooHigh event from the ba
class instance. I n t he Code Editor for Form 1 , you can create the stub for t he
event procedure autom at ically by choosing ba in t he Class Nam e box and click ing
TooHigh in the Method Nam e box to it s r ight . After Visual Studio created the stub,
I had to add j ust one line of code, which presents a m essage box rem inding the
user that t he sum is too large for a legit im ate Byte value. The m essage box also
contains the value returned as the sum .
‘WithEvents keyword must apply to module-level declaration;
‘the keyword permits events to pass from event source (ByteArithmetic
).
 Private WithEvents ba As New ByteArithmetic()

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Copy converted text box entries to Byte1 and
 ’Byte2 properties in ByteArithmetic class.
 ba.Byte1 = CByte(TextBox1.Text)
 ba.Byte2 = CByte(TextBox2.Text)

 ’Display result of addition in TextBox3.
 TextBox3.Text = (ba.Add2byte).ToString()

 End Sub

 ’Handles clause in event sub stub requires a WithEvents keyword
 ’in variable declaration for event source (ByteArithmetic).
 Private Sub ba_TooHigh(ByVal ReturnValue _

 As Decimal) Handles ba.TooHigh

 ’Display event message.
 MsgBox(“Sum of “ & ReturnValue & “
too large for byte value.”)

 End Sub

Figure 9-11 shows the outcom e of t ry ing to add 4 and 252 with t he applicat ion
detailed in t he preceding two code segm ents. Each quant ity alone is a legit im ate
Byte value. However, their sum exceeds the m axim um Byte value. Therefore, the
applicat ion displays the m essage box shown at t he left of Figure 9-11 before
populat ing TextBox3 w it h t he return value from the ByteAr ithm et ic instance.
Form 1 appears on the r ight side of Figure 9-11, with t he two input values and
their sum . To proper ly close the solut ion, a user m ust click the Close App but ton.

Figure 9 - 1 1 . You can use a custom event to display a m essage box.

Processing Events w ith the AddHandler Statem ent

Below the third t ext box in Figure 9-11 is the Open Form 2 but ton. Click ing this
but ton opens a second form that dem onst rates how to use the AddHandler
statem ent t o process a raised event . Form 2 has just two but tons. That ’s because
this form uses the text boxes on Form 1 t o display input and output from the
instance of ByteArit hm et ic that it declares. Therefore, another benefit of this
sam ple is that it reveals how to pass values back and forth between two form s.
The only way that t he applicat ion will open Form 2 is by a click to the Open Form 2
but ton on Form 1. The applicat ion’s logic requires that there be num eric ent r ies in
the Byte1 and Byte2 text boxes before the click. Failing to populate t he text
boxes with appropr iate values before the click will generate a run-t im e error . The
Click event procedure for But ton2 on Form 1 follows. Not ice that the But ton2_Click
event procedure com m ences by instant iat ing an instance of Form 2 and
referencing it wit h t he frm Form 2 variable. With the frm Form 2 var iable, t he event
procedure can then access elem ents in the code behind Form 2 . As a subsequent
list ing shows, two of these elem ents are var iables nam ed frm 2byte1 and
frm 2byte2. The assignm ent statem ents in t he Click event procedure dem onst rate
the syntax for copying converted text box values from one form (Form 1) t o

variables in t he m odule behind another form (Form 2) . The event procedure
concludes by showing Form 2 and hiding Form 1 .
Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Instantiate a new instance of Form2 class.
 Dim frmForm2 As New Form2()

 ’Populate variables in module behind Form2 with
 ’Text property settings of text boxes in Form1.
 frmForm2.frm2byte1 = CByte(TextBox1.Text)
 frmForm2.frm2byte2 = CByte(TextBox2.Text)

 ’Show Form2 in a modeless window and
 ’hide currently open form (Form1).
 frmForm2.Show()
 Me.Hide()

End Sub

For ease in grasping how the program m ing elem ents behind Form 2 work am ong
them selves and interplay with Form 1 , t he following list ing includes the whole
m odule behind Form 2 . The paragraphs after t he list ing select ively highlight
different aspects of t he code.
Public Class Form2
 Inherits System.Windows.Forms.Form

‘Region for “ Windows Form Designer generated code “

 ’You can instantiate variables for classes within a procedure
 ’when you specify event handler with AddHandler statement. Howeve
r,
 ’to make ba class instance available in two procedures, this
 ’sample declares ba variable at the module level.
 Dim ba As New ByteArithmetic()

 ’Declare variables.
 Public frm2byte1, frm2byte2 As String
 Private temp As Decimal

 Private Sub Form2_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Set Text and Width properties for Button1.
 Button1.Text = “Add"
 Button1.Width = 90

 ’Set Text and Width properties for Button2.
 Button2.Text = “Open Form1"
 Button2.Width = 90

 ’Assign values to Byte1 and Byte2 properties.
 ba.Byte1 = frm2byte1
 ba.Byte2 = frm2byte2

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Designate ba_TooHigh sub procedure to process ba.TooHigh eve
nt
 AddHandler ba.TooHigh, AddressOf ba_TooHigh

 'Assign the return value from Add2byte to temp and display th
e
 'method inputs and outputs if the Add2byte method return valu
e
 'is less than or equal to 255.
 temp = ba.Add2byte
 If temp <= 255 Then
 MsgBox("Sum of " & frm2byte1 & " and " & frm2byte2 & _
 " is " & temp & ".", MsgBoxStyle.OKOnly, _
 "Result from Form2")

 End Sub

 Private Sub ba_TooHigh(ByVal ReturnValue As Decimal)

 ’Process event.
 MsgBox(“Result of “ & ReturnValue & “ is too high. “ & _
 “Returning to new Form1.”)

 ’Exit to Form1
 MyForm2Exit()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Exit to Form1.
 MyForm2Exit()

 End Sub

 Sub MyForm2Exit()

 ’Declare an instance of Form1 and show it.
 Dim frmForm1 As New Form1()
 frmForm1.Show()

 ’Pass local variables from Form2 module to
 ’text boxes on Form1.
 frmForm1.TextBox1.Text = frm2byte1.ToString
 frmForm1.TextBox2.Text = frm2byte2.ToString
 frmForm1.TextBox3.Text = temp.ToString

 ’Close the current form (Form2).
 Me.Close()

 End Sub

End Class

Form 2 has just two but tons on it w ith the default Text property set t ings. The
form ’s Load event procedure assigns m ore m eaningful Text property set t ings than
the default one: But ton1 becom es the Add but ton, and But ton2 becom es Open
Form 1. I n addit ion, t he Form 2_Load event procedure sends the values
t ransferred from the text boxes on Form 1 t o an instance of ByteArit hm et ic nam ed
ba. This populates the Byte1 and Byte2 propert ies in ByteArit hm et ic. I n order to

facilitate referencing the ba variable from several different procedures within the
m odule behind Form 2 , t he sam ple instant iates ByteAr it hm et ic at t he m odule
level. Not ice that the statem ent perform ing the instant iat ion doesn’t include a
WithEvents keyword. Therefore, unless the procedure takes other m easures, t he
code behind Form 2 won’t be able t o handle events raised by the ba instance of
ByteAr it hm et ic.
As m ent ioned, t he Text property for But ton1 is set to Add. True to this set t ing,
the But ton1_Click event procedure invokes the Add2byte m ethod for the ba
variable. The event procedure stores the return value from Add2byte in a Decim al
variable nam ed t em p. However, before invoking the m ethod, t he But ton1_Click
event procedure specifies an AddHandler statem ent . By placing this statem ent
before the invocat ion of the Add2byte m ethod, the procedure enables the code
behind Form 2 to respond to an event raised by the ba class instance of
ByteAr it hm et ic. The AddHandler statem ent has two clauses. The AddHandler
keyword denotes the start of t he first clause. The argum ent for t his clause is the
concatenat ion (with a dot [.] delim iter) of the object nam e and the nam e of t he
event t o process. I n this sam ple, these are ba for the object and TooHigh for the
event . I n the AddressOf clause, you designate the nam e of the procedure that
handles the event nam ed in t he first clause. The preceding list ing follows
convent ional nam ing standards for an event procedure by specify ing ba_TooHigh
as the nam e of t he procedure for handling the event . I f the return value from the
Add2byte m ethod in the tem p var iable is less than or equal to 255, t he
But ton1_Click event procedure invokes a MsgBox funct ion to display the result .
The ba_TooHigh event procedure fires condit ionally when the Add2byte procedure
for the ba object returns cont rol to t he Form 2 m odule. I t is the But ton1_Click
event procedure that invokes the m ethod. However, depending on whether t he
m ethod raises the TooHigh event , cont rol can return to eit her t he But ton1_Click
event procedure or t he ba_TooHigh event procedure. The condit ion for f ir ing the
event procedure is that the ba obj ect raises the TooHigh event . When the ba
obj ect raises the event , the ba_TooHigh event procedure in t he Form 2 m odule
takes cont rol before cont rol returns to the But ton1_Click event . The ba_TooHigh
event procedure displays a m essage box alert ing the user t hat t he sum is too
large and calls the MyForm 2Exit procedure. Within t he MyForm 2Exit procedure,
the applicat ion copies the f rm 2byte1 , frm 2byte2 , and tem p values back to the
text boxes in Form 1 and shows Form 1 as it closes Form 2 . Because tem p doesn’t
yet receive an assignm ent with the value of t he sum when cont rol passes to the
ba_TooHigh procedure, the value of tem p is it s default value, 0, instead of t he
sum of frm 2byte1 and frm 2byte2 .

Note

At the cost of a couple of lines of code, you can modify the
applicat ion to different iate between a t rue value of 0, such as
the sum of 0 plus 0, and a value of 0 to signify an illegit imate
Byte value. I leave this as a problem for you because it is
outside the scope of the sample’s m ain object ives, which are
to demonstrate the operat ion of the AddHandler statement
and to illust rate event processing techniques generally.
The Text property for But ton2 on Form 2 is set t o Open Form 1 in t he Form 2_Load
event procedure. A click to But ton2 actually does m ore than it s label suggests.
The But ton2_Click event procedure has just a single line, but t hat line calls the
MyForm 2Exit procedure. Recall from the discussion in the preceding paragraph
that this procedure copies values from the m odule behind Form 2 t o the text
boxes in Form 1 as it opens Form 1 and closes Form 2 . I f a user clicks But ton2 aft er

com put ing a sum with a value less than or equal t o 255, t he procedure has a
com puted t em p var iable value to pass back from Form 2 to Form 1 .
There are basically two paths from Form 1 to Form 2 and back to Form 1—one path
for a sum that is a legit im ate Byte value and another for a sum that exceeds a
legit im ate Byte value. The three screen shots at the left of Figure 9-12 show the
path for text box ent r ies of 2 and 25 on Form 1 . Click ing the Open Form 2 but ton
t ransfers cont rol to Form 2 and conveys the Byte value type equivalents of the
text box ent r ies in Form 1 into the frm 2byte1 and frm 2byte2 var iables in t he
m odule behind Form 2 . Click ing the Add but ton on Form 2 com putes the result and
generates a m essage box describing the inputs and the legit im ate return value.
Click ing the Open Form 1 but ton (But ton2) copies the two Byte operands and their
sum to t he text boxes on Form 1 as it closes Form 2 and opens Form 1 .
The right side of Figure 9-12 shows the path for the text box ent r ies 2 and 255 on
Form 1. Because these two num bers add up to m ore than 255, Form 2 displays a
m essage to t hat effect when a user clicks the Add but ton. I n this case, cont rol
passes back to Form 1 w ithout the need to click But ton2 . When Form 1 opens, it
shows 0 as the sum to signify a result t hat is too large to display as a Byte value.

Figure 9 - 1 2 . Event procedures can redirect the path of applicat ions and
result in different feedback to users. (Not ice part icular ly the m iddle

m essage boxes and the bot tom dialog boxes.)

Processing Events from Server- Based Tim ers

I n addit ion to Windows Form s, t heir cont rols, and the outcom e of com putat ions,
t im ers represent another typical source for events. The .NET Fram ework offers
two types of t im ers— Windows t im ers and Server t im ers. Windows t im ers target
applicat ions inside Windows Form s. You can add them to your form s eit her from
the Windows Form s cont rol sect ion of t he Toolbox in t he Windows Form s Designer
or program m at ically . I nstant iate t im er instances from the System .Windows.Form s
nam espace. Microsoft init ially int roduced Windows t im ers with Visual Basic 1.0.
Although Server t im ers can run in Windows Form s, they target tasks that don’t
require a v isual interface. Nevertheless, Visual Studio .NET lets you add Server
t im ers to form s from the Com ponents sect ion of the Toolbox. You can also add
Server t im ers program m at ically . I nstant iate Server t im ers from the
System .Tim ers nam espace.
When your applicat ions require a robust t im er, you should consider a Server
t im er, which is m ore accurate than a Windows t im er. You can specify t he interval
of a Server t im er between elapsed t im e events down to t he level of m illiseconds.
The Windows t im er is lim ited to a m inim um interval of 55 m illiseconds. I n
addit ion, a Windows t im er runs on a single t hread within a Windows form . A

Server t im er is designed to work with m ult iple threads— not j ust one like the
Windows t im er. Therefore, Server t im ers are less likely t o degrade the accuracy
of t heir t im ing behavior as the load on a com puter becom es heavy from database
access, intensive calculat ions, or other tasks that can heavily consum e com puter
resources.
When you drag a Server t im er t o a Windows form , t he t im er appears in t he
Com ponent t ray below the form . All nonvisual com ponents appear in t his t ray.
Figure 9-13 shows a Windows Form s Designer for t he EventsSam ple solut ion just
after I dragged a Server t im er from the Toolbox to Form 6 . The Propert ies window
shows the default set t ings for t he Server t im er com ponent . To use the t im er, you
m ust set it s I nterval property to a value in m illiseconds and its Enabled property
to True. For exam ple, t o set a 3-second interval for a t im er, set it s I nterval
property to 3000. The Server t im er raises an Elapsed event at t he end of every
interval. Without any intervent ion, the Server t im er runs cont inuously after you
init ialize it by set t ing it s Enabled property t o True. You can stop and restart the
t im er with t he Stop and Start m ethods. To perform act ions associated with t he
Elapsed events, your applicat ion m ust have an Elapsed event handler for t he
t im er com ponent .

Note

The .NET Framework rout inely calls a thread from its system-
thread pool for processing Elapsed events associated with
Server t im ers. By using any available thread, the Server
t imer ’s Elapsed event can be m issed by the thread
associated with a Windows form . Therefore, when you add a
Server t im er to a Windows form , Visual Studio .NET
automat ically sets the t imer ’s SynchronizingObject property
to the form ’s name. This feature ensures that the event for
processing the t imer’s Elapsed event is available to the
Windows form .

Figure 9 - 1 3 . Add a Server t im er cont rol to a form from the Com ponents
tab or sect ion of the Toolbox.

One advantage of adding a Server t im er from the Toolbox instead of
program m at ically is that you can select the t im er ’s nam e from the Class Nam e
box and the Elapsed event from the Method Nam e box to autom at ically create a
stub for t he t im er ’s Elapsed event procedure. The argum ents for t he Elapsed
event procedure are sender As Obj ect and e As System .Tim ers.ElapsedEventArgs.
I f you program m at ically create a Server t im er object , you should start your form
m odule with an I m ports statem ent that references System .Tim ers. With t his
convent ion, you can specify t he type in the Elapsed event procedure as
ElapsedEventArgs instead of System .Tim ers.ElapsedEventArgs.
The left side of Figure 9-14 shows the raw layout of a form that m anages Server
t im er Elapsed events. The form ’s capt ion is Form 3 ; you can get t o Form 3 by
click ing the Open Form 3 but ton (But ton3) on Form 1 of t he EventsSam ple
solut ion. You m ust return to Form 1 by clicking the Open Form 1 but ton (But ton2)
on Form 3 and exit t he EventsSam ples applicat ion by clicking the Close App
but ton (But ton4) on Form 1 . A form Load event in t he m odule behind Form 3
assigns Text property set t ings and selected other set t ings to t he cont rols on
Form 3 ; see the following code excerpt . The r ight side of Figure 9-14 shows the
form im m ediately after form at t ing by the Form 3_Load event procedure.

Figure 9 - 1 4 . A design view of Form 3 , w hich dem onst rates techniques for
m anaging Server t im er events.

Private Sub Form3_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Set selected control properties.
 Button1.Text = “Start"
 Button2.Text = “Open Form1"
 Button1.Width = 90
 Button2.Width = 90
 Label1.Text = “Count"
 Label1.TextAlign = ContentAlignment.MiddleRight
 TextBox1.TextAlign = HorizontalAlignment.Right

End Sub

At the top of t he m odule are two statem ents that set up the whole applicat ion.
First an I m ports statem ent declares a link to the System .Tim ers nam espace. I t s
syntax is Imports System.Timers . The statem ent appears as the top line in the
Form 3 m odule. The next cr it ical statem ent toward the top of t he m odule is a Dim
statem ent t hat instant iates a Server t im er with the MyTim er var iable. The syntax
for this statem ent is:
Dim MyTimer as New System.Timers.Timer

After the proj ect starts with t he form Load event and the preceding two
statem ents, two procedures com bine to m anage the Server t im er and its Elapsed
events. The But ton1_Click event procedure assigns the value 0 to TextBox1 . Next
the But ton1_Click event procedure sets up an event handler for t he Server
t im er’s Elapsed events. The procedure closes by set t ing three propert ies for t he
MyTim er object . Set t ing SynchronizingObject to Nothing enables the t im er to
respond correct ly to very short I nterval property set t ings. For exam ple, the
following list ing shows an I nterval property of only 3 m illiseconds that perform s
correct ly . With t his short I nterval set t ing, you cannot see screen updates
associated with indiv idual Elapsed events, but t he set t ing m akes the point that
the Server t im er can work with exceedingly short intervals. By set t ing the
Enabled propert y to True, t he code starts the t im er.
The MyTim er_Elapsed event procedure actually responds to t he events raised by
the t im er. I n t his sam ple, t he Elapsed event procedure for the t im er successively
adds 1 to the quant ity displayed by TextBox1 for each elapsed event . To actually
view the indiv idual increm ents, assign a larger value to t he t im er’s I nterval
property. By using the built - in Mod funct ion, t he procedure detects values in
TextBox1 t hat are evenly div isible by 3, such as 3, 6, and 9. Whenever the value
in the text box is evenly div isible by 3, t he procedure stops the t im er and in a
m essage box asks whether t he user wants to cont inue. Clicking No in t he

m essage box restarts the t im er for another t hree elapsed t im er events. When the
user clicks Yes in the m essage box, the t im er rem ains stalled.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’This procedure and the next one require an
 ’Imports System.Timer statement and a module-level
 ’declaration for the Server timer.

 ’Initialize TextBox1 to 0, if text box has default name.
 If TextBox1.Text = “TextBox1” Then
 TextBox1.Text = “0"
 End If

 ’Declare handler (MyTimer_Elapsed) for the elapsed event
 ’for MyTimer.
 AddHandler MyTimer.Elapsed, AddressOf MyTimer_Elapsed

 ’Enable MyTimer to fire an elapsed event every 3 milliseconds.
 MyTimer.SynchronizingObject = Nothing
 MyTimer.Enabled = True
 MyTimer.Interval = 3
End Sub

Sub MyTimer_Elapsed(ByVal source As Object, _
 ByVal e As ElapsedEventArgs)

 ’Specify what should happen when MyTimer fires its
 ’Elapsed event.

 ’Start incrementing quantity in TextBox1.
 TextBox1.Text = (CInt(TextBox1.Text) + 1).ToString

 ’After adding three units, check whether to stop MyTimer
 ’permanently; initial stop is to suspend incrementing
 ’while waiting for user input.
 If (CInt(TextBox1.Text) Mod 3 = 0) Then
 MyTimer.Stop()
 If MsgBoxResult.No = MsgBox(“Want to stop?", _
 MsgBoxStyle.YesNo) Then
 MyTimer.Start()
 End If
 End If

End Sub

I f the user clicks the Open Form 1 but ton, the procedure shows Form 1 and closes
Form 3. The code for t his Click event follows the sam e pat tern of ear lier sam ples.
Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Close current form and open Form1.
 Dim frmForm1 As New Form1()
 frmForm1.Show()
 Me.Close()

End Sub

Except ion Handling for Run-Tim e Errors

Visual Basic .NET int roduces an at t ract ive new way of handling run- t im e errors
based on st ructured except ion handling. Run-t im e errors are errors that occur
because a com puter isn’t ready to process a request from your applicat ion or an
end user fails t o enter values correct ly . For exam ple, if your applicat ion at tem pts
to connect to a SQL Server instance that is t em porar ily off line, a run- t im e error
m ight be generated. Your applicat ions can suffer from run- t im e errors even if
your code is syntact ically perfect and your logic is im peccable. All applicat ions
have a suscept ibilit y to run- t im e errors, and it is therefore im perat ive to handle
them efficient ly . That ’s why Microsoft upgraded its support for handling run- t im e
errors with Visual Basic .NET.
Visual Basic 6 and ear lier versions of Visual Basic offered unst ructured error
handling with t he On Error statem ent . This statem ent type t ransfers cont rol
wit hin a procedure to another point with the GoTo keyword. Most m odern Visual
Basic program s avoid the use of t he GoTo statem ent for everything except run-
t im e error processing. Now you can avoid apply ing the GoTo statem ent even for
this purpose. Visual Basic .NET st ill supports the On Error GoTo statem ent for
backward com pat ibilit y . However, st ructured except ion handling is built into the
.NET Fram ework. The new run- t im e error processing capabilit y is therefore m ore
efficient . This sect ion begins with a br ief overview of the new features. Two
sam ples dem onst rate selected features of st ructured except ion handling in
Windows applicat ions. The sam ples for t his sect ion are in t he Except ionsSam ples
solut ion. This sect ion closes with best pract ices recom m endat ions for st ructured
except ion handling.

Overview of St ructured Except ion Handling

Structured except ion handling is built on a system for t racking run- t im e errors
that the .NET Fram ework int roduces. Run- t im e errors throw , or raise, built - in
except ions. I n fact , one of t he especially at t ract ive features of st ructured
except ion handling is t hat all run- t im e errors raise a .NET Fram ework except ion.
You can v iew the full list of except ions by choosing Except ions from the Debug
m enu in Visual Studio .NET. The Except ions dialog box that opens organizes all
possible except ions with a t ree cont rol. Expand the t ree branches to find end
nodes list ing indiv idual except ion nam es. Cont rols on the Except ions dialog box
facilitate searching for except ions by nam e and adding your own custom
except ions to t hose already built into t he system .
From a syntax perspect ive, the prim ary innovat ion of st ructured except ion
handling is the int roduct ion of the Try…Catch…Finally statem ent . You can place a
block of code vulnerable to run- t im e errors in t he Try clause. Then you can catch
various except ions in one or m ore Catch clauses. Each Catch clause contains it s
own block of code for recovering from a run- t im e error or at least gracefully
exit ing from a run- t im e error. For exam ple, you can tell t he user what problem
caused the error and what to do about the problem . Any given Try clause can
have m ult iple Catch clauses after it . You can design each Catch clause for a Try
clause to t rap one or m ore errors. For exam ple, one Catch clause can route
cont rol to it s code block for a specific k ind of error, but a second Catch clause can
route all rem aining except ions to it s code block.
While the Try clause and at least one Catch clause are m andatory for each
Try…Catch…Finally statem ent , the Finally clause is opt ional. The code block in the
Finally clause always executes— even if one of the code blocks for a Catch clause
invokes an Exit Sub statem ent or an unhandled except ion occurs. The Finally
clause is useful for releasing resources, such as closing database connect ions or
open files.

Use the Throw statem ent to create program m at ically a custom except ion. This
enables your applicat ions to create except ions that you can catch j ust like t hose
that are built into t he .NET Fram ework. The last sam ple in t his chapter
dem onst rates the syntax.

Catching Errors

The first except ion handling sam ple uses Form 1 in t he Except ionsSam ples
solut ion. This sam ple solut ion contains two form s, Form 1 and Form 2 , each of
which is designed to serve, in t urn, as the startup object for t he applicat ion. I f
Form 1 isn’t t he startup object , r ight -click Except ionsSam ples in Solut ion Explorer .
Select Propert ies in t he context m enu. Then choose Form 1 from the Startup
Object drop-down list in the Except ionsSam ples Property Pages dialog box.
Confirm your select ion by clicking OK.
Like m any of t he previous sam ples, t his sam ple perform s form at t ing for the form
in a form Load event procedure. Figure 9-15 shows Form 1 before and after
form at t ing by the Form 1_Load event procedure in t he following list ing. Form 1 is
the first form in this chapter t o use RadioBut ton cont rols. You can drag these to
your form from the Windows Form s tab of the Toolbox. By default , t he
RadioBut ton cont rols that you drag use the Windows form as their container.
Click ing one RadioBut ton cont rol deselects all rem aining RadioBut ton cont rols on
the form . The Checked property for a RadioBut ton cont rol indicates whether t he
cont rol is selected.

Figure 9 - 1 5 . A design view of Form 1 and its startup appearance from the
Except ionsSam ples solut ion that reveals the form at t ing effects in the

Form 1 _ Load event procedure.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 RadioButton1.Text = “9223372036854775807D"
 RadioButton2.Text = “9223372036854775808D"
 RadioButton3.Text = “""“ & “1.2.3” & “"""

 RadioButton1.Width = 200
 RadioButton2.Width = 200
 RadioButton3.Width = 200

 RadioButton1.Checked = True

 Button1.Text = “Convert to Hex"

 Button1.Width = 100

 Button2.Text = “Convert/No Try"
 Button2.Width = 100

 Label1.Text = “Input value"
 Label2.Text = “Converted value"

End Sub

The sam ple at tem pts to convert one of t hree item s to a hexadecim al form at using
the Hex funct ion. A previous sam ple in t his chapter int roduced the Hex funct ion.
I t converts a Long integer value to a corresponding hexadecim al representat ion.
Users can select a value to convert by picking one of the three radio but tons on
Form 1 and then clicking the Convert To Hex but ton (But ton1) . The f irst
RadioBut ton cont rol is for t he m axim um value the Hex funct ion will convert . The
second RadioBut ton cont rol is for 1 larger than the m axim um value. The third
but ton is for a st ring that doesn’t convert t o a num ber, and it cannot t herefore be
converted by the Hex funct ion. The But ton1_Click event procedure copies either a
Decim al value or a Str ing value to a local var iable, either dec1 or st r1 , and
invokes the ConvertDecToHexTryCatch procedure. There are actually two versions
of t he ConvertDecToHexTryCatch procedure that im plicit ly overload one another.
I say im plicit ly over load because the procedure declarat ions don’t begin with t he
Overloads keyword. See the sect ion “An Over loading Sam ple” for a review of
overloading.
Both of the ConvertDecToHexTryCatch procedures dem onst rate basic syntax for
the Try…Catch…Finally statem ent . Each procedure has just a single Catch clause.
I n addit ion, the Catch clause t raps any possible except ion. The code blocks for
the Catch clause in each over loaded procedure have two lines. The first line just
echoes the standard error m essage. The second line displays a custom m essage
instead of t he default m essage for the except ion. You can craft t hese custom
m essages to convey special inform at ion in term s of t he context of your
applicat ion. For exam ple, you can suggest act ions for t he user t o take to
elim inate the problem . Not ice that the second line in each over loaded funct ion
displays a different m essage that reflects the custom circum stances causing the
except ion.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim dec1 As Decimal
 Dim str1 As String

 If RadioButton1.Checked Then
 ’Verify normal operation with valid input
 dec1 = 9223372036854775807D
 ConvertDecToHexTryCatch(dec1)
 ElseIf RadioButton2.Checked Then
 ’Confirm processing for number too large
 dec1 = 9223372036854775808D
 ConvertDecToHexTryCatch(dec1)
 Else
 ’Confirm processing for invalid format
 str1 = “1.2.3"
 ConvertDecToHexTryCatch(str1)
 End If

End Sub

Sub ConvertDecToHexTryCatch(ByVal dec1 As Decimal)

 ’Convert from string representation of decimal number to
 ’hex character representation of number.
 TextBox1.Text = dec1.ToString
 Try
 TextBox2.Text = Hex(TextBox1.Text)
 Catch er As System.OverflowException
 MsgBox(er.Message & vbCrLf & er.ToString)
 MsgBox(“Custom message for number too large.”)
 End Try

End Sub

Sub ConvertDecToHexTryCatch(ByVal str1 As String)

 ’Store the string representation of number in
 ’TextBox1 for conversion to hex characters.
 TextBox1.Text = str1
 Try
 TextBox2.Text = Hex(TextBox1.Text)
 Catch er As System.InvalidCastException
 MsgBox(er.Message & vbCrLf & er.ToString)
 MsgBox(“Custom message for string representing “ & _
 “number in wrong format.”)
 End Try

End Sub

Figure 9-16 cont rasts the built - in error m essage (top) with the custom one
(bot tom) prepared in t he sam ple. I don’t think users ever like to see any k ind of
error m essages. However, which error m essage would get you the least am ount
of gr ief from your clients? Rem em ber, you add value to the solut ion by your
understanding of the client ’s needs and the problem context . Craft your custom
error m essages so they provide the m ost useful inform at ion to your com m unit y of
users.

Figure 9 - 1 6 . You can craft custom error m essages that are shorter and
m ore helpful than the built - in error m essages.

The errors generated by the second and third radio but tons aren’t fatal. I f you
run the applicat ion’s .exe file outside Visual Studio .NET without a
Try…Catch…Finally statem ent and either the second or t hird radio but ton
selected, a dialog box is displayed with a sum m ary of t he error and a Cont inue
but ton. Click ing the Cont inue but ton returns cont rol t o Form 1. With a

Try…Catch…Finally statem ent , you can bypass the pause for the error altogether.
For exam ple, com m ent out both lines within t he Catch clause of t he
ConvertDecToHexTryCatch procedure. The procedure will catch the error, but it
won’t perform any act ion after catching the except ion raised by the error. Coding
a solut ion like this is equivalent t o On Error Resum e Next in unst ructured run-
t im e error processing.

Note

The Convert / No Try but ton allows you to at tempt to convert
the values denoted by the second or third radio but ton
without any processing via a Try…Catch…Finally statement.
For brevity , I include the code for the but ton and its related
procedures exclusively with this book ’s sample files.

Catching and Fix ing Run- Tim e Errors

The m ain point of the preceding sam ple is that you can catch errors. However,
after catching the error , the sam ple m erely displays the error m essage— either a
standard one or a custom one. The preceding sect ion also discusses how to
bypass the display of a m essage alt ogether. However, neit her of these opt ions
does what users really want— nam ely, t o f ix t he error autom at ically. Just as you
could achieve that result wit h unst ructured error processing, you can achieve the
sam e outcom e with st ructured except ion handling.
The sam ple for t his sect ion uses Form 2 as the startup object in the
Except ionsSam ples solut ion. Make this form the startup object to run the sam ple
in this sect ion. See the inst ruct ions at the beginning of the preceding sect ion for
changing an applicat ion’s startup object . The code behind Form 2 enables the
m ult iplicat ion of two Byte values. The form contains three text boxes. The first
two text boxes display the values to m ult iply. You should enter a num ber
between 0 and 255 in each of those two boxes. The third text box displays the
result of the m ult iplicat ion as a Byte value. A variable declared with a Byte value
type stores the product . Therefore, any products greater t han 255 raise a
System .OverflowExcept ion except ion. The applicat ion catches this except ion and
then autom at ically enters a value in t he third t ext box rem inding the user that
the value is too large. This is a fix of sorts in the sense that the applicat ion
doesn’t j ust stop and leave it up to t he user t o change som ething for t he
applicat ion to conclude. The conclusion is the autom at ic ent ry of a rem inder
m essage in t he third t ext box.
Click ing the Mult iply but ton (But ton1) launches the I nvokeByteProduct procedure.
This procedure begins by rounding off any places after t he decim al point for the
values in t he first and second text boxes, TextBox1 and TextBox2 . The procedure
uses the Round funct ion, which is a part of the System .Math nam espace. Because
the procedure doesn’t im port t he System .Math nam espace, it m ust use the Math
qualif ier before the nam e of t he Round funct ion.
After rounding the Byte equivalents of the num bers that appear in TextBox1 and
TextBox2 if necessary, t he procedure passes the num bers to t he ByteProduct
funct ion. This funct ion includes a Try…Catch…Finally statem ent t hat explicit ly
t raps for the System .OverflowExcept ion except ion. I f the Try…Catch…Finally
statem ent detects such an except ion, the Catch clause for t he overf low assigns
True to t he bolByteOverflow m odule- level variable behind Form 2. When the
ByteProduct funct ion returns cont rol, t he I nvokeByteProduct uses the
bolByteOverflow var iable as the condit ion for an I f…Then…Else statem ent . When
bolByteOverflow is False, which is it s default value, the procedure t ransfers the
st r ing equivalent of the Byte product to TextBox3 . I f bolByteOverflow is True, the

code in the Else clause block copies value too large into TextBox3 and resets
bolByteOverflow to it s default value.
Dim bolByteOverflow As Boolean

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 InvokeByteProduct()
End Sub

Sub InvokeByteProduct()

 Dim byte1 As Byte = CByte(TextBox1.Text)
 Dim byte2 As Byte = CByte(TextBox2.Text)
 Dim byte3 As Byte
 Dim bol1 As Boolean
 Dim strPrompt As String

 ’Round to drop values after decimal points.
 If Math.Round(CDec(TextBox1.Text), 0) <> CDec(TextBox1.Text) Then
 TextBox1.Text = Math.Round(CDec(TextBox1.Text), 0).ToString
 bol1 = True
 End If

 If Math.Round(CDec(TextBox2.Text), 0) <> CDec(TextBox2.Text) Then
 TextBox2.Text = Math.Round(CDec(TextBox2.Text), 0).ToString
 bol1 = True
 End If

 If bol1 = True Then
 MsgBox(“Truncated any values after decimal points to “ & _
 “provide whole number inputs.”)
 End If

 ’Compute product and save it along with base message.
 ’for summarizing the result
 byte3 = ByteProduct(byte1, byte2)

 ’Show product or “too large” message in TextBox3.
 If bolByteOverflow = False Then
 TextBox3.Text = byte3.ToString
 Else
 TextBox3.Text = “value too large"
 bolByteOverflow = False
 End If

End Sub

Function ByteProduct(ByVal byte1 As Byte, _
 ByVal byte2 As Byte) As Byte

#Const ThrowCustomException = False

 ’Test for specific error or any other error.
 ’Conditionally Throw custom test error.
 Try
 ’Conditionally throw custom exception.
#If ThrowCustomException = True Then
 Throw New Exception(“Custom error for testing.”)
#End If

 Return (byte1 * byte2)
 Catch er As System.OverflowException
 bolByteOverflow = True
 Catch er As Exception
 MsgBox(er.Message)
 Application.Exit()
 End Try
End Function

Not ice that the ByteProduct funct ion includes som e com pilat ion direct ives that
can force the funct ion procedure to raise a custom except ion each t im e it opens.
The default set t ing for t he ThrowCustom Except ion com piler constant is False. I f
you change the value of this constant t o True and recom pile the applicat ion, you
will raise an except ion on each pass through the ByteProduct funct ion. Because
this except ion doesn’t have the nam e System .OverflowExcept ion , t he second
Catch clause in the ByteProduct funct ion catches it . The code block for t his
second Catch clause prints the Message declared for t he except ion when the
procedure raised it w it h the first line inside the Try clause. Then the applicat ion
closes. (You can, of course, do anything else Visual Basic perm its you to
program .)

Best Pract ices for Except ion Handling

Many developers prefer to elim inate run-t im e errors before they happen. Others
prefer to let run- t im e errors happen that they can fix with a lit t le data validat ion
or som e other m inor bit of program m ing. I believe that any real-wor ld solut ions
are likely to have lots of opportunit ies for run- t im e errors no m at ter how heroic
the efforts of a program m ing team to elim inate them .
When it is highly likely t hat users will respond inappropr iately to a form , it m akes
sense to program a solut ion in your regular program m ing logic. The sam e
considerat ions apply t o hardware-based external factors, such as f iles not being
in a folder or database servers not being available for a connect ion. However,
there are m any external factors that can negat ively im pact your program . Som e
of t hese have a low probabilit y of occurrence. For t hese rare cases, it is probably
not worth t he program m ing effort t o develop detailed solut ions in your standard
program logic. Rout ine except ion handling m akes great sense for these cases.
I also want to point out that except ion handling is an integral part of Visual Basic
.NET. This m eans that your program m ing team s will gradually achieve high levels
of proficiency with t he approach. Therefore, placing your code in Try , Catch, and
Finally blocks will im prove it s clarit y to others who know the program m ing
paradigm as opposed to som e ad hoc program m ing solut ion one of your
program m ing team m em bers concocts.
Although the On Error GoTo statem ent is fam iliar from ear lier versions of Visual
Basic and st ill available in Visual Basic .NET, I recom m end that you m igrate away
from it in your new applicat ion developm ent efforts. The GoTo statem ent leads to
unst ructured (“spaghet t i”) code. This code design style is widely recognized to be
diff icult t o debug and m aintain. I n addit ion, you can have only one act ive On
Error GoTo statem ent at a t im e. You can nest m ult iple Try…Catch…Finally
statem ents within one another.
Finally, I leave you with two part ing recom m endat ions. First , replace the built - in
error m essages with custom ones that m axim ize the am ount of contextual help
your applicat ions get . Second, t ry to f ix problem s rather t han j ust let a user know
that a problem exists. For exam ple, if your applicat ion cannot connect t o a
database server, at tem pt to connect to a backup database server when one is
available.

Chapter 1 0 . Program m ing W indow s
Solut ions w ith ADO.NET
Chapter 1 int roduces you to ADO.NET conceptually and shows you how to create
a sim ple ADO.NET applicat ion using Visual Studio .NET graphical design tools.
This chapter builds on the ADO.NET int roduct ion in Chapter 1 and the intervening
chapters that enhance your SQL Server and Visual Basic .NET skills. Think of this
chapter as a “how to” guide for solut ions to typical database problem s with
ADO.NET. The focus is on program m ing solut ions for Windows applicat ions.
Chapter 11 delves into creat ing solut ions with ASP.NET, and Chapter 12 puts the
spot light on XML issues as they relate to ADO.NET and SQL Server.
The chapter has f ive m ajor sect ions.

• The chapter begins with a brief overview of ADO.NET design issues. This
sect ion dr ills down into the data set object m odel. This m ater ial w ill help
you to program m at ically coordinate data set objects with SQL Server
database objects.

• Next t he chapter presents program m ing sam ples for m aking a connect ion
to a SQL Server database. This presentat ion also dem onst rates how to
secure access to your SQL Server databases. (See Chapter 7 for m ore on
SQL Server secur ity .)

• Coverage m oves from m aking a connect ion to forward-only, read-only
data access. Several sam ples reveal the flex ibilit y you can achieve with
this form of data access for displaying data. I n addit ion, you learn how to
dynam ically configure the source that a DataReader object contains at run
t im e.

• The next sect ion int roduces how to display data set objects with Windows
Form s. I t covers how to program m at ically bind Windows Form s cont rols—
such as text boxes, com bo boxes, and data gr ids— to data set objects.
You’ ll also learn how to display parent -child data relat ionships so that
users can cont rol t he display of child data by m anipulat ing a cont rol for
the parent data.

• The chapter concludes with a sect ion that dem onst rates how to update,
insert , and delete rows in a SQL Server database from a Windows form .

All t he sam ples throughout t his chapter use the MyADODOTNETSam ples solut ion.
You can open the solut ion file (MyADODOTNETSam ples.sln) in Visual Studio .NET.
This chapter provides specific inst ruct ions for launching each sam ple from the
solut ion. By following the inst ruct ions, you’ll gain fam iliar it y with how to start a
Windows applicat ion from an elem ent within a solut ion other t han Form 1—the
default startup object .

An Overview of ADO.NET Objects

ADO.NET let s you use any of three data providers. These providers can link your
Visual Basic .NET applicat ion to a rem ote data source. As a developer concerned
with solut ions for SQL Server databases, you’ ll be pleased to know that one of the
data providers is exclusively for SQL Server— in part icular, SQL Server 7 and SQL
Server 2000. You can take advantage of t he SQL Server provider t hrough the
System .Data.SqlClient nam espace. You can place an I m ports statem ent at the
top of any m odule needing access to the ADO.NET objects available t hrough the
SQL Server data provider. The syntax for this statem ent is:

Imports System.Data.SqlClient

There are six basic ADO.NET object classes. These classes are the Connect ion
class, the Com m and class, the DataReader class, the DataAdapter class, the
DataSet class, and the DataView class. This sect ion provides a br ief or ientat ion to
each of t hese classes that focuses on selected propert ies and m ethods for each
class that you are likely to f ind useful in your work. Much of t his m ater ial
specifically equips you to understand the sam ples that appear later in t his
chapter.

The Connect ion Class

The Connect ion class enables your applicat ion to read from , and opt ionally writ e
to, a rem ote data source. I nstant iate Connect ion objects with the SQL Server
data provider as a SqlConnect ion object . You can use this object to connect to a
server with eit her Windows NT or SQL Server authent icat ion. The connect ion
st r ing syntax is very sim ilar to t hat for ADO. I n addit ion, you can open and close
connect ions with t he Open and Close m ethods. You can catch except ions dur ing
an at tem pt to connect t o a server and respond appropriately. For exam ple, if you
have a backup server available for data access, you can at tem pt t o connect to the
backup server when the pr im ary server is unavailable. Your applicat ions should
explicit ly close Connect ion obj ects after t here is no longer a need for them .

Note

When used with a SqlCommand object , a SqlConnect ion
object can even perm it a client to adm inister a SQL Server
instance. For example, you can add and remove database
objects, such as logins, user-defined funct ions, and stored
procedures.
The SqlConnect ion object ’s Connect ionSt r ing property lets you get or set the
connect ion st r ing for a Connect ion object . The DataSource property returns the
SQL Server instance to which a SqlConnect ion object links, and the Database
property denotes the specific database on the server to which the Connect ion
obj ect provides access. The Connect ionTim eout property allows you to fine-tune
how long an applicat ion waits for a connect ion from a server before raising an
except ion because the server is unavailable.

The Com m and Class

The Com m and class encapsulates SQL inst ruct ions for a rem ote database server.
These inst ruct ions can be sim ple SELECT statem ents, data m anipulat ion
statem ents, or statem ents that create and m anipulate objects on the database
server. Code your inst ruct ions to a rem ote SQL Server instance with T-SQL. See
Chapters 2 t hrough 6 for exam ples of t he k inds of statem ents t hat you can
encapsulate in a Com m and obj ect . Apply objects based on the Com m and class
with another object based on eit her t he DataReader class or t he DataAdapter
class.
I nstant iate a SqlCom m and obj ect to represent a Com m and object with the SQL
Server data provider. Three especially cr it ical SqlCom m and propert ies are
Com m andText , Com m andType, and Param eters. The Com m andText property
holds a T-SQL statem ent , a stored procedure nam e, or a table nam e. By default ,
ADO.NET interprets the Com m andText propert y as a T-SQL st r ing. The
Com m andType propert y set t ings are Text , StoredProcedure, and TableDirect .
Text is t he default set t ing. Use a StoredProcedure set t ing for Com m andType

when the Com m andText propert y designates a stored procedure. When you are
select ing all the rows and colum ns from one or m ore tables, the TableDirect
property set t ing is especially useful. With t he TableDirect property set t ing, you
can nam e one or m ore tables in t he Com m andText property. Delim it m ult iple
table nam es from one another with a com m a.
The Param eters propert y for a SqlCom m and obj ect returns the Param eters
collect ion. Use param eters to dynam ically set argum ents for stored procedures,
other database object s, and even T-SQL st r ings at run t im e. Param eters are
especially useful when you’re perform ing database m anipulat ion tasks, such as
m odify ing records, insert ing new records, and delet ing rows from a SQL Server
data source. I n t his context , you add the param eters to a Com m and property of a
DataAdapter obj ect . You can also use the Param eters collect ion to ret r ieve output
param eters and return values from stored procedures.

Note

When work ing with the SQL Server data provider, you must
designate parameters by name instead of using a quest ion
mark place marker as you can with the OLE DB .NET data
provider.
Several m ethods facilitate the abilit y of a Com m and object to im plem ent a T-SQL
statem ent in it s Com m andText property. Use the ExecuteReader m ethod to
populate a DataReader object based on a SELECT statem ent . The Execute-
NonQuery m ethod signals that a T-SQL statem ent doesn’t return values. This
m ethod is part icularly appropr iate for T-SQL statem ents that create and
m anipulate objects, such as those that add logins or m anipulate perm issions. The
ExecuteScalar m ethod returns a single value, instead of a set of rows, from a T-
SQL statem ent . The value corresponds to t he f irst colum n value in the first row of
the result set from the T-SQL statem ent on the server.

The DataReader Class

The DataReader class enables read-only, forward-only access to a rem ote data
source. Objects based on this class m aintain an open connect ion with t he rem ote
data source. DataReader obj ects let clients read data, but they don’t provide
edit ing capabilit y or bidirect ional navigat ional features. Objects based on the
DataReader class are especially well suit ed when client perform ance t im es are
m ore cr it ical t han scalabilit y issues. This is because each DataReader object
requires it s own exclusive database Connect ion obj ect . When the num ber of
act ive DataReader obj ects from clients exceeds the num ber of connect ions
available from a server, clients m ust wait for another DataReader object to
release a connect ion (or return at a t im e when there is less dem and for
connect ions) .
I nstant iate DataReader objects as instances of t he SqlDataReader class for the
SQL Server data provider. You populate SqlDataReader objects by invoking the
ExecuteReader m ethod for a SqlCom m and obj ect that returns a rowset . You can
free the connect ion associated with a DataReader object by invoking the Close
m ethod for eit her t he Connect ion or DataReader obj ect . Alt hough the
RecordsAffected propert y reports the num ber of records that a DataReader
selects, this property returns accurate results only after you close the Data-
Reader . I f a query fails to return rows, t he FieldCount property of a DataReader
will equal 0.
I m m ediately aft er a DataReader is populated, it s posit ion is just pr ior t o the first
row. You can access the first row by invoking the Read m ethod. Repeatedly
invoking the Read m ethod allows an applicat ion to pass through successive rows

in the result set for a DataReader . A return value of False from the Read m ethod
indicates that no m ore rows rem ain in a result set . Ret r ieve the colum n values
within a row with any of a ser ies of Get m ethods, such as Get I nt32, GetSt ring, or
GetSqlDateTim e. The m ethods allow you to represent colum n values with data
type form ats. Get m ethods with SQL in t heir nam es, such as GetSqlDateTim e,
return SQL Server data type values, such as those discussed in Chapter 2. Get
m ethods without SQL in their nam es return values in .NET Fram ework value
types, such as those discussed in Chapter 9. Reference indiv idual colum n values
within a row by ordinal num ber. For exam ple, drd1.GetString(0) returns the
first colum n value as a st r ing for t he current row in t he drd1 DataReader .

The DataAdapter Class

The DataAdapter class serves as a bridge for connect ing a SQL Server data
source to a DataSet class instance. You can use a DataAdapter object to init ially
populate a data set , and you can also use a DataAdapter obj ect to synchronize a
local data set with m atching data in a SQL Server instance. The DataAdapter
class is fundam ental t o ADO.NET, and it is a m ajor design feature enabling the
high scalabilit y of ADO.NET applicat ions. The DataSet class, together with it s
hierarchically dependent objects, represents a disconnected data source.
Therefore, the DataAdapter class doesn’t require a constant connect ion to a
rem ote data source. DataAdapter obj ects can link t o SQL Server data sources
only when necessary, freeing the server in intervening per iods to serv ice other
clients.
I nstant iate DataAdapter objects with t he SQL Server data provider as instances of
the SqlDataAdapter class. You m ust use a SqlDataAdapter object in concert with
a SqlConnect ion obj ect . The SqlConnect ion obj ect that a SqlDataAdapter obj ect
references is the conduit the DataAdapter obj ect uses to link a local data source,
represented by a DataSet obj ect , to a rem ote data source on a server. You can
instant iate a SqlDataAdapter object with an em bedded T-SQL statem ent or with a
reference to a SqlCom m and object . The T-SQL statem ent , whether it is
em bedded or available in a SqlCom m and obj ect , determ ines which rem ote
database objects get tapped to populate a local data set .
Use the SqlDataAdapter Fill m ethod to populate a local data set . Before you can
invoke the m ethod, the SqlDataAdapter m ust have an open connect ion to a
rem ote data source. After init ially invoking the Fill m ethod, your applicat ion can
close the connect ion and work with t he local data set version.
The SqlDataAdapter class facilitates data m anipulat ion for SQL Server objects
through its Update m ethod and it s related UpdateCom m and, I nsertCom m and,
and DeleteCom m and propert ies. By specify ing these three propert ies, you can
designate data m anipulat ion inst ruct ions, such as T-SQL syntax for an update, an
insert , or a delete task. You can specify the T-SQL propert y direct ly as part of the
property specificat ion or indirect ly by referencing a stored procedure. I n either
case, you will m ap colum ns in t he local data set to colum ns in a rem ote data
source by adding param eters to the com m ands designated by the
UpdateCom m and, I nsertCom m and, and DeleteCom m and DataAdapter propert ies.
I nvoke the Update m ethod to t ransfer changes to a rem ote data source from a
local data set . The Update m ethod— in concert wit h t he Com m and obj ects
UpdateCom m and, I nsertCom m and, and DeleteCom m and—acco-m m odates
update, insert , and delete data m anipulat ion tasks.
The SqlDataAdapter obj ect supports opt im ist ic concurrency between the rem ote
data source and the local data set . This follows from the disconnected status of
the local data set from the rem ote data source. I n fact , ADO.NET doesn’t enable
pessim ist ic concurrency. Keyset cursors and connected recordsets aren’t a part of
ADO.NET as they are of ADO. While opt im ist ic concurrency helps to enhance
scalabilit y, it requires an ext ra m easure of care to m atch the changes in a local

data set back to t he rem ote server. For exam ple, at t em pt ing to update a row in a
rem ote data source from a local data set t hat changed since you last populated
the data set raises an opt im ist ic concurrency v iolat ion. This v iolat ion raises an
except ion.

Note

Opt im ist ic and pessim ist ic concurrency are two contrast ing
ways of m anaging data manipulat ion in a mult iuser
environment. With pessim ist ic concurrency, a lock applies to
a row as soon as a user signals the start of a data
manipulat ion task for a row. This lock doesn’t release unt il
the complet ion of the task. With opt im ist ic concurrency, no
locks go on a row after the star t of a data manipulat ion task.
Therefore, another user can change data before the current
user commits a change. I f the data does change before the
commitment of a change by the current user, the database
server raises a concurrency v iolat ion when the current user
at tempts to comm it the change. Opt im ist ic concurrency
scales bet ter than pessim ist ic concurrency. Therefore,
opt im ist ic concurrency is more suitable for mult iuser
applicat ions— part icular ly if t he applicat ions serve many
users.
ADO.NET provides two techniques for handling except ions result ing from
opt im ist ic concurrency v iolat ions. First , you can create an event procedure for t he
RowUpdated event . ADO.NET raises this event after each at tem pt t o change a
rem ote data source based on a m odified row from a local data set . With a
RowUpdated event procedure, you can process except ions as they occur for each
row. Second, you can set the Cont inueUpdateOnError property of the
SqlDataAdapter object t o True before invoking the Update m ethod. This causes
ADO.NET to com plete all valid updates and wr it e any error m essages to the local
data set so that you can respond to t hem after t he Update m ethod term inates.

The DataSet Class

The DataSet is a m em ory- resident object that can contain one or m ore tables and
relat ionships between tables. This m em ory- resident object and it s child objects
m ake up the disconnected data source that is t he centerpiece of the ADO.NET
architecture. Figure 10-1 presents an overview of t he DataSet object m odel. The
balance of t his sect ion describes selected com ponents within t hat m odel.

Figure 1 0 - 1 . The DataSet object m odel.

ADO.NET refers to each indiv idual table within a data set as a DataTable object .
The collect ion of all tables within a data set is the DataTableCollect ion class. The
tables within a data set can relate hierarchically to one another. This m akes it
possible for you to represent the schem a for t he tables in the Northwind database
within a data set . The Recordset object from classic ADO doesn’t direct ly
represent hierarchical relat ionships. I nstead, classic ADO flat tens the
relat ionships between tables into a single rowset .
DataTable obj ects consist of DataColum n and DataRow objects. The set of data
colum ns within a DataTable obj ect is the DataColum nCollect ion object . The
DataColum nCollect ion class defines the schem a for a DataTable obj ect . For
exam ple, t he indiv idual DataColum n obj ects specify a data type that each colum n
can contain. DataTable objects can have a Prim aryKey property. You can define
this propert y with a DataColum n array that can contain one or m ore DataColum n
obj ects. The DataRowCollect ion class represents all rows within a DataTable.
Colum n values for a local table reside within the DataRow obj ects that m ake up
the DataRowCollect ion object for a DataTable object . I nvoke the NewRow m ethod
for a DataTable to create a new row. You can then assign colum n values to the

row and add the new DataRow obj ect to the DataRowCollect ion object for a
DataTable obj ect .
ADO.NET specifies the relat ionship between tables in a data set with a
DataRelat ion obj ect . The set of all DataRelat ion objects within a data set is a
DataRelat ionCollect ion object . Addit ionally, you can specify const raints for tables
with t he Const raint class. With a Const raint obj ect , you can specify unique or
foreign key const raints. A DataRelat ion obj ect between two tables denotes a
parent -child relat ionship between the tables. When you create a DataRelat ion
obj ect between two tables, ADO.NET autom at ically creates a foreign key
const raint in the child table and a unique const raint on the pr im ary key in the
parent table. A DataRelat ionCollect ion class for a DataSet obj ect contains each of
the DataRelat ion objects in a data set . You can access DataRelat ion object
m em bers through the ChildRelat ions and ParentRelat ions propert ies of indiv idual
DataTable obj ects.
There are two techniques for elim inat ing a DataRow object from the
DataRowCollect ion of a DataTable obj ect . The first of t hese techniques is the
Delete m ethod, which applies to indiv idual DataRow objects within a DataTable.
This technique assigns Deleted to t he RowState property for a DataRow , but it
doesn’t actually rem ove the row from the local t able. (Your applicat ion can
restore a deleted row with the RejectChanges m ethod for a DataRow object .)
Alternat ively, you can com m it the applicat ion of a Delete m ethod to a row so that
it isn’t recoverable by invoking the AcceptChanges m ethod for t he row.
The second technique for elim inat ing a row from a local table is to invoke the
Rem ove m ethod for t he DataRowCollect ion obj ect within a DataTable obj ect . This
m ethod requires that you specify t he index for t he row that you want t o
elim inate. I ndex values start wit h 0 and progress by 1 for each DataRow obj ect
within a DataTable unt il 1 m inus the count of rows within the DataTable. This
second technique doesn’t allow you to restore a row.

Note

Use the Delete method when you plan to invoke the Update
method to synchronize local changes with a remote data
source. The Update method will apply the AcceptChanges
method to the row after synchronizat ion with the remote
data source. Elim inat ing a row with the Remove method will
raise an error based on a concurrency v iolat ion between the
data set and the remote data source when you invoke the
Update method.

The DataView Class

A DataView object is to a DataTable as a v iew is to a table in SQL Server. You
base a DataView object on a single DataTable obj ect . The DataView obj ect for a
table supports f ilt er ing, sort ing, and enhanced searching capabilit ies not direct ly
available from DataTable objects. Any given DataTable obj ect can have m ult iple
DataView objects specified for it w ith different property set t ings for f iltering and
sort ing. You can filter t he rows for a DataView w ith eit her t he RowFilter or
RowStateFilter property. RowFilter property set t ings have the sam e form as a
WHERE clause for a single colum n in a table. Enclose RowFilt er expressions in
double quotat ion m arks. I f the expression contains a st r ing constant , enclose the
constant in single quotat ion m arks. The RowStateFilt er property allows you to
filt er t he rows in a DataTable obj ect by the DataViewRowState propert y set t ing
for each row in a table. By filter ing on this property, you can detect rows

elim inated with the Delete property as well as inserted rows and rows with
m odified values.
The Sort property for a DataView object denotes a sort order for t he rows of a
DataView object . You designate the Sort property as a ser ies of colum n nam es
that are com m a delim ited if you specify m ore than one colum n for sort ing a
DataView object . By default , ADO.NET sorts in ascending order. However, you
can explicit ly specify an ascending sort order by following a colum n nam e with
ASC. Follow a colum n nam e with DESC to designate a descending sort order for a
colum n. The DataView object sorts it s rows in t he order of the colum ns listed for
it s Sort property.
Although you can return a single row or a subset of rows with t he RowFilter
property, doing so isn’t an efficient use of it . I n general, you should t ry to set t he
RowFilt er property j ust once to save on the cost of indexing a DataView object . I f
you need to find a single row or a subset of rows, invoke either the Find or
FindRows m ethod. For either of t hese m ethods to work, you m ust f irst assign a
Sort propert y set t ing for the cr iter ia t hat you use to find rows. The FindRows
m ethod returns an array of DataRowView objects. The Find m ethod returns the
row index for a row m atching the Find argum ent . You can then use the row index
value to display a row from the DataView or it s underly ing DataTable.

Making Connect ions

Making a connect ion is som et im es thought of as a m undane task, but it ’s at the
core of projects that process data from a rem ote database server. When you’re
building SQL Server solut ions, your applicat ions will near ly always start wit h t he
m aking of a connect ion to a SQL Server instance. This sect ion illust rates the
syntax for m aking connect ions to a SQL Server instance based on eit her a
Windows login or a SQL Server login. I t also shows you how to t rap errors that
can ar ise as you at tem pt to open a connect ion. Finally, t he sect ion concludes with
a Windows Form s sam ple that lets users pick the style of login they want for their
connect ion at tem pt as well as the database to which they want t o connect .

Logging I n w ith I ntegrated Security

The sam ple in t his sect ion shows the syntax for logging in t o t he Northwind
database with Windows NT security. The syntax for the connect ion st r ing refers to
the designat ion of Windows NT secur ity as I ntegrated Securit y. Recall from
Chapter 7 that t his type of login relies on the Windows login account for access to
a database on a SQL Server instance. The sam ple m akes a connect ion to the
Northwind database, which is a SQL Server sam ple database that is installed with
a guest user account . Therefore, anyone who can log in to a SQL Server instance
can connect to the database.
The sam ple runs from Module1 w it hin the MyADODOTNETSam ples solut ion. After
opening the solut ion in Visual Studio .NET, r ight -click the solut ion’s nam e in
Solut ion Explorer and choose Propert ies from the context m enu. Select Module1
as the startup object . Then double-click Module1 in Solut ion Explorer t o open it in
the Code Editor with the tab label Module1.vb. Finally, rem ove the com m ent
m arker (') from IntegratedCnnToNorthwind() in the m ain sub procedure at t he
top of the m odule, and m ake sure all other procedure calls in t he m ain procedure
have com m ent m arkers in front of them . You can launch the procedure to run it s
lines in one step by pressing the F5 key. Step through the procedure one line at a
t im e by pressing F8 once for each successive line. These steps actually start the
m ain procedure. Then cont inue pressing F8 for each step through the m ain and

I ntegratedCnnToNorthwind procedures. I oft en use F8 to help debug procedures
or even j ust to clar ify t he flow of cont rol t hrough a procedure.

Note

Not ice the I mports statement at the top of Module1 that
references the System.Data.SqlClient namespace. This is
necessary for the abbreviated style used by the sample to
refer to the SqlConnect ion class. The sample in the
“Connect ing from a Windows Form ” sect ion later in this
chapter illust rates another convent ion for referencing the
SqlConnect ion class that doesn’t require the I m ports
statement .
The sam ple code for t he I ntegratedCnnToNorthwind procedure appears next . I t
begins with a declarat ion for cnn1 as a SqlConnect ion class instance. The
statem ent both declares and instant iates the cnn1 object reference in a single
statem ent . The New keyword instant iates a SqlConnect ion obj ect . The argum ent
for the Connect ion obj ect specifies the connect ion st ring for t he current Windows
user to connect to the Northwind database on the local default instance of SQL
Server on the current com puter. When referr ing to t he local default instance, you
can designate the Data Source as either “(local) ” or “ localhost ”. You can also
designate a server’s nam e instead of t he local one. For exam ple, you could enter
cab2000 as the argum ent for Data Source if you could physically connect to a
SQL Server instance nam ed cab2000. The server need not have the .NET
Fram ework installed— just the workstat ion running your .NET applicat ion. The
I nit ial Catalog elem ent of t he Connect ionSt r ing argum ent specifies the database
to which you want to open a connect ion. By set t ing the I ntegrated Securit y
elem ent of t he Connect ionSt r ing argum ent t o SSPI , you can designate a
connect ion based on the current Windows account .
After declar ing and instant iat ing cnn1 , the sam ple invokes the Open m ethod for
the SqlConnect ion object . Provided the Northwind database is available on the
local SQL Server instance and the current local user has perm ission to access the
Northwind database, the Open m ethod succeeds. I f you are the adm inist rator of
the local server and you perform ed a standard installat ion of a regular SQL Server
edit ion, t he Open m ethod will work. After m aking the connect ion, the sam ple
echoes the connect ion st r ing. The syntax for returning the connect ion st r ing
either to t he Debug window in Visual Studio .NET or to a m essage box is in t he
sam ple. (The m essage box way is com m ented out .) Before term inat ing, the
sam ple closes the cnn1 SqlConnect ion obj ect . You should always explicit ly close
SqlConnect ion objects in your applicat ions when you no longer need them .

Note

MSDE 2000 (Microsoft SQL Server 2000 Desktop Engine)
doesn’t ship with the Northwind database. Therefore, when
using this database server, you m ust use another database
on the MSDE 2000 server instance or create a Northwind
database with appropr iate objects within it .
Sub IntegratedCnnToNorthwind()
 ’Specify connection string for connection via user’s
 ’Windows login; make sure user’s Windows login has access
 ’to the Northwind database or the Northwind database has
 ’a guest user account.
 Dim cnn1 As SqlConnection = _

 New SqlConnection(“Data Source=(local);” & _
 “Initial Catalog=northwind;Integrated Security=SSPI”)

 ’Attempt to open Northwind database with user’s Windows login.
 cnn1.Open()

 ’Echo connection string to either Debug window
 ’or a message box.
 Debug.WriteLine(cnn1.ConnectionString)
 ’MsgBox(cnn1.ConnectionString)

 ’Close connection object to dispose of it.
 cnn1.Close()

End Sub

Logging I n w ith SQL Server Security

Although Windows NT secur ity is the preferred way to connect to a SQL Server
database, there are t im es when SQL Server secur ity is necessary or convenient .
I n any event , your applicat ions frequent ly need to accom m odate users who
connect to your applicat ion with a SQL Server login. This sect ion presents a
sam ple that illust rates the syntax for creat ing a Connect ion object based on a
SQL Server login.
Before reviewing the code for the procedure that illust rates the Connect ionSt r ing
syntax for a SQL Server login, you need to m ake sure that a SQL Server login is
available. I f you have one available, feel free to replace our sam ple login.
However, t he following T-SQL script builds on the ear lier work conducted in
Chapter 7. I t begins by dropping the vbdotnet1 SQL Server login. This is a two-
step process. First you m ust drop user accounts associated with t he login, and
then you can drop the account . After dropping the account , t he script re-creates
it . However, the new version explicit ly grants the vbdotnet1 login access to the
Northwind database. By running this script in Query Analyzer, you ensure the
availabilit y of vbdotnet1 as a valid SQL Server login for t he Northwind database
with passvbdotnet1 as a password.
--vbdotnet1LoginScripts.sql
--Drop vbdotnet1 login, if it exists.
--Ignore message that login doesn’t exist
--or user doesn’t exist in current database.

USE Chapter07
EXEC sp_revokedbaccess ’vbdotnet1’
EXEC sp_droplogin ’vbdotnet1’

--Add vbdotnet1 login with database access
--for the Northwind database.
USE Northwind
EXEC sp_addlogin
 @loginame = ’vbdotnet1’,
 @passwd = ’passvbdotnet1’,
 @defdb = ’Northwind’
EXEC sp_grantdbaccess ’vbdotnet1’

The connect ion sam ple for t his sect ion runs from the SqlServerCnnToNorthwind
procedure in Module1 of the MyADODOTNETSam ples solut ion. I n the m ain
procedure for Module1 , com m ent out all procedure calls except t he one for t he
SqlServerCnnToNorthwind procedure. Make sure that Module1 is the startup

object for t he solut ion (as described in t he preceding sect ion). Then press F5 to
run the sam ple.
The SqlServerCnnToNorthwind procedure has the sam e general form at as the one
in the preceding sect ion. The m ost im portant dist inct ion between the two
procedures is the syntax for t he Connect ionSt ring argum ent . The
Connect ionSt r ing argum ent for t his sam ple replaces the I ntegrated Secur ity
elem ent from the preceding sam ple with user id and password elem ents. When
connect ing with a SQL Server login, you m ust specify a login nam e and a
password if there is one. I t ’s com m on pract ice to refer to the login as a user id.
The following sam ple uses the vbdotnet1 login and password created by the
preceding T-SQL scr ipt . After you run the procedure in t he following sam ple, t he
Debug window will display a line that echoes the Connect ionSt r ing argum ent .
Sub SQLServerCnnToNorthwind()
 ’Specify connection string for connection via vbdotnet1
 ’SQL Server login; make sure vbdotnet1 login has access
 ’to the Northwind database via its own account or guest account.
 Dim str1 As String = “Data Source=(local);” & _
 “Initial Catalog=northwind;” & _
 “user id = vbdotnet1; password=passvbdotnet1"
 Dim cnn1 As SqlConnection = _
 New SqlConnection(str1)

 ’Attempt to open Northwind database with vbdotnet1 login.
 cnn1.Open()

 ’Echo connection string.
 Debug.WriteLine(cnn1.ConnectionString)

 ’Close connection object to dispose of it.
 cnn1.Close()

End Sub

Catching SqlConnect ion Except ions

When you’re perform ing database work, there are lots of opportunit ies for run-
t im e errors. You can catch the except ions associated with these errors and
respond appropr iately (even if only to convey the except ion m essage to the user
and avoid an abnorm al end of your applicat ion) . One way to generate a run-t im e
error with t he preceding sam ple is t o drop the login for vbdotnet1. The following
T-SQL scr ipt perform s this act ion. The script also rem oves the guest user account
from the Northwind database. Therefore, a user with login r ights to a SQL Server
instance but no special data access perm ission to the Northwind database will not
be able t o connect to the Northwind database.
--Remove access to Northwind database by
--vbdotnet1 through own or guest account,
--then drop vbdotnet1 login.
EXEC sp_revokedbaccess ’vbdotnet1’
EXEC sp_revokedbaccess guest
EXEC sp_droplogin @loginame = ’vbdotnet1’

After you run the preceding T-SQL script , the SqlServerCnnToNorthwind
procedure that ran successfully in the preceding sect ion will fail. I n fact , it ends
abnorm ally with an except ion dialog like the one in Figure 10-2. I nterest ingly, the
addit ional inform at ion in t he dialog about the except ion is singular ly
uninform at ive— “System error .” Choose Cont inue on the dialog to recover from
the except ion.

Figure 1 0 -2 . Default except ion dialog from at tem pt to connect to the
Northw ind database w ith an invalid SQL Server login.

There is a single SqlClient except ion for all t he run- t im e errors that could happen.
Happily, t his except ion autom at ically returns dist inct m essages for different k inds
of errors. The CatchSQLClientExcept ion procedure shows an adaptat ion of t he
SQLServerCnnToNorthwind procedure. The adaptat ion is to place the Open and
Close m ethods from the SQLServerCnnToNorthwind procedure in t he Try clause
of a Try…Catch…Finally statem ent ; t he sam ple om its the opt ional Finally clause.
The Catch clause dem onst rates the syntax for explicit ly referencing the SqlClient
except ion and pr int ing the associated m essage.
Sub CatchSQLClientException()
 ’Specify connection string for connection via vbdotnet1
 ’SQL Server login; make sure vbdotnet1 login doesn’t have
 ’access to the Northwind database if you want to test
 ’Try...Catch...Finally statement.
 Dim str1 As String = “Data Source=(local);” & _
 “Initial Catalog=northwind;” & _
 “user id = vbdotnet1; password=passvbdotnet1"
 Dim cnn1 As SqlConnection = _
 New SqlConnection(str1)
 ’Start looking for exceptions.
 Try
 ’Attempt to open Northwind database with vbdotnet1 login.
 cnn1.Open()

 ’Echo connection string.
 Debug.WriteLine(cnn1.ConnectionString)

 ’Close connection object to dispose of it.
 cnn1.Close()

 ’Print default error message because it is
 ’so short and informative.
 Catch er As System.Data.SqlClient.SqlException
 MsgBox(er.Message)
 End Try

End Sub

The CatchSQLClientExcept ion procedure resides in Module1 . You can run it like
the preceding sam ples. Nam ely, com m ent out t he calls to other procedures and
rem ove the com m ent m arker for t he CatchSQLClientExcept ion procedure in the
m ain procedure within Module1. Then press F5. Figure 10-3 shows the result ing
error m essage— an except ion for an invalid vbdotnet1 login. Cont rast this error
m essage with t he one that appears in Figure 10-2. Not ice how m uch m ore
inform at ive the second m essage is com pared with the first one. I t pays to t rap

the SqlClient except ion! I n addit ion, if your server were down, t he sam e
CatchSQLClientExcept ion procedure would detect it and display a m essage that
indicates this. There is no need to tweak the code. The procedure autom at ically
t raps the error and displays an appropriate m essage. By the way, t he m essage
for an unavailable server is, “SQL Server does not exist or access denied.”

Figure 1 0 -3 . SqlClient except ion dialog from at tem pt to connect to the
Northw ind database w ith an invalid SQL Server login.

Connect ing from a W indow s Form

Now that you have experience m aking a connect ion to a SQL Server database
with t he approaches described in t he preceding three sect ions, you’re probably
wonder ing how to integrate these approaches with a Windows form . With a form ,
users can nam e the database to which they want to connect and select either a
Windows NT account or a SQL Server account for m aking the connect ion. Because
it is so easy to do, t he form should be sm art enough to include cont rols for a
user id and password only when the user chooses to use a SQL Server account for
m aking a connect ion to a SQL Server instance.
The sam ple for t his sect ion is available as Form 3 in t he MyADODOTNETSam ples
solut ion. I n Solut ion Explorer, r ight -click the solut ion’s nam e and choose
Propert ies. From the Startup Object drop-down list , select Form 3 and click OK.
Then double-click Form 3.vb in Solut ion Explorer. This opens Form 3 in Design
view. You can start t he applicat ion by pressing F5.
Figure 10-4 shows the sam ple’s Windows form instance in Design v iew and at run
t im e in eit her of two different configurat ions. The Design v iew appears on the left .
I t shows Form 3 wit h t hree text boxes, each with m atching label cont rols. The top
text box is for t he database nam e, and the next two text boxes are for t he user id
and password when a user decides to m ake a connect ion with a SQL Server login.
I assigned * to the PasswordChar property for the bot tom text box so that
asterisks would m ask characters typed in t he box. The two radio but tons on the
lower left port ion of Form 3 allow users to specify whether t hey want to m ake a
connect ion based on their Windows login account or use a SQL Server login
account t o m ake the connect ion. Finally, t he Click event procedure of the Login
but ton (But ton1) m akes a connect ion to a SQL Server instance according to what
the user specif ies in the form ’s other cont rols.
The top r ight form in Figure 10-4 shows Form 3 when it init ially opens. Not ice that
the default set t ing is for m aking a connect ion with a Windows login. The Checked
property of the Windows NT radio but ton is set to True, and just one text box
appears with the Login but ton below. All a user has to do is type the database
nam e in the sole t ext box on the form . I f t he login at tem pt succeeds, the sam ple
displays a m essage confirm ing that t he connect ion was m ade. A failed at tem pt
m ight result because the Windows login account isn’t valid for the SQL Server
instance. For exam ple, perhaps there is no corresponding SQL Server login for
the Windows login. Alt ernat ively, the Windows login m ight not have perm ission to
access the database nam ed in the top text box. I n any event , the applicat ion
returns the SqlClient except ion m essage associated with the error t hat blocked
the connect ion from succeeding.

Figure 1 0 - 4 . Design view and run- t im e view s of a form that accepts user
input and m akes a connect ion to a SQL Server database based on either a

W indow s login or a SQL Server login.

The bot tom r ight of Figure 10-4 shows Form 3 ready to accept SQL Server login
credent ials, including a SQL Server login and its password. A user can display the
text boxes for the login and password by click ing the SQL Server radio but ton
(RadioBut ton2) . After t he user clicks the Login but ton, t he applicat ion at tem pts to
m ake the connect ion to the database nam ed in the top text box with t he
credent ials specified in the second two text boxes.
Right -click ing Form 3 in Design v iew and choosing View Code opens the m odule
behind Form 3 . This m odule handles both form m anagem ent issues, such as
cont rolling the v isibilit y of t he second and third text boxes, and ADO.NET issues,
such as handling the at tem pt to connect to a database.
Three event procedures and a regular sub procedure (ShowLabelsBoxes) cont rol
the form ’s appearance. Users can invoke these procedures by running Form 3 or
by clicking cont rols on Form 3 . For exam ple, t he Form 3_Load event procedure
checks RadioBut ton1 , t he one labeled Windows NT, and calls the
ShowLabelsBoxes procedure while passing it a value of False. This argum ent
causes the procedure to m ake the second two text boxes and their corresponding
labels invisible. This appearance for t he form is consistent with the default
Windows login offered by Form 3 .
Click ing the SQL Server radio but ton invokes the RadioBut ton2_CheckedChanged
event procedure. This procedure m akes the second and third text boxes and their

labels v isible by passing the argum ent True t o ShowLabelsBoxes. As a result , a
user can enter a SQL Server login and password so that t he form can at tem pt to
m ake a connect ion based on a SQL Server instead of a Windows login.
Finally, by click ing the Windows NT radio but ton, t he user invokes the
RadioBut ton1_CheckedChanged event procedure. This procedure m akes the
cont rols for SQL Server login credent ials invisible if t hey are showing. When the
user clicks this RadioBut ton1 , it indicates he or she wants to m ake a connect ion
with a Windows login. Therefore, Form 3 doesn ’ t need to show the cont rols for a
SQL Server login.
Private Sub Form3_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Set RadioButton1 to Checked for connection via
 ’Windows NT login.
 RadioButton1.Checked = True

 ’Hide login and password controls because they
 ’aren’t necessary with Windows NT login.
 ShowLabelsBoxes(False)

End Sub

Private Sub RadioButton1_CheckedChanged _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles RadioButton1.CheckedChanged

 ’Hide login and password controls because they
 ’aren’t necessary with Windows NT login.
 ShowLabelsBoxes(False)

End Sub

Private Sub RadioButton2_CheckedChanged _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles RadioButton2.CheckedChanged

 ’Show login and password controls because they
 ’are necessary for a SQL Server login.
 ShowLabelsBoxes(True)

End Sub

Sub ShowLabelsBoxes(ByVal bolShowEm As Boolean)

 ’Set the visibility of the second and third text
 ’boxes and their labels according to the value
 ’of bolShowEm.
 Label2.Visible = bolShowEm
 TextBox2.Visible = bolShowEm
 Label3.Visible = bolShowEm
 TextBox3.Visible = bolShowEm

End Sub

The following excerpt from the Form 3 m odule shows the code devoted to m aking
the connect ion based on the radio but ton select ion and text box ent r ies. The
excerpt starts with a m odule- level declarat ion of t he cnn1 obj ect reference as a
SqlConnect ion object . A m odule- level declarat ion isn’t st r ict ly necessary in t he

context of this sam ple, but this type of declarat ion m akes the SqlConnect ion
obj ect available t o other procedures that could use it . I n any event , not ice that
the declarat ion specifies the full nam e for t he nam espace containing the
SqlConnect ion object reference. This is because the m odule doesn’t include an
Im ports statem ent for t he System .Data.SqlClient nam espace. By not using the
Im ports statem ent at t he top of the Form 3 m odule, the Catch clause in the
excerpt m ust reference a System except ion instead of the m ore specific SqlClient
except ion. I n spite of this deviat ion from the sam ple in the “Catching
SqlConnect ion Except ions” sect ion, SqlClient except ions st ill percolate up through
the m ore general System except ion specificat ion.
Aside from the declarat ion issues for cnn1, the balance of t he code excerpt is a
st raight forward m ixture of t he code sam ples developed previously in this chapter.
Based on whether RadioBut ton1 is checked, t he But ton1_Click event procedure
com poses a connect ion st r ing for either a Windows or a SQL Server login. Then
the procedure instant iates a connect ion based on the connect ion st r ing. Within a
Try…Catch…Finally statem ent , the procedure at tem pts to open the connect ion. I f
the at tem pt succeeds, t he procedure displays a m essage confirm ing the at tem pt
was successful and nam ing the database. Otherwise, cont rol f lows to t he Catch
clause, and the procedure displays the error m essage associated with t he
except ion. Because SqlClient except ions percolate up through the System
except ion, the m essage is likely t o be specific and helpful for diagnosing any
problem s.
‘Using the full namespace name removes the need to
‘start module with Imports System.Data.SqlClient.
Dim cnn1 As System.Data.SqlClient.SqlConnection

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Make local variable declarations.
 Dim strDBName As String = TextBox1.Text
 Dim strConnect As String

 ’Compose a connection string for either a Windows
 ’or a SQL Server login.
 If RadioButton1.Checked = True Then
 strConnect = “Data Source=(local);” & _
 “Initial Catalog=“ & strDBName & _
 “;Integrated Security=SSPI"
 Else
 Dim strLogin As String = TextBox2.Text
 Dim strPassword As String = TextBox3.Text
 strConnect = “Data Source=(local);” & _
 “Initial Catalog=“ & strDBName & “;” & _
 “user id=“ & strLogin & _
 “; password=“ & strPassword
 End If

 ’Instantiate a SqlConnection object based on the
 ’connection string.
 cnn1 = _
 New System.Data.SqlClient.SqlConnection(strConnect)

 ’Embed the attempt to open the cnn1 object inside a
 ’Try...Catch...Finally statement, and display a
 ’message for the exception if there is one.
 Try
 cnn1.Open()
 MsgBox(“Successfully connected to “ & cnn1.Database & _
 “ database on local server.”)

 Catch er As System.Exception
 MsgBox(er.Message)
 End Try

End Sub

W orking w ith Com m and and DataReader Objects

One of t he m ost com m on uses for Com m and obj ects is to contain t he SQL st r ing
that defines the values contained in a DataReader object . Therefore, t his sect ion
drills down on that use for Com m and objects. I n this sect ion, you learn how to
form at the display of values in a DataReader object as well as how to populate a
DataReader w ith eit her a SQL st r ing or a stored procedure. Beyond these typical
applicat ions for Com m and objects with DataReader objects, the sect ion also
includes a sam ple that dem onst rates how to use the Com m and obj ect for data
def init ion tasks, such as creat ing a user-defined funct ion. The presentat ion of the
topic covers a special m ethod for Com m and obj ects that is appropriate when the
Com m andText propert y for a Com m and object doesn’t return any values.

Displaying Results in a Message Box or the Output W indow

I t ’s easy to put SqlCom m and and SqlDataReader objects t o use for report ing
results from a SQL Server database. Start by connect ing to t he rem ote data
source from which you want t o display results. Next declare a Com m and object as
a SqlCom m and t ype. The Com m and obj ect requires two inputs: a database
connect ion and a source of SQL statem ents to execute. You can link a Com m and
obj ect to a Connect ion object when you instant iate the Com m and object . Specify
a data source for t he Com m and object to return with either a SQL st r ing or a
stored procedure. This capabilit y of com m ands to take SQL statem ents and
stored procedures allows you to draw on all data access topics covered in
Chapters 3 t hrough 5.
DataReader obj ects read the result set returned by Com m and obj ects. Use the
ExecuteReader m ethod on a Com m and object to convey it s result set t o a
DataReader obj ect . After the invocat ion of the ExecuteReader m ethod, you can
ext ract sequent ial rows from a result set with the Read m ethod for the Data-
Reader object . Use one of t he DataReader Get m ethods to ext ract the value for a
specific colum n into a data t ype designated by the Get m ethod. Colum ns are
designated with index num bers of 0 t hrough 1 less than the num ber of colum ns
in a result set .
The Enum erateCategories procedure, which appears next , dem onst rates the
applicat ion of these guidelines for using Com m and and DataReader obj ects. You
can invoke this procedure from Module1 in the MyADODOTNETSam ples solut ion
by adapt ing the inst ruct ions for running other procedures from Module1 . The
procedure enum erates CategoryI D and CategoryNam e values from the Categories
table in the Northwind database. A com piler constant , bolOutputWindow , perm its
you to direct the contents of a DataReader object to either a m essage box or the
Output window in the Visual Studio .NET design environm ent . The default value
for bolOutputWindow directs the DataReader contents to a m essage box.
After assigning a value to the com piler constant , the Enum erateCategories list ing
begins by declaring and instant iat ing cnn1 as a Connect ion object before invoking
the object ’s Open m ethod. Next t he procedure declares cm d1 as a Com m and
obj ect and specifies cnn1 as it s Connect ion property with the CreateCom m and
m ethod for cnn1 . The list ing proceeds to assign a SQL st r ing to t he Com m andText
property for cm d1 . With an ExecuteReader m ethod in a declarat ion for the drd1

DataReader , t he procedure generates a result set for drd1 based on the SQL
st r ing used to define cm d1 .

Note

Throughout this chapter , and elsewhere in the book, I use
generic terms interchangeably when referencing specific
classes in the System.Data.SqlClient namespace. For
example, I use the term DataReader to reference the more
specific class name SqlDataReader . Using the gener ic term
rem inds you that SqlClient classes have parallel classes in
other .NET data providers, namely the OLE DB .NET data
provider and the ODBC .NET data provider.
After the conclusion of t he ExecuteReader m ethod, t he DataReader obj ect is
ready to expose its contents to a Visual Basic .NET applicat ion. The balance of t he
procedure int roduces you to two different st rategies for achieving this. A com piler
I f…Then…Else statem ent based on a com piler constant adds one of two
statem ents to the com piled version of t he procedure. Eit her statem ent returns a
row from the DataReader object , but t hey display the row in different ways.
Although the list ing shows both the Then and Else clauses, the com piled
procedure contains only one or t he other clause based on the com piler constant
value for bolOutputWindow . Before encounter ing the com piler I f…Then…Else
statem ent , t he procedure declares a st r ing constant that can serve as a t it le for
the enum erated values in a m essage box. The constant ends with a StrDup
funct ion that can duplicate a st r ing constant any num ber of t im es. I n t his case,
the funct ion appends two carr iage returns to the end of the text for t he t it le. The
int r insic constant , vbCr , denotes the st r ing equivalent of a carr iage return.
Next t he procedure star ts a Do…While statem ent with t he condit ion drd1.Read()
. This condit ion will return the value True as long as there are rem aining rows in
the DataReader . After t he Read m ethod passes through all the rows from the
drd1 obj ect , the condit ion returns the value False, which causes cont rol to pass to
the first statem ent after the Loop statem ent for the Do…While statem ent . The
com piler I f…Then…Else statem ent com piles one of two possible statem ents
depending on the value of bolOutputWindow . When bolOutputWindow equals it s
default value (False) , the statem ent appends CategoryI D and CategoryNam e
values for t he current row to a st r ing value. The values for each row end with a
carr iage return (vbCr) . I f bolOutputWindow equals True, Visual Basic .NET
com piles a different statem ent t hat sim ply echoes the row values to the Output
window with the WriteLine m ethod for a Console object . Not ice that t he two
com piled statem ents use slight ly different t echniques for captur ing the f irst
colum n value for CategoryI D. Both statem ents use a Get I nt32 m ethod because
the SQL Server data type of int for CategoryID is consistent with t he .NET value
type of I nt32 , a 32-bit signed integer. However, the path for adding the values to
a st r ing for display in a m essage box invokes the ToSt ring m ethod to convert
explicit ly t he I nt32 num ber t o a st r ing. This k ind of conversion is preferred
because it saves the t im e for a run-t im e determ inat ion of how to finally represent
a returned value.
Sub EnumerateCategories()
 ’Compiler constant directing output to Output window
 ’or a message box. Default value is False.
 #Const bolOutputWindow = False

 ’Declare and open connection to Northwind.
 Dim cnn1 As SqlConnection = New _
 SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;Initial Catalog=northwind”)

 cnn1.Open()

 ’Declare a command and assign a SQL string to it.
 Dim cmd1 As SqlCommand = cnn1.CreateCommand()
 cmd1.CommandText = _
 “SELECT CategoryID, CategoryName FROM Categories"

 ’Declare a data reader and copy result set from SQL string
 ’for cmd1 to drd1.
 Dim drd1 As SqlDataReader = cmd1.ExecuteReader()

 ’Loop through data reader and display in Output
 ’window or message box.
 Dim str1 As String = _
 “Summary of CategoryID and Category Names” _
 & StrDup(2, vbCr)
 Do While drd1.Read()
 #If bolOutputWindow = True Then
 Console.WriteLine(“Category “ & drd1.GetInt32(0) & _
 “ is “ & drd1.GetString(1))
 #Else
 str1 = str1 & “Category “ & _
 drd1.GetInt32(0).ToString & _
 “ is “ & drd1.GetString(1) & vbCr
 #End If
 Loop

 ’Conditionally display results in a message box.
 #If bolOutputWindow = False Then
 MsgBox(str1)
 #End If

 ’Close data reader and connection object references.
 drd1.Close()
 cnn1.Close()

End Sub

After cont rol passes from the Do…While statem ent , cont rol can flow opt ionally t o
a MsgBox funct ion statem ent for displaying the st r ing com puted in t he loop. A
com piler I f…Then statem ent inserts the MsgBox funct ion into t he com piled
procedure if bolOutputWindow equals False. Figure 10-5 shows the outcom e from
the procedure when the value of bolOutputWindow is False, and Figure 10-6 is an
excerpt from the Output window generated when bolOutputWindow is True. No
m at ter which path the procedure takes to generate results, it ends by closing the
drd1 and cnn1 obj ect references. You should always perform these tasks when
you no longer need a DataReader object so that SQL Server can m ake the
connect ion available for other requirem ents.

Figure 1 0 -5 . Return for the Enum erateCat egories procedure w hen
bolOutputW indow equals False.

Figure 1 0 - 6 . An excerpt from the return for the Enum erateCat egories
procedure w hen bolOutputW indow equals True.

Displaying Row s in Blocks from a DataReader

The preceding sam ple dem onst rates how convenient a m essage box can be for
displaying the contents of a DataReader object . However, a single m essage box
can be filled to it s character lim it before it com pletes displaying results from a
DataReader obj ect . A workaround to t his situat ion is t o display your results from
the DataReader obj ects in blocks of x rows at a t im e. When your applicat ion
displays rows in blocks, users can sequent ially page through a result set to f ind
an item , or it em s, of interest . Because the DataReader provides forward-only
data access, you cannot page back, but you can provide your users a forward-
only look at som e data.
The Enum erateCustom erI DNam es procedure allows a user to specify t he num ber
of rows to show in a m essage box. The procedure returns the Custom erI D and
Com panyNam e colum n values from the Custom ers table in t he Northwind
database. You can invoke the Enum erateCustom erI DNam es procedure from the
m ain procedure in Module1 . Launching this procedure is slight ly different than
with preceding sam ples from Module1 . I n this case, you m ust pass along an
argum ent value as you invoke the procedure. The argum ent is for the m axim um
num ber of rows to show in a text box. The result set from the Com m and obj ect
for a DataReader object m ay extend over several blocks and require m ult iple
m essage boxes. Each m essage box, except t he final one, m ust hold t he m axim um
num ber of rows per block passed as an argum ent to the
Enum erateCustom erI DNam es procedure. The final m essage box will display from
one row up to the m axim um num ber of rows.
The Enum erateCustom erI DNam es procedure starts in t he sam e general fashion
as the preceding one in that it m akes a connect ion to t he Northwind database and
then populates a DataReader , drd1 , w ith t he results of a Com m and object , cm d1 .
The sole dist inct ion in how the two procedures start is that t his one has a
different SQL st r ing for the Com m and object that returns m ore rows than the one
in the ear lier sam ple. This larger num ber of rows in the DataReader for this
sam ple calls for special t reatm ent because a single m essage box cannot display
all it s rows.
The balance of t he procedure dem onst rates one solut ion for the problem of too
m any rows to display in a m essage box. Two code blocks facilitate the solut ion.
The first block iterates through the rows in drd1 in blocks of intSize. The
procedure obtains a value for intSize as a passed argum ent from the procedure

that calls the Enum erateCustom erI DNam es procedure. A user can specify a block
size that does fit w it hin a single m essage box no m at ter how m any rows are in
the DataReader . By click ing OK on each m essage box, t he user can v iew
successive blocks of rows from the DataReader . The second code block captures
any rem aining rows at the end of a DataReader object that don’t fill a com plete
block.
The first code block uses int1 as a variable t o count t he cum ulat ive num ber of
rows read from the drd1 DataReader . A st r ing var iable, st r1, accum ulates rows in
successive blocks of size intSize. The first code block uses a Do…While statem ent
with a condit ion of drd1.Read() to pass successively through all t he rows in the
drd1 DataReader . As the code block reads each new row, it recom putes st r1 so
that the new row appears at the bot tom of t he st r ing variable. When the
rem ainder of int1 div ided by intSize equals 0, t he procedure accum ulates a new
block of rows (of size intSize) to display in a m essage box. The expression int1
mod intSize returns the rem ainder of int1 div ided by intSize. When the f irst
code block detects the end of a block of rows, t he st r ing variable storing row
values is passed to a MsgBox funct ion as the m essage argum ent . After print ing
the m essage, t he procedure resets t he st ring variable st r1 t o start a new block of
rows. Then the whole process starts over again.
When no m ore rows rem ain in t he DataReader , the procedure passes cont rol to
the second code block. This second block starts by test ing to see whether any
rows rem ain that didn’t appear since the display of t he last m essage box. Any
rem ainder of int1 div ided by intSize signals undisplayed rows. I f there are any of
these rows, t he second code block passes the value of st r1 to a MsgBox funct ion
as the m essage argum ent to show them . The procedure concludes in the
standard way by closing the DataReader object and it s Connect ion object .
Sub EnumerateCustomerIDNames(ByVal intSize As Integer)
 ’Declare and open connection to Northwind.
 Dim cnn1 As SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;Initial Catalog=northwind”)
 cnn1.Open()

 ’Declare command and assign a SQL string to it, and then
 ’declare a data reader and copy result set from cmd1 to drd1.
 Dim cmd1 As SqlCommand = cnn1.CreateCommand()
 cmd1.CommandText = _
 “SELECT CustomerID, CompanyName FROM Customers"
 Dim drd1 As SqlDataReader = cmd1.ExecuteReader()

 ’Loop through data reader in blocks of intSize and sequentially
 ’display the contents of successive blocks.
 Dim int1 As New Integer()
 Dim str1 As String = _
 “CustomerID and matching CompanyName column values” _
 & StrDup(2, vbCr)
 Do While drd1.Read()
 str1 = str1 & drd1.GetString(0) & vbTab & _
 drd1.GetString(1) & vbCrLf
 int1 += 1
 If (int1 Mod intSize) = 0 Then
 str1 = str1 & StrDup(2, vbCr) & _
 “Click OK for next “ & _
 intSize.ToString & “ customers."
 MsgBox(str1, , “CustomerID and Customer Name”)
 str1 = _
 “CustomerID and matching CompanyName “ & _
 “column values” & StrDup(2, vbCr)
 End If

 Loop

 ’If a partial block remains at end of data reader contents,
 ’display partial block.
 If (int1 Mod intSize) > 0 Then
 str1 = str1 & StrDup(2, vbCr) _
 & “Click OK to close message box."
 MsgBox(str1, , “CustomerID and Customer Name”)
 End If

 ’Close data reader and connection object references.
 drd1.Close()
 cnn1.Close()

End Sub

Figure 10-7 shows the first and last m essage boxes that result from running the
Enum erateCustom erI DNam es procedure with an intSize argum ent value of 25.
The first m essage box contains 25 rows, as do all t he intervening m essage boxes
up unt il t he last one. The last m essage box shows the rows rem aining at t he end
that don’t f ill an ent ire block of 25 rows.

Figure 1 0 - 7 . The first and last m essage boxes displayed by the
Enum erateCustom erI DNam es procedure.

I nvoking a Stored Procedure w ith a Param eter by a SQL
St r ing

I n addit ion to using SQL st r ings to designate the data for the Com m and obj ects
that populate DataReader objects, you can also specify a stored procedure as the
source for a Com m and obj ect . There are two m ain advantages to using stored
procedures. First , stored procedures are com piled. This saves the server the t im e

of com piling a SQL st r ing before it can start to return data for your DataReader
obj ect . Second, stored procedures accept param eters. This allows the users of
your applicat ions to change the result set returned at run t im e.
There are two approaches to set t ing param eter values for stored procedures.
Many developers prefer to specify a SQL st r ing that invokes the stored procedure
and passes the value. Chapter 4 illust rates the syntax for accom plishing this, and
we dem onst rate the use of t he technique in a .NET Fram ework applicat ion with
the sam ple for this sect ion. A second approach is to add param eters with t he
.NET Fram ework syntax. This approach allows you to explicit ly specify t he data
type as you pass a param eter. I w ill dem onst rate t his second approach in t he
next sect ion.
The sam ple for t his sect ion and the next one depends on the CustOrderHist
stored procedure in t he Northwind database. This procedure returns the quant it y
of each product ordered by a custom er. The procedure takes a five-character
st r ing param eter to designate the Custom erI D value. The result set contains a
single row for each product ever ordered by a custom er. Each row contains the
product nam e and quant ity ordered by the custom er specified in t he param eter
when you invoke the stored procedure. For your convenience in understanding
the logic of the CustOrderHist stored procedure, here’s t he T-SQL code for t he
stored procedure:
CREATE PROCEDURE CustOrderHist @CustomerID nchar(5)
AS
SELECT ProductName, Total=SUM(Quantity)
FROM Products P, [Order Details] OD, Orders O, Customers C
WHERE C.CustomerID = @CustomerID
AND C.CustomerID = O.CustomerID AND
O.OrderID = OD.OrderID AND OD.ProductID = P.ProductID
GROUP BY ProductName

Two sub procedures m ake up the solut ion for displaying the results from running
the CustOrderHist stored procedure with a SQL st r ing. The first sub procedure,
RunCustOrderHistWithSt r ing, invokes the SQL st r ing for t he stored procedure and
creates a DataReader obj ect based on it s result set . RunCustOrderHistWithSt r ing
takes two argum ents— one for t he Custom erI D value and a second for specify ing
the m axim um num ber of rows to display as a block in a m essage box. This init ial
Visual Basic .NET procedure:

• Creates a Connect ion object .
• I nstant iates a Com m and object that executes the CustOrderHist stored

procedure while passing a Custom erI D value as a param eter.
• Populates a DataReader based on the result set from CustOrderHist .

Because the sam ple uses a SQL st r ing to invoke the stored procedure and pass a
param eter, t he process of running a stored procedure with a param eter is sim ilar
to just specifying a SQL st r ing as the source for the Com m and obj ect . This
sim ilar it y is the chief advantage of using the SQL st r ing to invoke the stored
procedure. One disadvantage of the approach is that t he server has to com pile
the T-SQL statem ent in the st r ing to invoke the stored procedure. Another
disadvantage is that you don’t get the benefit of explicit data typing for the
param eter value at the client end of t he solut ion. This explicit t yping can allow
you to catch inappropriate param eter values ear lier in t he solut ion and save
server t im e devoted to detect ing erroneous param eter values as well as passing
back feedback on the error to the client .
The solut ion’s second sub procedure, drdToMessageBox , displays the rows in t he
DataReader created by RunCustOrderHistWithSt r ing. The drdToMessageBox
procedure requires four argum ents. The first two are passed by reference instead
of in t he norm al Visual Basic .NET way of by value. These argum ents are for t he

DataReader obj ect and it s associated Connect ion obj ect . The second two
argum ents are passed by value. These are the Custom erI D param eter value and
the value for t he m axim um num ber of rows to display in a m essage box. The
design of t his second sub procedure is a direct extension of pr ior sam ples with
specific adj ustm ents, such as for t he t it le within a m essage box. A specific benefit
of div iding the solut ion across two sub procedures is that we will be able to reuse
this second sub procedure in t he next sect ion’s sam ple.
Sub RunCustOrderHistWithString(ByVal CustomerID As String, _
 ByVal intSize As Integer)

 ’Declare and open connection to Northwind.
 Dim cnn1 As SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;Initial Catalog=northwind”)
 cnn1.Open()

 ’Declare command with T-SQL for a stored proc with a parameter.
 Dim cmd1 As SqlCommand = _
 New SqlCommand(“EXEC CustOrderHist “ & CustomerID, cnn1)

 ’Declare data reader and populate with result set
 ’from stored procedure.
 Dim drd1 As SqlDataReader = cmd1.ExecuteReader()

 ’Display result set.
 drdToMessageBox(drd1, cnn1, CustomerID, intSize)

End Sub

Sub drdToMessageBox(ByRef drd1 As SqlClient.SqlDataReader, _
 ByRef cnn1 As SqlClient.SqlConnection, _
 ByVal CustomerID As String, _
 ByVal intSize As Integer)

 ’Declare header for report in message box and counter for rows
 ’showing within a message box.
 Dim str1 As String = _
 “Quantities for Products Ordered by “ & _
 CustomerID & StrDup(2, vbCr)
 Dim int1 As Integer

 ’Loop through data reader in blocks of intSize and
 ’sequentially display the contents of successive blocks.
 Do While drd1.Read()
 str1 = str1 & drd1.GetInt32(1) & vbTab _
 & drd1.GetString(0).ToString & vbCrLf
 int1 += 1
 If (int1 Mod intSize) = 0 Then
 str1 = str1 & StrDup(2, vbCr) _
 & “Click OK for next “ & _
 intSize.ToString & “ customers."
 MsgBox(str1, , “From CustOrderHist Stored Proc”)
 str1 = _
 “Quantities for Products Ordered by “ & _
 CustomerID & StrDup(2, vbCr)
 End If
 Loop

 ’If a partial block remains at end of data reader contents,
 ’display partial block.
 If (int1 Mod intSize) <> 0 Then

 str1 = str1 & StrDup(2, vbCr) _
 & “Click OK to close message box."
 MsgBox(str1, , “From CustOrderHist Stored Proc”)
 End If

 ’Close data reader and connection object references.
 drd1.Close()
 cnn1.Close()

End Sub

You can run the sam ple defined by the preceding two sub procedures from
Module1 in t he MyADODOTNETSam ples solut ion. The sam ple procedure call in t he
m ain procedure for invoking the first procedure follows. I t passes two argum ents
to the RunCustOrderHistWithSt r ing procedure. The first argum ent is a
Custom erI D value, and the second argum ent designates the m axim um num ber of
rows to display in a m essage box. You can obtain a result set to display for any
Custom erI D in t he Custom ers table t hat has orders associated with it . (Two
Custom erI D values don’t have any orders.) The solut ion autom at ically populates
the argum ent list for t he second sub procedure that prints the rows in the
DataReader created by the RunCustOrderHistWithSt r ing procedure.
RunCustOrderHistWithString(“TORTU", 10)

I nvoking a Stored Procedure w ith a Param eter by I ts Nam e

I t is possible to invoke a stored procedure and pass it param eter values without
using a SQL st r ing. Som e developers would count this as an advantage. The
approach has the ext ra advantage of st rong data typing for param eter values on
the client side of a database solut ion. Therefore, illegit im ate values can be
detected before encounter ing t im e for a round-t r ip to t he server and without
divert ing any valuable server t im e to error processing. As the scale of an
applicat ion grows relat ive to server processing power and network throughput ,
these considerat ions gain significance.
The solut ion to invoke a stored procedure without a SQL st r ing requires you to
assign the nam e of t he stored procedure as the Com m andText property for a
Com m and object . You m ust also designate Com m andType.StoredProcedure as
the Com m andType property set t ing for t he Com m and object . I f the stored
procedure requires param eters, you can invoke the Add m ethod for t he
Param eters collect ion of the Com m and obj ect to declare the param eters. As with
m any Visual Basic .NET m ethods, t he specificat ion for t he Add m ethod of t he
Param eters collect ion has m ult iple over loaded specificat ions. The one used in t he
sam ple for t his sect ion uses @Custom erI D t o designate the param eter ’s nam e.
The second and third argum ents for t he Add m ethod designate the @Custom erI D
param eter as a Unicode fixed length text f ield of 5 characters. The sam ple follows
the param eter declarat ion with the syntax for assigning an actual value to t he
param eter. As you can see, you use the param eter’s Value property to perform
this task.
Aside from the except ions noted previously, t he solut ion for running the
CustOrderHist stored procedure with or without a SQL st r ing is t he sam e. You
create the Connect ion obj ect ident ically , and you pass the return set from the
Com m and object to t he DataReader obj ect in t he sam e way. Furtherm ore, this
second-solut ion approach uses exact ly t he sam e second sub procedure,
drdToMessageBox , t o display the result set from the CustOrderHist stored
procedure in a ser ies of m essage boxes.
Sub RunCustOrderHistWithParameter(ByVal CustomerID As String, _
 ByVal intSize As Integer)

 ’Declare and open connection to Northwind.
 Dim cnn1 As SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;Initial Catalog=northwind”)
 cnn1.Open()

 ’Instantiate a command reference pointing at the
 ’CustOrderHist stored proc.
 Dim cmd1 As SqlCommand = _
 New SqlCommand(“CustOrderHist", cnn1)
 cmd1.CommandType = CommandType.StoredProcedure

 ’Declare the parameter with a SqlDbType to eliminate
 ’the need for conversion, then assign the parameter a value.
 Dim prm1 As SqlParameter = _
 cmd1.Parameters.Add(“@CustomerID", SqlDbType.NChar, 5)
 prm1.Value = CustomerID

 ’Declare data reader and populate with its result
 ’set from the stored proc.
 Dim drd1 As SqlDataReader = cmd1.ExecuteReader()

 ’Display result set.
 drdToMessageBox(drd1, cnn1, CustomerID, intSize)

End Sub

You can invoke the RunCustOrderHistWithParam eter procedure from the m ain
procedure in Module1 for the MyADODOTNETSam ples solut ion. Sim ply rem ove its
com m ent m arker and ensure that all other procedure calls have a com m ent
m arker preceding them .

Creat ing a Database Object w ith a Com m and Object

The Com m and object provides m ore flex ibilit y t han just returning result sets. For
exam ple, you can use a Com m and object to adm inister a database object on a
SQL Server instance. This sect ion dem onst rates the capabilit y by adding a new
user-defined funct ion to the Northwind database, using it , and then rem oving the
user-defined funct ion. For t his dem onst rat ion to work, your connect ion m ust be
based on a login with perm ission to create whatever user-defined obj ects you
at tem pt to create or drop. See Chapter 5 for the T-SQL syntax on adding and
rem oving user-defined funct ions and Chapter 7 for a discussion of t he secur ity
associated with logins to a SQL Server instance. I f your login is the adm inist rator
for your local instance of SQL Server, you have appropriate perm ission to run the
sam ple.
The user-def ined funct ion udfDaysDiffLessx in t his sam ple com putes the
difference between two dates m inus an offset . You can use the funct ion to report
how m any days late an event occurred. For exam ple, if the standard for shipping
an order is within 3 days of the order date, you can use this user-defined funct ion
to report how m any days after t he standard an order ships.
The CreateAndI nvokeUDF procedure in Module1 illust rates the Visual Basic .NET
syntax for creat ing, using, and finally dropping a user-defined funct ion like the
one described. The CreateAndI nvokeUDF procedure connects to t he Northwind
database. The procedure takes two opt ional argum ents. (I f the user doesn’t
supply values for the argum ents when calling the procedure, t he procedure
assigns default values to the argum ents.) The intOrderNo argum ent denotes the
OrderI D value for t he order about which you seek shipping inform at ion, and the

st rx argum ent is a st r ing represent ing the offset in days between two datet im e
values.
While som ewhat lengthy, t he CreateAndI nvokeUDF procedure design is
st raight forward. I n actual pract ice, you are likely to ext ract the code for creat ing
a user-defined funct ion into a separate sub procedure. The procedure begins by
m aking a connect ion to the Northwind database. Next t he procedure defines a
SQL st r ing for dropping any pr ior version of the udfDaysDiffLessx user-defined
funct ion. The procedure runs this st r ing from a Com m and object with t he
ExecuteNonQuery m ethod. I n t he next code block, the procedure runs with t he
ExecuteNonQuery m ethod a second SQL st r ing to create a new version of the
udfDaysDiffLessx user-def ined funct ion. Not ice that t he user-defined funct ion
includes a param eter to specify t he offset for t he difference between two dates.
After ensuring that t he code for the user-defined funct ion is the second SQL
st r ing, t he procedure runs a third SQL st r ing that invokes the user-defined
funct ion within a query statem ent . The design of the SQL st r ing for the query
uses the st rx argum ent as a var iable so that a procedure calling the
CreateAndI nvokeUDF procedure can dynam ically set the offset between two
dates. I n addit ion, t he intOrderNo argum ent is a var iable in the SQL st r ing so that
a calling procedure can specify t he order via an OrderI D value on which to report .
The procedure uses the ExecuteReader m ethod to run the SQL st r ing in a
Com m and object and passes the result t o a DataReader . After execut ing the Read
m ethod for the DataReader , a m essage box displays the shipping inform at ion for
the order. The procedure concludes by perform ing var ious cleanup chores,
including restoring the Northwind database so that the database no longer has a
user-defined funct ion nam ed udfDaysDiffLessx . I n pract ice, you m ay very well
decide to keep a user-defined funct ion after creat ing it , but the sam ple runs this
step to restore your init ial copy of t he Northwind database.
Sub CreateAndInvokeUDF(_s
 Optional ByVal intOrderNo As Integer = 10248, _
 Optional ByVal strx As String = “1”)

 ’Declare and open connection to Northwind.
 Dim cnn1 As SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;Initial Catalog=northwind”)
 cnn1.Open()

 ’Define SQL string to drop prior version of user-defined
 ’function, then run the T-SQL batch with ExecuteNonQuery
 ’method for a command.
 Dim str1 As String = _
 “IF EXISTS “ & _
 “(SELECT * “ & _
 “FROM INFORMATION_SCHEMA.ROUTINES “ & _
 “WHERE ROUTINE_NAME = ’udfDaysDiffLessx’) “ & _
 “DROP FUNCTION udfDaysDiffLessx"
 Dim cmd1 As SqlCommand = New SqlCommand(str1, cnn1)
 cmd1.ExecuteNonQuery()

 ’Define SQL string to create a new user-defined function,
 ’then run the T-SQL batch with ExecuteNonQuery method
 ’for a command.
 str1 = “CREATE FUNCTION udfDaysDiffLessx” & _
 “(@date1 as datetime, @date2 as datetime, “ & _
 “@x as Integer) “ & _
 “RETURNS int “ & _
 “AS “ & _
 “BEGIN “ & _
 “Return(DATEDIFF(day,@date1,@date2)-@x) “ & _

 “END"
 cmd1.CommandText = str1
 cmd1.ExecuteNonQuery()

 ’Define a SQL string to use the preceding user-defined
 ’function and accept variables for SQL string
 ’(strx and intOrderNo), then assign SQL string to
 ’CommandText property of command(cmd1).
 Dim strSQL As String
 strSQL = “SELECT LEFT(OrderDate,11) AS ’Order Date’, “ & _
 “LEFT(ShippedDate,11) AS ’Shipped Date’, “ & _
 “dbo.udfDaysDiffLessx(OrderDate, ShippedDate, “ & _
 strx & “) AS ’Days Late’ “ & _
 “FROM Orders “ & _
 “WHERE OrderID = “ & intOrderNo.ToString
 cmd1.CommandText = strSQL

 ’Store result set from SQL string in a data reader and
 ’format its contents for display via a MsgBox function.
 Dim drd1 As SqlDataReader = cmd1.ExecuteReader()
 drd1.Read()
 str1 = “For Order “ & intOrderNo.ToString & vbCr & _
 “OrderDate is “ & drd1.GetString(0) & vbCr & _
 “ShippedDate is “ & drd1.GetString(1) & vbCr & _
 “Days to ship after “ & strx & “ days is “ _
 & drd1.GetInt32(2).ToString
 MsgBox(str1, , _
 “SQL string with a scalar user-defined function”)

 ’Restore the Northwind database by removing the udf.
 str1 = _
 “IF EXISTS “ & _
 “(SELECT * “ & _
 “FROM INFORMATION_SCHEMA.ROUTINES “ & _
 “WHERE ROUTINE_NAME = ’udfDaysDiffLessx’) “ & _
 “DROP FUNCTION udfDaysDiffLessx"
 cmd1.CommandText = str1

 ’Close the data reader so the command can use it.
 drd1.Close()

 ’Execute the SQL string to drop the user-defined function.
 cmd1.Connection = cnn1
 cmd1.ExecuteNonQuery()

 ’Finally, close the connection to the Northwind database.
 cnn1.Close()

End Sub

The line in t he m ain procedure of Module1 invoking the CreateAndI nvokeUDF
procedure specifies an OrderI D of 10249 with intOrderNo and an offset of 3 days
with st rx . I n response to invoking the CreateAndI nvokeUDF procedure with t his
line, the procedure presents a m essage box like the one in Figure 10-8. I f you
were interested in t racking perform ance on a next -day delivery prom ise, you
could replace the value 3 in t he calling procedure with 1.

Figure 1 0 - 8 . The m essage box displayed for running the
CreateAndI nvokeUDF procedure w ith the argum ents specified for it in

the m ain procedure of Module1 .

DataAdapters, Data Sets, Form s, and Form Controls

This sect ion covers how to place a data set behind a Windows form and allow
users t o interact with t he data set t hrough form cont rols. You will learn how to
bind SQL Server data to the cont rols on a Windows form . This sect ion covers
several typical design applicat ions such as at taching data to text boxes, com bo
boxes, and data gr ids. The code sam ples and form designs illust rate how to
m anage parent -child relat ionships program m at ically in the data set behind a form
as well as interact ively for a user t hrough form cont rols. The sect ion closes with a
sam ple that dem onst rates how to dynam ically configure a Windows form based
on the data that it has to show.

Adding a Data Set to a Form

A typical way of interact ing with data from Visual Basic .NET will be from
Windows Form s. While you can readily present m essage boxes that show the
DataReader contents, m any applicat ions will require a r icher form of data inte-
ract iv it y than the forward-only, read-only m odel supported by the DataReader .
The key to get t ing to a r icher m odel of data interact iv it y is to place one or m ore
data sets in the m odule behind a form . The data set object lets users navigate
backward and forward in a data set . I n addit ion, users can update the data for
local use only or at a rem ote data source. Any one data set can contain m ult iple
tables, and the data set object perm its the existence of hierarchical relat ionships
between the tables within it .
The key to populat ing a data set behind a form with data from a SQL Server
instance is to create a DataAdapter object that points to a data source on a SQL
Server instance. You can represent t he data source on the server with a SQL
st r ing, a table nam e, a view, or a stored procedure. As with t he DataReader
obj ect , you can represent a SQL st r ing for the DataAdapter obj ect with a
Com m and object . The DataAdapter object has two m ain roles. First , it can f ill a
data set behind a form . That ’s t he focus of this sect ion. Second, you can use a
DataAdapter to update a rem ote data source from the data set behind a form .
That ’s t he focus of the last m ajor sect ion in this chapter.
Use the DataAdapter object ’s SelectCom m and property to reference the
Com m and object specifying the rem ote data source for a DataAdapter . Recall t hat
one im portant role for a DataAdapter is to copy to the data set behind a form .
Make the rem ote data source available t hrough the DataAdapter by opening the
connect ion for the Com m and object . Copy the data from the rem ote data source
to the data set by invoking the Fill m ethod of t he DataAdapter . I n t his type of
applicat ion, the DataAdapter requires two argum ents— one referencing the nam e
of t he data set behind the form and the other nam ing the table in t he data set .
You can designate the tables within a data set either by an index num ber
indicat ing the order in which you added them to the data set or by the nam e that
you specify as an argum ent to t he Fill m ethod.

The Populate procedure that follows illust rates the syntax for copying a rem ote
data source to the data set behind a form . This procedure is in the m odule behind
Form 4, which I will discuss in m ore detail in t he next sam ple discussion. For now,
just understand that the Populate procedure is in a m odule behind a Windows
form . I ’ ll be using several sam ples throughout the balance of this chapter that are
variat ions of this procedure, so I decided to give the procedure a sect ion of it s
own to help you focus on it .

Note

The code for the Populate procedure assumes the existence
of an I mports statement at the top of the module for the
System.Data.SqlClient namespace.
I t ’s com m on to describe the DataAdapter as a bridge between a rem ote data
source and the data set behind a form . Therefore, t he Populate procedure starts
by declaring a Connect ion obj ect , cnn1 . The cnn1 object reference points to t he
Northwind database on the local instance of SQL Server. Next t he procedure
declares and instant iates a Com m and object , cm d1 . A SQL st r ing specifies the
CategoryI D, CategoryNam e, and Descript ion colum ns from the Categor ies tables
to designate the result set from cm d1 . The Com m and object cm d1 links to t he
Categor ies table through the Connect ion object cnn1 . After indirect ly specify ing
the Com m andText property for a Com m and obj ect , the procedure instant iates a
DataAdapter obj ect and uses the dap1 object reference to point t o it .
I n order for t he dap1 DataAdapter t o f ill t he data set behind the form , two
condit ions m ust hold. First , the DataAdapter needs a Com m and obj ect assigned
to it s SelectCom m and property. Assigning cm d1 to the SelectCom m and property
of dap1 sat isfies this condit ion. Second, t he DataAdapter requires an open
connect ion to the Categor ies table in the Northwind database. I nvoking the Open
m ethod for the cnn1 obj ect m eets this requirem ent . After m eet ing these two
condit ions, the procedure invokes the Fill m ethod for dap1 . The argum ents for t he
m ethod in t he procedure designate Categor ies as the nam e of t he DataTable
obj ect that holds the result set from cm d1 in the das1 data set . The m odule
behind Form 4 declares and instant iates das1 as a data set at t he m odule level.
This m akes the das1 data set available for use in all t he procedures behind a
form . Of course, it also m eans that you cannot see the declarat ion in t he list ing
for the Populate procedure. For your easy reference, I include the statem ent
declaring and instant iat ing das1 j ust before the list ing for the Populate procedure.
Not ice that the Populate procedure concludes by closing the Connect ion object
cnn1. I n cont rast to t he DataReader object , the data set object operates while
disconnected from a rem ote data source. Recall that t his abilit y t o operate while
disconnected adds to the scalabilit y of Visual Basic .NET applicat ions for SQL
Server.
 ’Module-level declaration of data set object.
 Dim das1 As DataSet = New DataSet()

 Sub Populate()
 ’Specify a connection for a data adapter that
 ’fills the data set used on the form.
 Dim cnn1 As SqlConnection = _
 New SqlConnection _
 (“Data Source=(local);” & _
 “Integrated Security=SSPI;” & _
 “Initial Catalog=northwind”)

 ’Specify the command and data adapter that serves
 ’as the source for the data set on the form.
 Dim cmd1 As SqlCommand = _

 New SqlCommand _
 (“SELECT CategoryID, CategoryName, Description “ & _
 “FROM Categories", _
 cnn1)
 Dim dap1 As SqlDataAdapter = New SqlDataAdapter()
 dap1.SelectCommand = cmd1
 cnn1.Open()

 ’Fill the data set (das1) with the data adapter dap1;
 ’the Fill method populates the data set with a table
 ’named Categories.
 dap1.Fill(das1, “Categories”)

 ’Close the connection because a data set is a
 ’disconnected data source.
 cnn1.Close()

 End Sub

Binding Controls on a Form to Data

After populat ing the data set behind a form , you’ ll want t o reference the data set
with t he cont rols on the form . One way to accom plish this is to bind the cont rols
to the data set . There are two sty les of data binding for cont rols. Sim ple data
binding m aps a colum n in a local data source, such as a DataTable in a data set ,
to a property of a cont rol, such as the Text property of a t ext box. Use the
DataBindings collect ion of a cont rol t o bind cont rol propert ies to a colum n of
values in a local data source. Com plex data binding is a second way of binding a
cont rol to data. For t his style of data binding, a cont rol— such as a com bo box, list
box, or data grid— binds to a collect ion of colum ns, such as a DataTable in a data
set . The sam ple in this sect ion dem onst rates both approaches for binding cont rols
to the Categor ies DataTable. The preceding sect ion described the code that
created the Categories DataTable in the das1 data set for Form 4 .

Note

One interest ing new development with Visual Basic .NET is
the abilit y to bind any property of a visible cont rol, such as
its BackColor or ForeColor property, to a column of data. This
feature opens the possibilit y for a local data source
dynamically cont rolling the format t ing of a form as well as
the data the form shows.
Figure 10-9 shows Form 4 . At the left is the form in Design v iew. At t he top r ight
of t he figure is the form after it init ially opens. The bot tom r ight of the figure
shows the form after I selected Confect ions from the com bo box. Open Form 4 in
Design v iew by double-click ing Form 4.vb in Solut ion Explorer for t he
MyADODOTNETSam ples solut ion. Right -click the solut ion’s nam e in Solut ion
Explorer, choose Propert ies, and select Form 4 as the startup object to m ake the
form easy to launch (for exam ple, by pressing the F5 key).
The Design v iew of Form 4 reveals t hat t he form contains a com bo box with a
label, two text boxes with labels, and a but ton. As shown in Chapter 1, you can
graphically bind cont rols at design t im e. However, Form 4 program m at ically sets
the data binding for the com bo box and the two text boxes. On the other hand, I
set several cont rol features at design t im e. For exam ple, t he Mult iline property of
TextBox2 is set t o True, while t he sam e propert y for TextBox1 has the default

set t ing, False. The Mult iline property set t ing facilitates TextBox2 showing
Descript ion colum n values that extend over m ore than one line.

Figure 1 0 -9 . A design- t im e view and tw o run- t im e view s of Form 4 . The
tw o text boxes are program m ed to update their contents based on the

select ion from the com bo box.

The init ial v iew of Form 4 shows that when it opens it displays the first category.
Beverages appears in t he com bo box, and the two text boxes show 1 as the
CategoryI D and the descript ion for the beverages product category. There is
nothing m andatory about opening the form for the first category— any other
category will work equally well. The form synchronizes the two text boxes with
the com bo box. For exam ple, select ing Confect ions from the com bo box revises
the content displayed in the two text boxes to 3 and the descript ion for the
confect ions category.
To bind the form cont rols to data set colum ns and m ake the text boxes
dependent on the com bo box select ion takes just a few lines of code. I used five
lines of code to bind the cont rols to data set colum n values and set t he category
that appears when the form opens. This code appears in a form Load event
procedure for Form 4 t hat starts by calling Populate to create the das1 data set
described in t he preceding sect ion.
The event procedure puts das1 to use by binding the Text propert y of TextBox1
to the CategoryI D colum n in t he Categor ies DataTable. You bind a colum n of
values to a t ext box property by invoking the Add m ethod for t he DataBindings
collect ion of a cont rol. The Add m ethod takes a Binding object as an argum ent .
The argum ents for t he Binding object specify t he TextBox propert y to bind (Text)

and the colum n of values to bind to the property. This sam ple requires two
argum ents to specify t he data source that binds to t he text box propert y. First
designate the data set nam e— das1 . Second indicate the table nam e and colum n
nam e within t he data set that you want to bind to the propert y. Use a per iod
delim iter to separate the two nam es, as in Categor ies.CategoryID. The Load
event procedure uses the sam e syntax to bind the Descript ion colum n in t he
Categor ies DataTable to the Text propert y of TextBox2. Both data bindings
dem onst rate the approach for sim ple data binding.
I t takes a couple of lines to bind the com bo box to t he Categor ies DataTable.
Actually, one line does the binding, but a second line specifies the values that t he
com bo box displays for the user t o m ake a select ion. Assign a DataTable to the
DataSource property of a com bo box to bind the com bo box to the DataTable.
The syntax for specify ing the Categor ies table used a nam ed argum ent for
denot ing the table in the data set . I could also have indicated the Categor ies table
by indicat ing it s table index value, such as das1.Tables(0) . This syntax
depends on the table index values not changing. After set t ing the DataSource
property for t he com bo box, t he procedure assigns the CategoryNam e colum n
from the Categories DataTable as t he value for the com bo box to display when
the user clicks the cont rol to m ake a select ion.
The final line of the form Load event procedure designates the posit ion in a
colum n that t he cont rols on Form 4 bound to the f irst table in the das1 data set
are to show when the form init ially opens. Posit ion 0 points to t he first row in a
DataTable (for exam ple, the Categories DataTable in this sam ple) . The Posit ion
property belongs to the BindingContext obj ect associated with a form . The
keyword Me denotes Form 4 in the last line of t he form Load event procedure.
Private Sub Form4_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Call the routine for creating the data set
 ’for the form.
 Populate()

 ’Bind each text box to a different column in the
 ’Categories table of the data set (das1)on the form.
 TextBox1.DataBindings.Add _
 (New Binding(“Text", das1, “Categories.CategoryID”))
 TextBox2.DataBindings.Add _
 (New Binding(“Text", das1, “Categories.Description”))

 ’Bind combo box to Categories table in the
 ’data set (das1) on the form. Because the data set
 ’includes just one table, its index is 0.
 ComboBox1.DataSource = das1.Tables(“Categories”)
 ComboBox1.DisplayMember = “CategoryName"
 Me.BindingContext(das1.Tables(0)).Position = 0

End Sub

The SelectedI ndexChanged event procedure for the com bo box takes just one line
to synchronize the contents of t he text boxes with the category nam e a user
selects from the com bo box. The index values for a com bo box start at 0 for t he
first it em in the list for a com bo box. By set t ing the com bo box’s SelectedI ndex
property to t he Posit ion property of the form ’s BindingContext object , t he line
posit ions all cont rols on the form to t he sam e row a user selected indirect ly when
picking a category nam e from the com bo box.
Private Sub ComboBox1_SelectedIndexChanged _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ComboBox1.SelectedIndexChanged

 ’Use selected combo item as basis for text boxes.
 Me.BindingContext(das1, “Categories”).Position _
 = Me.ComboBox1.SelectedIndex

End Sub

Report ing DataBindings

When working with a com plex form with m any cont rols with sim ple data bindings
or a form that you didn’t develop, you m ay find it convenient t o pr int a report on
the DataBindings collect ions for the cont rols on a form . A but ton on Form 4
invokes a procedure that generates such a report . The Click event for t his but ton
invokes a procedure nam ed PrintBindingMem berI nfo in Module1 . You can also run
this procedure from outside a form to report on the DataBindings collect ions for
the cont rols on a form .
As you can see from the following list ing, the Click event for the but ton m erely
calls t he PrintBindingMem berI nfo procedure. However, t he call also passes a
reference to Form 4 by using the keyword Me as an argum ent . The
PrintBindingMem berI nfo procedure in this sam ple is adapted from an exam ple in
the Visual Basic .NET Help file. While the adaptat ion is subt le, it substant ially
enhances the applicabilit y of the procedure. First , the adaptat ion works for any
form reference passed to it . The sam ple in t he Help file had to be copied into the
m odule for any form on which you sought a report . Second, you can run the
adapted procedure even if you aren’t in t he form for which you seek a report . The
sam ple in t he Help file works only from a form that a user has open with t he
focus.
The PrintBindingMem berI nfo procedure accepts a form reference as an argum ent .
For t he referenced form , the procedure starts a loop to pass through all the
cont rols on the form . Within t he loop for t he cont rols on a form , the procedure
runs a second loop to report any data binding for the current ly selected cont rol in
the loop through the cont rols. I f there are no data bindings for a cont rol, t he
inner loop m erely returns cont rol t o t he outer loop for t he cont rols. When all the
cont rols on a form are looped through, the PrintBindingMem berI nfo procedure
returns cont rol to it s calling procedure, which is the Click event for But ton1 on
Form 4 in t he following list ing.
’From module for Form4.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Display run-time binding settings specified in this module.
 Module1.PrintBindingMemberInfo(Me)

End Sub

‘From Module1.
‘Adapted from Visual Basic .NET Help; the adaptation accommodates
‘any form as a passed argument and facilitates displaying run-time
‘bindings from outside a form.
Sub PrintBindingMemberInfo(ByRef MyForm As Form)
 Dim thisControl As Control
 For Each thisControl In MyForm.Controls
 Dim thisBinding As Binding
 For Each thisBinding In thisControl.DataBindings
 ’Print the control’s name and Binding information.
 Console.WriteLine(ControlChars.Cr + thisControl.ToString(
))

 Dim bInfo As BindingMemberInfo = thisBinding.BindingMembe
rInfo
 Console.WriteLine(“Binding Path “ + ControlChars.Tab _
 + bInfo.BindingPath)
 Console.WriteLine(“Binding Field “ + ControlChars.Tab _
 + bInfo.BindingField)
 Console.WriteLine(“Binding Member “ + ControlChars.Tab _
 + bInfo.BindingMember)
 Next thisBinding
 Next thisControl

End Sub

Figure 10-10 shows an excerpt from the Output window showing the outcom e
generated by click ing the Show Bindings but ton in Form 4 j ust after t he form
opens. The output shows feedback for t he two text boxes. The text box report ing
descript ions appears above the one that displays the CategoryI D value. Recall
that the form init ially shows data for CategoryI D 1 when it opens. The contents
for each text box reflect the value for t his category. You can also see that the
procedure returns inform at ion about the DataTable nam e and the colum n within a
table to which each text box on the form binds.

Figure 1 0 -1 0 . A report generated by clicking the Show Bindings button
on Form 4 .

The PrintBindingMem berI nfo procedure also works for form s that don’t have the
focus. For exam ple, you can instant iate an instance of a form and then pass the
reference for t hat form instance to the PrintBindingMem berI nfo procedure. I f the
referenced form has data bindings set at design t im e, t he procedure will generate
a report for them . However, t he procedure won’t generate a report for a form
that sets it s data bindings at run t im e, such as in a form Load event procedure.
Chapter 1 contains a sam ple with data bindings set at design t im e. I reproduced
that form in t he MyADODOTNETSam ples solut ion as Form 2 . Figure 10-11 shows
on it s left Form 2 in Design v iew with TextBox1 selected. On the r ight of Figure
10-11 is the Propert ies window for the selected text box cont rol on the left . You
can see that t he Text property for t he text box binds to the CategoryID colum n in
the Categor ies DataTable of a data set nam ed DsCategor ies1. The Text property
for TextBox2 binds to t he CategoryNam e colum n of t he Categor ies DataTable in
the data set .

Figure 1 0 -1 1 . Form 2 depict ing a data binding set at design t im e.

The following list ing is a short procedure nam ed ShowForm 2Bindings that
dem onst rates the syntax for generat ing a report on the data bindings in Form 2
wit h t he PrintBindingMem berI nfo procedure. As you can see, t he procedure
declares and instant iates an instance of Form 2 wit h t he reference var iable
MyForm . Then the procedure passes that reference nam e to t he
PrintBindingMem berI nfo procedure when invoking the report ing procedure. The
report generated by the PrintBindingMem berI nfo procedure in t he Output window
correct ly reflects the data bindings for the two text boxes on Form 2 .
Sub ShowForm2Bindings()
 Dim MyForm As New Form2()
 PrintBindingMemberInfo(MyForm)

End Sub

Using a Data Set w ith Tables in a Parent - Child Relat ionship

I n addit ion to working with one database object , such as a table, you can
populate a data set with rows from two or m ore database objects. Each rem ote
database object cont r ibutes rows to a dist inct DataTable w it hin the data set .
I nstead of forcing you to join one DataTable t o another t o represent relat ionships
as with ADO recordset objects, data sets let you hierarchically represent the
relat ionship between two tables. We com m only refer to hierarchical relat ionships
as parent -child relat ionships. The sam ple in this sect ion illust rates techniques for
working with two DataTable obj ects in a data set . I n addit ion, it shows how to use
a com bo box to cont rol the records that are displayed in a data gr id cont rol. This
operat ion depends on filter ing the rows for a DataView obj ect on the selected
item in a com bo box. The DataView object , in t urn, serves as the data source for
the data gr id.
The sam ple for t his sect ion relies on Form 5 in t he MyADODOTNETSam ples
solut ion. Set up to use it in t he norm al way. First m ake Form 5 t he startup object
for the solut ion. Second double-click Form 5 in Solut ion Explorer to open Form 5 in
Design v iew. Third r ight -click Form 5 and choose View Code to expose the m odule
behind the form in t he Code Editor on a tab labeled Form 5.vb.
Figure 10-12 shows two views of Form 5 . At t he top is the form when it init ially
opens, showing the Beverages CategoryNam e value in the com bo box and
selected colum ns of inform at ion for products in the beverages category in the
data grid. When a user selects a new item from the com bo box, t he products
appear ing in the data gr id change to reflect the m ost recent ly selected item . For
exam ple, t he bot tom of Figure 10-12 shows how the data gr id contents changed
when I changed the com bo box from Beverages to Produce.

Figure 1 0 - 1 2 . The com bo box filters the row s from the Produce table that
appear in the data gr id.

The data set for Form 5 defines a relat ionship between the Categor ies and
Products DataTable object s. This relat ionship facilitates expressing the product
item s that belong to each category. I nstead of having to f ilter rows for a
DataView , you can explicit ly refer to rows in a child table t hat refer t o t he
current ly selected row in a parent table. The but ton labeled Pr int Parent -Child
Report generates a table based on a hierarchical relat ionship between the
Categor ies and Products DataTable obj ects. Figure 10-13 shows an excerpt from
the report t hat a click of the but ton generates in the Output window. The excerpt
reveals the CategoryI D and CategoryNam e values for categor ies 6 through 8.
Within each category, t he report lists the Product I D and ProductNam e values that
belong to the category.

Figure 1 0 - 1 3 . A report based on the parent -child relat ionship betw een
the Categories and Products DataTable objects.

The Form 5_Load event procedure populates the two DataTable objects, creates a
relat ionship between them , and binds the com bo box and data grid to local data
sources. However, in order t o keep the logic easy to follow, I div ided the logic for
populat ing the data set and creat ing a relat ionship between the two DataTable
obj ects into two separate procedures that t he form Load event procedure calls.
The list ing for all three of t hese procedures appears next .
The list ing starts with t hree m odule- level declarat ions for a DataSet obj ect , a
DataView object , and a Relat ion obj ect . I declare these objects at the m odule
level because two or m ore separate procedures in the m odule need to refer t o
them .
The Populate procedure fills t he data set with excerpts from the Categories and
Products tables in t he Northwind database. The code for f illing the data set with
the excerpt from the Categor ies table exact ly follows the sam ple code in Form 4 .
However, when the Products table is added to t he data set , t he code is shorter
because Connect ion and DataAdapter objects are already instant iated and
suitable for reuse. I n addit ion, t he code for the Products DataTable object follows
the sam e general logic for specify ing the Com m and object that defines the
SelectCom m and property and invoking the Fill m ethod that was used for t he
Categor ies DataTable object .
The RelateProductsToCategor ies procedure relates the Products DataTable to t he
Categor ies DataTable in a parent -child hierarchy. The procedure achieves this by
adding a new DataRelat ion object to the collect ion of all relat ionships in the data
set . The code for t he procedure starts by declar ing the m atching colum ns in t he
parent and child tables. Next t he procedure instant iates a new relat ionship object
based on the m atching colum ns. Figure 10-1 shows that t he
DataRelat ionCollect ion is direct ly dependent on the data set object . The
procedure uses the Add m ethod for the Relat ions collect ion of t he das1 data set

to insert t he new relat ionship instant iated in t he preceding line into t he
DataRelat ionCollect ion object within t he das1 data set .
The Form 5_Load event procedure starts by invoking the Populate and
RelateProductsToCategories procedures. These steps proper ly populate and
configure the data set for Form 5 . The event procedure next binds the com bo box
to the Categor ies table and sets the posit ion to the f irst row in t he Categor ies
table. The procedure uses a DataView object with a filt er based on the index for
the com bo box. To im plem ent t his, the procedure declares and instant iates the
dav1 DataView object based on the Products DataTable object . Next it def ines a
st r ing with the filt er expression. The expression designates all rows from the
Products DataTable t hat correspond to the index for t he current ly selected item in
the com bo box. There is an offset of 1 between the index for a com bo box and
the CategoryI D values for which the filt er expression accounts. By assigning the
expression in t he st r ing variable (st rFilter) t o the RowFilt er property of dav1, the
procedure populates the dav1 DataView object with t he rows m atching the
category nam e showing in t he com bo box. The event procedure concludes by
assigning the dav1 DataView obj ect to t he DataSource propert y of the data grid.
‘Module-
level declaration of data set,dataview, and datarelation objects.
Dim das1 As DataSet
Dim dav1 As DataView
Dim rel1 As DataRelation

Sub Populate()

 ’Specify a connection for a data adapter that
 ’fills the data set used on the form.
 Dim cnn1 As SqlConnection = _
 New SqlConnection _
 (“Data Source=(local);” & _
 “Integrated Security=SSPI;” & _
 “Initial Catalog=northwind”)

 ’Specify an extract from the Categories table as the source
 ’for a command that supplies a data adapter which serves
 ’as the source for the data set on the form.
 Dim cmd1 As SqlCommand = _
 New SqlCommand _
 (“SELECT CategoryID, CategoryName, Description “ & _
 “FROM Categories", _
 cnn1)
 Dim dap1 As SqlDataAdapter = New SqlDataAdapter()
 dap1.SelectCommand = cmd1
 cnn1.Open()

 ’Fill the data set (das1) with the data adapter dap1;
 ’the Fill method populates the data set with a datatable
 ’named Categories -- notice that the datatable Categories
 ’isn’t the same as the Categories table in the
 ’Northwind database.
 das1 = New DataSet()
 dap1.Fill(das1, “Categories”)

 ’Re-specify the SQL string for the command and the data
 ’adapter to extract columns from the Products table.
 cmd1.CommandText = “SELECT CategoryID, ProductID, “ & _
 “ProductName, UnitsInStock, Discontinued “ & _
 “FROM Products"
 dap1.SelectCommand = cmd1

 ’Create a datatable named Products in the das1 data set
 ’based on an extract from the Products table in the
 ’Northwind database.
 dap1.Fill(das1, “Products”)

 ’Close the connection because a data set only requires
 ’a connection while it is being populated from or
 ’writing updates to a SQL Server data source.
 cnn1.Close()

End Sub

Sub RelateProductsToCategories()

 ’Declare and assign parent and child columns for
 ’relating the Products datatable to the Categories
 ’datatable in the das1 data set.
 Dim parentcol As DataColumn
 Dim childcol As DataColumn
 parentcol = das1.Tables(“Categories”).Columns(“CategoryID”)
 childcol = das1.Tables(“Products”).Columns(“CategoryID”)

 ’Instantiate a datarelation between the
 ’Products and Categories datatables.
 rel1 = New DataRelation _
 (“CategoriesProducts", parentcol, childcol)
 das1.Relations.Add(rel1)

End Sub

Private Sub Form5_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’Run the Populate procedure to download extracts from
 ’the Categories and Products table to a data set for
 ’this form instance.
 Populate()

 ’Form a datarelation between the Categories and Products
 ’datatables in the das1 data set on this form.
 RelateProductsToCategories()

 ’Bind combobox to table 0 (the Categories datatable)
 ’in the das1 data set.
 ComboBox1.DataSource = das1.Tables(0)
 ComboBox1.DisplayMember = “CategoryName"
 Me.BindingContext(das1.Tables(0)).Position = 0

 ’Instantiate a dataview based on the Products datatable
 ’in the das1 data set and filter the view on the basis of
 ’selectedindex value for a combo box.
 dav1 = New DataView(das1.Tables(“Products”))
 Dim strFilter = “CategoryID = “ & _
 (ComboBox1.SelectedIndex + 1).ToString
 dav1.RowFilter = strFilter

 ’Assign the view as the data source for a data grid control.
 DataGrid1.DataSource = dav1

End Sub

The SelectedI ndexChanged event procedure for the com bo box keeps the data
grid synchronized whenever a user changes the category nam e displayed in the
com bo box. To accom plish this, t he event procedure recom putes the st r ing f ilter
for the new com bo box select ion. Then it assigns the new st r ing filter t o the
RowFilt er property of the dav1 DataView . This step updates the data grid to show
new rows that m atch the m ost recent select ion from the com bo box.
Private Sub ComboBox1_SelectedIndexChanged _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ComboBox1.SelectedIndexChanged

 ’Assign filter based on selected item, and
 ’apply the filter to the dataview for the data grid control.
 Dim strFilter = “CategoryID = “ & _
 (ComboBox1.SelectedIndex + 1).ToString
 dav1.RowFilter = strFilter

End Sub

The final unit of code for this sam ple generates the parent -child report between
categor ies and products in Figure 10-13. The code to generate the report f ires
when a user clicks the sole but ton on the form . The Click event procedure for t he
but ton begins by declar ing DataRow obj ects for the parent (pRow) and child
(cRow) DataTable objects as well as two st r ings for lines from the parent and row
data sources. Next t he procedure opens a loop to pass through successive rows in
the parent data source, the Categor ies DataTable object . After pr int ing the
CategoryI D and CategoryNam e for t he parent row, the procedure starts a loop
through the child rows of t he parent that m atch the current parent row. The
GetChildRows m ethod returns the appropr iate rows. With t he loop for child rows,
the procedure prints the Product I D and ProductNam e values for all products
m atching the current parent row.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim pRow, cRow As DataRow
 Dim strParentLine, strChildLIne As String

 ’Loop through rows in parent DataTable.
 For Each pRow In das1.Tables(“Categories”).Rows
 strParentLine = pRow(“CategoryID”) & “, “ & _
 pRow(“CategoryName”)
 Console.WriteLine(strParentLine)

 ’Loop through matching rows in child DataTable.
 For Each cRow In pRow.GetChildRows(rel1)
 strChildLIne = vbTab & cRow(“ProductID”) & _
 “, “ & cRow(“ProductName”)
 Console.WriteLine(strChildLIne)
 Next

 Next

End Sub

Creat ing Data- Aw are Form s

All form s that display data are data-aware at one level or another. However, the
m ore a form autom at ically configures it self t o the data set behind it , the m ore

aware of data that form is. A form can even change the data behind it in response
to the form ’s environm ent . I refer to t his k ind of interact ion between a form and
its associated data as the data awareness of a form . This sect ion presents a
sam ple that dem onst rates a higher degree of data awareness than the previous
ones. I n addit ion, the sam ple illust rates how to use a stored procedure that
accepts a param eter to dynam ically cont rol the data that a form displays.
The sam ple has two form s— Form 1 and Form 6 in t he MyADODOTNETSam ples
solut ions. Form 1 collect s a value designat ing a count ry and passes the value on
to Form 6 while opening it . When Form 6 opens, it populates two DataTable obj ects
in a data set behind it . Both DataTable objects vary based on the value passed to
the form . I n the first DataTable object , the code behind the form uses the passed
value as the param eter value for a stored procedure. This code behind Form 6
assigns this DataTable object to the DataSource property of a com bo box. A
second DataTable object relies on a SQL st ring expression that relies on the
passed value. This table doesn’t direct ly populate t hree data-bound text boxes on
Form 6. I nstead, t he text boxes bind to a DataView object based on the second
DataTable but f iltered based on the value in t he com bo box.
As I said, t his sam ple actually configures Form 6 based on the data. The com bo
box lists the cit ies in a count ry, which is based on a value passed to Form 6 from
Form 1. The three text boxes display the Custom erI D, ContactNam e, and Phone
for one or m ore custom ers within t he city displayed in t he com bo box. Form 6
condit ionally shows navigat ion but tons for m oving am ong the rows of contact
data within a count ry. I f there aren’t at least two custom ers in a city , t he form
hides the navigat ion but tons. I ncidentally, t his sam ple also dem onst rates how to
const ruct navigat ion but tons for m oving through the rows behind a set of data-
bound text boxes.
Because the sam ple for this sect ion uses two form s, you’ ll probably want to open
both Form 1 and Form 6 in Design v iew. You’ ll also likely want t o v iew the code
behind each form . The sam ple begins with a user responding to Form 1 , so m ake
that form your startup object in the MyADODOTNETSam ples solut ion. However,
before launching the applicat ion successfully, you m ust add the
udpCit iesI nCustom ersCount ry stored procedure to t he Northwind database. The
procedure returns from the Custom ers table all the cit ies within a count ry
specified by a param eter supplied at run t im e. As is standard pract ice, the
following T-SQL script for Query Analyzer drops any pr ior version of t he stored
procedure before creat ing a new version of it . You can run the script m ost easily
from Query Analyzer.
--Work with Northwind database.
USE Northwind
GO

--Remove any prior version of
--udpCitiesInCustomersCountry.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpCitiesInCustomersCountry’)
 DROP PROCEDURE udpCitiesInCustomersCountry
GO

--Create new version of udpCitiesInCustomersCountry.
CREATE PROC udpCitiesInCustomersCountry
@country nvarchar (15) = ’USA’
AS
SELECT DISTINCT City
FROM Customers
WHERE Country = @country
GO

After running the sam ple in this sect ion, you can rerun the port ion of the
preceding script t o drop the udpCit iesI nCustom ersCount ry stored procedure from
the Northwind database. This act ion will allow you to preserve the init ial design of
the Northwind database.
Figure 10-14 shows Form 1 on the left with Brazil entered as the count ry. Clicking
the Open Form 6 but ton opens Form 6 as shown in t he upper r ight of the figure.
I nit ially, t he city Cam pinas appears in t he com bo box. Not ice that no navigat ional
but tons appear below the text boxes. This is because there is just one custom er
located in Cam pinas. The com bo box in Form 6 is open to m ake São Paulo the
selected city. The v iew of Form 6 in the lower r ight of Figure 10-14 shows São
Paulo selected in t he com bo box, with navigat ional but tons below the text boxes
because the Custom ers table has four custom ers situated in São Paulo.

Figure 1 0 -1 4 . This exam ple of a data- aw are form displays navigat ional
buttons only w hen there is m ore than one custom er in a city to view .
Com bo box select ions change the set of cit ies that the text boxes can

show .

Not ice also the form borders in Figure 10-14. Form 1 appears with no border.
Form 6 appears with a capt ion, but it has no built - in Minim ize, Maxim ize, or Close
but ton. Both form s require users to close a form through the custom cont rol on
the form that enables the form close funct ion. This feature is especially
appropriate in t his design because using the standard but tons can fail t o close the

applicat ion proper ly. I w ill descr ibe br iefly t he two techniques for m anaging the
look of the form s in reviewing the code behind each form .

The Code Behind Form 1

The code behind Form 1 consists of t hree short event procedures. The form Load
event sets the Form BorderSty le property to None. This rem oves any sign of a
standard window border. I n the process, it rem oves the built - in Close but ton,
which was the m ain object ive of t he property assignm ent for this applicat ion.
Users can st ill close the form with the custom but ton labeled Close. This rem oves
the form in a way that clears any t race of t he applicat ion.
But ton1 is labeled Open Form 6. Click ing this but ton actually does a lit t le m ore.
First it instant iates an instance of Form 6 so that it can assign a value to a public
variable nam ed Count ry in t he Form 6 class instance. The event procedure copies
the contents of t he Text property for TextBox1 t o the Count ry variable in t he
Form 6 instance. After assigning a value to t he Count ry var iable, t he event
procedure opens the applicat ion’s second form by invoking the Show m ethod for
the frm 6 instance. Just before the event procedure concludes, it hides the current
form .
The event procedure for the Close but ton exit s the ent ire applicat ion with t he Exit
m ethod for the Applicat ion object . An Applicat ion object ’s Exit m ethod closes all
windows for an applicat ion, but it doesn’t invoke any special code associated with
the Close event or t he Closing event for a form instance. Therefore, if you have
explicit t erm inat ion code associated with t hose events, run the Close m ethod for
any form that requires the code to run before invoking the Exit m ethod for the
Applicat ion object .
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Reset border to remove Close button.
 Me.FormBorderStyle = FormBorderStyle.None

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim frm6 As New Form6()

 ’Open Form6 and hide Form1.
 frm6.Country = TextBox1.Text
 frm6.Show()
 Me.Hide()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Exit application.
 Application.Exit()

End Sub

The Code Behind Form 6

The code behind Form 6 starts with som e m odule- level declarat ions and an
adaptat ion of t he Populate procedure for adding DataTable objects to t he data set
behind the form . The m odule- level declarat ions, with one except ion, are for
objects and values used in m ore than one procedure in t he m odule behind Form 6 .
The except ion is for the Count ry var iable. Not ice that a Public keyword declares
this var iable so that it is available for reference outside the m odule. Recall t hat
the Click event for But ton1 in Form 1 assigns a value to this im portant variable.

Note

I t ’s necessary to both declare and instant iate the dav1
DataView object at the m odule level to make it available
across mult iple procedures. This requirem ent doesn’t exist
for the das1 data set object .
The Populate procedure for t he Form 6 m odule uses the
udpCit iesI nCustom ersCount ry stored procedure as the rem ote data source for the
Cit iesI nCount r ies DataTable obj ect . This stored procedure requires an input
param eter. Therefore, the syntax for t he sam ple confirm s the syntax for using a
stored procedure with a param eter as the source for a DataTable object . The
Populate procedure generates another DataTable object nam ed Custom ers-
InCount ry . This DataTable obj ect relies on a SQL st r ing expression that com bines
a st r ing constant with t he Count ry var iable. Because the code for the second
DataTable reuses elem ents used to create the first DataTable object , som e
m odificat ions are necessary. I n part icular, the procedure respecifies the
Com m andType as text and drops the prm 1 param eter.
‘Module-level declaration of data set and ‘dataview objects.
Dim das1 As DataSet
Dim dav1 As DataView = New DataView()

‘Boolean for tracking manipulation ComboBox1
‘in form load event.
Dim bolViewSetInFormLoad As Boolean

‘Declare Country publicly so that the variable
‘is available for assignment from another module.
Public Country As String

Sub Populate()

 ’Connect to Northwind database on local server.
 Dim cnn1 As SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;” & _
 “Initial Catalog=northwind”)

 ’Instantiate a command reference pointing at the
 ’udpCitiesInCustomersCountry stored proc; the stored
 ’proc enumerates the cities in countries from the
 ’Customers table.
 Dim cmd1 As SqlCommand = _
 New SqlCommand(“udpCitiesInCustomersCountry", cnn1)
 cmd1.CommandType = CommandType.StoredProcedure

 ’Declare the parameter with a SqlDbType, then assign
 ’the parameter a value based on a public variable
 ’whose value is passed from another form.
 Dim prm1 As SqlParameter = _
 cmd1.Parameters.Add(“@country", SqlDbType.NVarChar, 15)

 prm1.Value() = Country

 ’Assign cmd1 to the SelectCommand property of dap1, then
 ’open dap1.
 Dim dap1 As SqlDataAdapter = New SqlDataAdapter()
 dap1.SelectCommand = cmd1
 cnn1.Open()

 ’Fill the data set das1 with the data adapter dap1;
 ’the Fill method populates the data set with the
 ’udpCitiesInCustomersCountry result set and names
 ’the resulting datatable CitiesInCountry.
 das1 As DataSet = New DataSet()
 dap1.Fill(das1, “CitiesInCountry”)

 ’Specify a second cmd1 CommandText property and
 ’reset cmd1 properties for use with a SQL string
 ’instead of a stored proc with a parameter.
 cmd1.CommandText = “SELECT CustomerID, “ & _
 “ContactName, Phone, City “ & _
 “FROM Customers “ & _
 “WHERE Country = ’” & Country & “‘"
 cmd1.Parameters.Remove(prm1)
 cmd1.CommandType = CommandType.Text
 dap1.SelectCommand = cmd1

 ’Fill a datatable with the SQL string’s
 ’result set.
 dap1.Fill(das1, “CustomersInCountry”)

 ’Close the connection because a data set is a
 ’disconnected data source.
 cnn1.Close()

End Sub

The form Load event procedure along with two other sub procedures that it calls
perform s basic setup for Form 6 . One of these sub procedures is the Populate
procedure, which creates a data set for t he form to use. The other called sub
procedure is the ShowNavBut tons procedure, which cont rols the v isibilit y of the
navigat ion but tons that can appear below the text boxes. The
SelectedI ndexChanged event procedure for the com bo box also calls t he
ShowNavBut tons procedure whenever a user m akes a select ion from the com bo
box.
After calling Populate to create the das1 data set , the form Load event procedure
starts to put t he data set to use by binding the com bo box to the first table in the
data set with an index of 0. This is the Cit iesI nCount r ies DataTable object . Not ice
also that t he code explicit ly assigns both the DisplayMem ber and ValueMem ber
propert ies of t he com bo box to t he only colum n in t he Cit iesI nCount r ies
DataTable obj ect . By set t ing the ValueMem ber property, the m odule can
subsequent ly use the SelectedValue property for t he com bo box as an indicator of
the m ost recent select ion from the com bo box.
The form Load event procedure next m oves it s focus to creat ing the dav1
DataView object t hat the three text boxes bind to. The dav1 object relies on the
Custom ersI nCount ry DataTable obj ect . The reason the code binds the text boxes
to the DataView obj ect (instead of the DataTable obj ect) is that you can readily
filt er a DataView . I n this case, t he filt er is for t he city appearing in t he com bo
box. The statem ents binding the Text property of each text box to the DataView
colum ns don’t use a two-part nam ing convent ion (tablenam e.colum nnam e), as is

the case when you bind a text box to a DataTable obj ect in a data set . Because a
DataView holds just one source of rows, a DataView obj ect nam e uniquely
ident if ies a source of rows. Recall, however, t hat data set objects can contain
m ult iple DataTable obj ects.
The last two blocks of code in t he form Load event procedure address form at t ing
issues. The first of these blocks calls the ShowNavBut tons procedure with t he
count of rows in dav1 as an argum ent . I f there is only one row in dav1 , there is
no need for navigator but tons (because there is only one row to display) . Any
count value greater t han 1 will cause the ShowNavBut tons procedure to set t he
Visible property of the navigator but tons to True so that users can browse the
data for the different custom ers in a cit y. The final block of code shows a second
technique (from the one used in t he m odule for Form 1) t o m ake the built - in Close
but ton unavailable. This approach leaves the capt ion area at t he top of the form
so that you can show the form ’s Text property assignm ent . Set t ing the form ’s
Cont rolBox property t o False hides the built - in Close but ton. However, I found
through t r ial and error t hat I also needed to have either the Minim izeBox or
Maxim izeBox propert y set to False. The sam ple clears all t hree built - in cont rols
from the form .
Private Sub Form6_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Call the routine for creating the data set
 ’for the form.
 Populate()

 ’Bind combo box to the first datatable in das1
 ’on the form. Assign both the displaymember and
 ’valuemember combobox properties to the sole
 ’column in the first datatable.
 ComboBox1.DataSource = das1.Tables(0)
 ComboBox1.DisplayMember = _
 das1.Tables(0).Columns(0).ColumnName
 ComboBox1.ValueMember = _
 das1.Tables(0).Columns(0).ColumnName

 ’Specify a dataview (dav1) based on the
 ’CustomersInCountry dataTable that filters
 ’the datatable based on the selected value
 ’in the combobox when the form opens.
 dav1 = New DataView(das1.Tables(“CustomersInCountry”))
 Dim strFilter = “City = ’” & ComboBox1.SelectedValue & “‘"
 dav1.RowFilter = strFilter

 ’After the form load event sets the dataview’s
 ’filter, reset the Boolean from its default
 ’value of False.
 bolViewSetInFormLoad = True

 ’Bind each text box to a different column in dav1.
 TextBox1.DataBindings.Add _
 (New Binding(“Text", dav1, “CustomerID”))
 TextBox2.DataBindings.Add _
 (New Binding(“Text", dav1, “ContactName”))
 TextBox3.DataBindings.Add _
 (New Binding(“Text", dav1, “Phone”))

 ’Control visibility of navigation buttons.
 ShowNavButtons(dav1.Count)

 ’Reset the form’s ControlBox property

 ’to False (should also set either MinimizeBox
 ’or MaximizeBox to False).
 Me.MinimizeBox = False
 Me.MaximizeBox = False
 Me.ControlBox = False

End Sub

Sub ShowNavButtons(ByVal NavNum As Integer)

 ’Sub procedure to make nav buttons visible
 ’if there is more than one customer in the
 ’selected city.
 If NavNum > 1 Then
 cmdFirst.Visible = True
 cmdPrevious.Visible = True
 cmdNext.Visible = True
 cmdLast.Visible = True
 Else
 cmdFirst.Visible = False
 cmdPrevious.Visible = False
 cmdNext.Visible = False
 cmdLast.Visible = False
 End If

End Sub

Six event procedures com plete the applicat ion. One procedure is for a select ion
from the com bo box, four m ore are for clicks of the navigat ion but tons, and the
last one is for the but ton labeled Close. The SelectedI ndexChanged event
procedure for t he com bo box revises the row f ilter for t he dav1 DataView object if
the value of bolViewSet I nForm Load is True. This updates the data bindings for
the text boxes so they m atch the last city selected in the com bo box. The
condit ional execut ion of the row filter revision avoids perform ing the calculat ion
when the Form 6_Load event procedure is init ially populat ing the com bo box with
values. The event procedure also calls the ShowNavBut tons procedure to show or
hide the navigat ion but tons depending on the num ber of rows in t he dav1 object .
The Click event procedures for the four navigat ion but tons assign a different
value to the Posit ion property of t he BindingContext obj ect for each text box
cont rol rely ing on a sim ple data binding in Form 6. The Click event procedures for
the Previous (<) and Next (>) but tons m erely subt ract 1 from , or add 1 to, t he
current posit ion. This m oves the row displayed in t he text boxes backward or
forward one row. Visual Basic .NET is sm art enough not t o raise an except ion if a
user clicks the Next but ton when the Posit ion property is already at it s m axim um
set t ing. I n t his case, t he Posit ion property value stays unchanged. The sam e
principle applies t o clicks of the Previous but ton when the Posit ion property is
already at it s m inim um set t ing. Clicks of t he First (| <) and Last (> |) but tons
assign the m inim um and m axim um values, respect ively, to t he Posit ion property
for the BindingContext object of the text box cont rols.
The Click event procedure for t he Close but ton (But ton1) eventually closes Form 6
by apply ing the Close m ethod to the Me keyword. However, before doing this, the
event procedure for But ton1 opens an instance of Form 1 . Recall t hat Form 1
includes a but ton that exits the applicat ion. I n addit ion, it is com m on in a
hierarchy of form s to return to the top- level form before exit ing an applicat ion.
Private Sub ComboBox1_SelectedIndexChanged _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ComboBox1.SelectedIndexChanged

 ’Update dataview filter for combobox selection.
 If bolViewSetInFormLoad = True Then
 Dim strFilter = “City = ’” & _
 ComboBox1.SelectedValue & “‘"
 dav1.RowFilter = strFilter
 End If

 ’Control visibility of navigation buttons based
 ’on the outcome of the filter.
 ShowNavButtons(dav1.Count)

End Sub

Private Sub cmdFirst_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdFirst.Click

 ’Move to first record.
 Me.BindingContext(dav1).Position _
 = Me.BindingContext(dav1).Position.MinValue

End Sub

Private Sub cmdPrevious_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPrevious.Click

 ’Move to previous record.
 Me.BindingContext(dav1).Position -= 1

End Sub

Private Sub cmdNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdNext.Click

 ’Move to next record.
 Me.BindingContext(dav1).Position += 1

End Sub

Private Sub cmdLast_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdLast.Click

 ’Move to last record.
 Me.BindingContext(dav1).Position _
 = Me.BindingContext(dav1).Position.MaxValue

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Return control to calling form (Form1).
 Dim frm1 As New Form1()
 frm1.Show()
 Me.Close()

End Sub

Modifying, I nsert ing, and Delet ing Row s

This concluding sect ion of t his chapter t akes you through a sam ple applicat ion for
updat ing, insert ing, and delet ing rows in a SQL Server database based on act ions
you take in a Windows form bound to a local DataTable.

The Data Manipulat ion Sam ple in Act ion

The sam ple applicat ion for t his sect ion illust rates how to m odify, insert , and
delete rows in a SQL Server data source. The applicat ion uses Form 7 in the
MyADODOTNETSam ples solut ion. This form connects to t he Northwind database
on the local SQL Server instance. Follow the inst ruct ions from pr ior sam ples for
m aking Form 7 the startup object , and open Form 7 in Design v iew.
Before you can run the sam ple code behind Form 7 , you will also need the
udpI nsertANewShipper stored procedure on your local SQL Server instance. By
invoking the following T-SQL script in Query Analyzer, you can create udpI nsert -
ANewShipper on the SQL Server instance to which you connect . The first two T-
SQL batches connect to the Northwind database and elim inate any prior version
of t he stored procedure. The last T-SQL batch in the script is a CREATE
PROCEDURE statem ent that def ines the stored procedure. The
udpI nsertANewShipper stored procedure contains an I NSERT I NTO statem ent for
adding the Com panyNam e and Phone colum n values to a new row in the Shippers
table.
The stored procedure has two input param eters. The @Com panyNam e param eter
passes in t he nam e of the new shipper, and the @Phone param eter perform s the
sam e funct ion for the telephone num ber. The procedure returns the ShipperI D
value generated by the I DENTI TY propert y for t he Shippers table in the Northwind
database with t he @I dent it y output param eter. By using the built - in
SCOPE_I DENTI TY funct ion instead of @@I DENTI TY, t he procedure ensures that
the @I dent ity param eter value is the IDENTI TY property value generated by the
INSERT I NTO statem ent in t he current instance of t he udpI nsertANewShipper
stored procedure.
--ShippersTableScripts
--Connect to the Northwind database.
USE Northwind
GO

--Remove any prior version of udpInsertANewShipper.
IF EXISTS (SELECT ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_TYPE = ’PROCEDURE’ AND
 ROUTINE_NAME = ’udpInsertANewShipper’)
 DROP PROCEDURE udpInsertANewShipper
GO

--Create a new version of udpInsertANewShipper.
CREATE PROCEDURE udpInsertANewShipper
 @CompanyName nchar(40),
 @Phone nvarchar (24),
 @Identity int OUT
AS
INSERT INTO Shippers (CompanyName, Phone)
 VALUES(@CompanyName, @Phone)
SET @Identity = SCOPE_IDENTITY()
GO

Figure 10-15 shows the Design v iew of Form 7 . Three text boxes are bound to the
ShipperI D, Com panyNam e, and Phone colum n values in a local data set with a
Shippers DataTable based on the Shippers table in the Northwind database.
Below the text boxes are four but tons for navigat ing through the rows to which

the text boxes are bound. From left to r ight , t he but tons navigate to t he first row,
the previous row, the next row, and the last row.

Figure 1 0 -1 5 . A W indow s form for perform ing update, insert , and delete
tasks for a local DataTable and its synchronized table on a SQL Server

instance.

The four but tons below the navigator but tons im plem ent t he m ain new feature
associated with t he sam ple. The Modify but ton updates the Shippers table in the
Northwind database with any changed values from the Shippers DataTable in the
data set behind Form 7 . You can accum ulate m ore than one change locally by
navigat ing between rows with the navigator but tons and changing m ult iple
records. Then you can convey all updates to a server since the last t im e you
clicked the Modify but ton.
The Clear and I nsert but tons work together to accom m odate the insert ion of a
single new record at a t im e. Click t he Clear but ton to erase any data on the form .
Clicking the but ton doesn’t alt er any exist ing data. Then enter new values in t he
Com panyNam e and Phone text boxes. (These have the nam es TextBox2 and
TextBox3 in t he code behind the form .) Finish the insert task by clicking the
I nsert but ton. This adds the new Com panyNam e and Phone colum n values as a
row in the Shippers table within the Northwind database. I t also adds the Text
property set t ings for TextBox2 and TextBox3 to the Shippers DataTable wit hin the
data set along with the I dent it y value created for t he new row on the SQL Server
instance.
The Delete but ton operates on one record at a t im e. Navigate to t he record that
you want to rem ove, and then click the Delete but ton. Repeat the process for as
m any addit ional rows as you need to rem ove. The Delete but ton rem oves the row
from the DataTable supply ing values to t he current record appear ing in a form as
well as the sam e row in the table on the SQL Server instance with which the local
DataTable synchronizes.
Figure 10-16 shows an update task in progress through Form 7. On the left side of
the figure are three form windows on the first , second, and third rows of t he
Shippers DataTable. The top window shows the addit ion of 1 to the
Com panyNam e ent ry on the form for t he row with the ShipperI D value 1. The
second and third windows in the left colum n show the addit ion of 2 and 3 to t he
Com panyNam e ent r ies for t he rows with t he ShipperI D values 2 and 3. After
navigat ion off a row, any changes m ade to a text box value on a form
autom at ically update the corresponding local DataTable row. However, those

changes don’t propagate to the SQL Server instance unt il the code behind the
form invokes the Update m ethod. Click ing the Modify but ton perform s this task
for any rows changed since the last t im e a user clicked the but ton.
The two windows on the r ight of Figure 10-16 show a Query Analyzer session that
can select all the colum n values for all t he rows from the Shippers table in t he
Northwind database. The top window shows the result set from the SELECT
statem ent before a click of t he Modify but ton but after all t hree records were
updated in t he local DataTable. Alt hough the local user can v iew and navigate
between the records after changing them , those changes don’t propagate to the
server unt il aft er the user clicks the Modify but ton. The bot tom window on the
right shows the result set from the sam e SELECT statem ent as the one on top,
but this one reflects the changes to t he DataTable to which the form text box
cont rols bind. The DataTable values were updated for t he top and bot tom result
sets. The only difference is that t he bot tom result was generated after I clicked
the Modify but ton on Form 7 .
Figure 10-17 dem onst rates how to perform insert and delete tasks with the
sam ple applicat ion. The sam ple applicat ion expects users to click t he Clear but ton
when they want to add a new row. This not only clears the form but also unbinds
the text boxes tem porar ily from the Shippers DataTable. Users can then enter
new values in t he text boxes for Com panyNam e and Phone colum n values. To
com m it t he new colum n values locally and on a SQL Server instance, t he sam ple
applicat ion expects the user to click the I nsert but ton. The window on the left in
Figure 10-17 shows the form after I entered New Mover1 for Com panyNam e and
(123) 456-7890 for Phone. Click ing the I nsert but ton creates a new row with
those values in both the local Shippers DataTable and the Shippers table in a SQL
Server instance.

Figure 1 0 - 1 6 . The three w indow s in the colum n on the left show changes
m ade to a local DataTable. The tw o w indow s on the right contrast the
im pact on a synchronized SQL Server version of the table before and

after a click of the Modify but ton.

The window on the r ight in Figure 10-17 shows the form after I clicked the I nsert
but ton. The applicat ion autom at ically navigates to the inserted record after a user
clicks I nsert . I n addit ion, it shows the ShipperI D value for t he row that was
generated on the SQL Server instance. Click ing the Delete but ton at this point can
rem ove the new row from both the Shippers DataTable in t he data set behind the
form and the Shippers t able in the SQL Server instance. Alt ernat ively, you can
navigate to another row that you want to delete.

Figure 1 0 - 1 7 . Tw o w indow s that show colum n values just before and
after their insert ion into a local DataTable and a synchronized SQL Server

table. The w indow on the r ight a lso show s the cursor on the button to
rem ove the new ly added row .

Code Associated w ith the Form Load Event

The Load event for Form 7 handles set t ing up for t he update, insert , and delete
tasks described in the discussions of Figures 10-16 and 10-17. The m ajor setup
issue for form s enabling data m anipulat ion tasks is to specify UpdateCom m and,
I nsertCom m and, and DeleteCom m and propert ies for t he DataAdapter that
populates the data set behind the form . The UpdateCom m and property enables
update tasks. The I nsertCom m and property perm its the insert ion of new rows
into a SQL Server data source. The DeleteCom m and property facilitates the
rem oval of rows from a SQL Server data source. As usual, the sam ple code places
the setup code for t he DataAdapter and data set in a procedure nam ed Populate
that the form Load event procedure calls. I ’ ll start by reviewing the Populate
procedure, and I ’ll follow that with a review of the form Load event procedure.
Because the sam ple uses the DataAdapter and data set in m ore than one
procedure behind Form 7 , the sam ple code declares the references for t hese
objects at the m odule level. After t hese declarat ions, t he Populate procedure
instant iates Connect ion (cnn1) and DataAdapter (dap1) objects in the norm al
way. The cnn1 object designates a connect ion to the Northwind database on the
local SQL Server instance. The SQL st r ing that is the argum ent for the dap1
SqlDataAdapter reference specifies t he SQL Server source used to populate the
data set . Because ADO.NET enables updates, inserts, and deletes through the
DataAdapter , t he SQL st r ing is especially im portant when you are perform ing
data m anipulat ion tasks. All data m anipulat ion tasks operate on the source
specified when you instant iate the DataAdapter . You can opt ionally create a
Com m and object with it s own SQL st r ing and then set the SelectCom m and
property of the DataAdapter t o t he Com m and obj ect . Either technique achieves
the sam e result of specify ing a source for t he data m anipulat ion tasks through a
DataAdapter obj ect .
After designat ing a data source for the DataAdapter , the Populate procedure
specifies the UpdateCom m and propert y for the dap1 DataAdapter . The
UpdateCom m and property assignm ent instant iates a new Com m and obj ect and
references the Connect ion object cnn1 , instant iated earlier in t he procedure. The
SQL st r ing for the Com m and object is a T-SQL UPDATE statem ent . The syntax
specifies the Shippers t able as the target . I n the statem ent ’s SET clause, you’ll
not ice the @Com panyNam e, @Phone, and @ShipperI D param eters. These
param eters let the sam ple applicat ion pass changed values from the data set that
the DataAdapter f ills to the Shippers table in t he Northwind database.

Note

The T-SQL UPDATE statement uses a pr imary key,
ShipperI D, in its WHERE clause. This is a useful technique for
precisely specify ing the rows that you want to change on a
server.
The sam ple m ust explicit ly add param eter objects to the Param eters collect ion for
the Com m and object to which the UpdateCom m and property points. The Populate
procedure shows one syntax for using the Add m ethod as it adds the
@Com panyNam e and @Phone param eters. The sam ple code specifies each of
these param eters with four argum ents. The first argum ent is the param eter
nam e. The second and third argum ents designate the data t ype for t he
param eter. Because the @Com panyNam e and @Phone param eters update
colum ns in a table within a SQL Server database, you should assign SQL Server
data types that m atch the colum ns they are updat ing, nam ely nvarchar(40) and
nvarchar(24) . When you’re using a num eric form at , you can designate the third
argum ent as 0 . The fourth argum ent is the colum n nam e in the local DataTable
that serves as the source for t he param eter. This is the colum n from which the
DataAdapter Update m ethod will derive the changed values to pass along to the
SQL Server instance according to the UPDATE statem ent in t he UpdateCom m and
property set t ing of t he DataAdapter.
Following the addit ion of the @Com panyNam e and @Phone param eters, the
Populate procedure dem onst rates another syntax while adding the @ShipperI D
param eter. For t he @ShipperI D param eter, t he procedure uses j ust two
argum ents for t he Add m ethod— one for t he param eter ’s nam e and another for it s
num eric data type. I nstead of specify ing the local source for the param eter in the
argum ent st r ing for t he Add m ethod, t he code uses the param eter’s
SourceColum n property to designate the source colum n in the Shippers Data-
Table. The last statem ent for the @ShipperI D param eter specif icat ion assigns a
value to the param eter’s SourceVersion propert y. This value is Current by
default— m eaning that it is the current value in t he local DataTable serving as the
source for updat ing a SQL Server data source. This is why we didn’t need to
specify t he property for the @Com panyNam e and @Phone param eters. For t hose
two param eters, we wanted to specify t he current colum n values from the local
DataTable. However, t he @ShipperI D param eter is an argum ent in t he WHERE
clause for t he UPDATE statem ent , which specifies which SQL Server table rows to
update. Designat ing Original for t he SourceVersion property ensures that we are
using the init ial values that t he DataAdapter uses to f ill t he Shippers DataTable.
The next block of code in t he Populate procedure specifies the I nsertCom m and
property for dap1 and adds param eters for t he Com m and obj ect assigned to the
property. The sam ple uses the udpI nsertANewShipper stored procedure instead
of a SQL st r ing. Recall t hat t he code for t he T-SQL script for t he stored procedure
is available in t he preceding sect ion. Using a SQL st r ing m akes the ADO.NET code
m ore t ransparent , but invoking a stored procedure supports faster perform ance.
When you designate a stored procedure nam e as the source for an
I nsertCom m and, UpdateCom m and , or DeleteCom m and property, you m ust also
set the corresponding Com m andType property to StoredProcedure. The Populate
procedure dem onst rates the syntax for t his in t he line following the
I nsertCom m and propert y assignm ent .
The Add m ethod statem ents for the @Com panyNam e and @Phone param eters
with t he Com m and object I nsertCom m and follow the sam e syntax as for t he
UpdateCom m and com m and param eters. Not ice that you are adding these
param eters to I nsertCom m and instead of the Com m and object UpdateCom m and.
There is no @ShipperI D param eter for I nsertCom m and because SQL Server
generates that value on the SQL Server instance. However, t he procedure
declares prm 2 as an output param eter for get t ing the value of @I dent ity . This
param eter allows the local copy of t he Shippers DataTable t o recover t he value

that the SQL Server instance assigns as the value of ShipperI D in the Shippers
table when it inserts a new row into t he table.
The next code block shows the syntax for set t ing the DeleteCom m and property of
dap1 . I n this case, t he Populate procedure uses a SQL st r ing to specify the T-SQL
for the DELETE statem ent on a SQL Server instance. As with t he UPDATE
statem ent , you m ust be careful t o designate the specific rows that you want t o
m anipulate. Using a prim ary key in the WHERE clause is one way to specify a
unique row in a SQL Server data source. The code for specifying the @ShipperI D
param eter for t he DeleteCom m and property of dap1 is the sam e as that used for
UpdateCom m and except for the Com m and object reference.
Once the Populate procedure com pletes specify ing the UpdateCom m and,
I nsertCom m and, and DeleteCom m and propert ies for t he DataAdapter , the
procedure concludes in the norm al fashion. First it opens the Connect ion object so
that the dap1 DataAdapter can connect with a SQL Server instance. Second it f ills
a table. Third it closes the Connect ion obj ect .
‘Module-level declaration of data adapter and data set.
Dim dap1 As SqlDataAdapter
Dim das1 As DataSet

Sub Populate()

 ’Connect to Northwind database on local server.
 Dim cnn1 As SqlClient.SqlConnection = _
 New SqlConnection(“Data Source=(local);” & _
 “Integrated Security=SSPI;” & _
 “Initial Catalog=northwind”)

 ’Instantiate a data adapter based on a SQL string.
 dap1 = New SqlDataAdapter _
 (“SELECT ShipperID, CompanyName, Phone “ & _
 “FROM Shippers", _
 cnn1)

 ’Set the UpdateCommand property for dap1.
 dap1.UpdateCommand = _
 New SqlCommand _
 (“UPDATE Shippers “ & _
 “SET CompanyName = @CompanyName, “ & _
 “Phone = @Phone “ & _
 “WHERE ShipperID = @ShipperID", _
 cnn1)

 ’Add two parameters that take source columns
 ’from the Shippers table in the data set for the
 ’dap1 adapter and feed the parameters in the SQL
 ’string for the UpdateCommand property.
 dap1.UpdateCommand.Parameters.Add _
 (“@CompanyName", SqlDbType.NVarChar, 40, _
 “CompanyName”)
 dap1.UpdateCommand.Parameters.Add _
 (“@Phone", SqlDbType.NVarChar, 24, _
 “Phone”)

 ’Specify matching criterion values based on the
 ’original version of the ShipperID column in the
 ’local Shippers table.
 Dim prm1 As SqlParameter = _
 dap1.UpdateCommand.Parameters.Add _
 (“@ShipperID", SqlDbType.Int)
 prm1.SourceColumn = “ShipperID"

 prm1.SourceVersion = DataRowVersion.Original

 ’Point InsertCommand at a SQL Server stored procedure;
 ’you must have the stored procedure on the server.
 dap1.InsertCommand = New SqlCommand(“udpInsertANewShipper", cnn1)
 dap1.InsertCommand.CommandType = CommandType.StoredProcedure

 ’Specify input parameters for the stored procedure.
 dap1.InsertCommand.Parameters.Add _
 (“@CompanyName", SqlDbType.NVarChar, 40, _
 “CompanyName”)
 dap1.InsertCommand.Parameters.Add _
 (“@Phone", SqlDbType.NVarChar, 24, _
 “Phone”)

 ’Designate an output parameter for the identity
 ’value assigned within SQL Server so that your
 ’local Shippers table can have a matching ShipperID
 ’column value.
 Dim prm2 As SqlParameter = _
 dap1.InsertCommand.Parameters.Add _
 (“@Identity", SqlDbType.Int, 0, “ShipperID”)
 prm2.Direction = ParameterDirection.Output

 ’Specify the SQL string for the DeleteCommand
 ’property of dap1.
 dap1.DeleteCommand = _
 New SqlCommand(“DELETE “ & _
 “FROM Shippers “ & _
 “WHERE ShipperID = @ShipperID", cnn1)

 ’Specify matching criterion values based on the
 ’Original version of the ShipperID column in the
 ’local Shippers table.
 Dim prm3 As SqlParameter = _
 dap1.DeleteCommand.Parameters.Add _
 (“@ShipperID", SqlDbType.Int)
 prm3.SourceColumn = “ShipperID"
 prm3.SourceVersion = DataRowVersion.Original

 cnn1.Open()

 ’Instantiate a data set object and fill it with
 ’a table based on the SQL string for the dap1
 ’data source
 das1 = New DataSet()
 dap1.Fill(das1, “Shippers”)

 ’Close the connection because a data set
 ’functions as a disconnected data source.
 cnn1.Close()

End Sub

The Form 7_Load event procedure perform s three types of tasks. First it calls t he
Populate procedure. This creates the data set for the form and readies the data
set for data m anipulat ion tasks through the dap1 DataAdapter . The data set , in
turn, contains the Shippers DataTable. Second the event procedure binds the
Text property of TextBox1, TextBox2, and TextBox3 t o t he ShipperI D,
Com panyNam e, and Phone colum ns in t he Shippers DataTable. Third the form
Load event procedure sets the ReadOnly property to True for TextBox1—the text

box that displays ShipperI D. This is because users aren’t supposed to edit
ShipperI D values. The SQL Server instance m anaging the Shippers table is
responsible for m anaging values of ShipperI D.
Private Sub Form7_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Populate the das1 data set.
 Populate()

 ’Bind each text box to a different column in the
 ’Shippers table within das1.
 TextBox1.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.ShipperID”))
 TextBox2.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.CompanyName”))
 TextBox3.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.Phone”))

 ’Make TextBox1 read-only.
 TextBox1.ReadOnly = True

End Sub

Code for the Navigat ion Buttons

The Click event procedures for the navigat ion but tons appear next . The basic
syntax for the navigat ion but tons in t his sam ple follows those in the “Creat ing
Data-Aware Form s” sect ion. The m ain difference in t his instance is t hat we need
to specify the data source for t he BindingContext object with a data set nam e and
a DataTable nam e within t he data set . The but ton nam e denotes the role of each
but ton. For exam ple, clicking cm dFirst shows the first row in the Shippers
DataTable w it hin t he form .
Private Sub cmdFirst_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdFirst.Click

 ’Move to first record.
 Me.BindingContext(das1, “Shippers”).Position _
 = Me.BindingContext(das1, “Shippers”).Position.MinValue

End Sub

Private Sub cmdPrevious_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPrevious.Click

 ’Move to previous record.
 Me.BindingContext(das1, “Shippers”).Position -= 1

End Sub

Private Sub cmdNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdNext.Click

 ’Move to next record.
 Me.BindingContext(das1, “Shippers”).Position += 1

End Sub

Private Sub cmdLast_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdLast.Click

 ’Move to last record.
 Me.BindingContext(das1, “Shippers”).Position _
 = Me.BindingContext(das1, “Shippers”).Position.MaxValue

End Sub

Code for the Modify But ton

The Click event procedure for t he Modify but ton (cm dModify) perform s just two
tasks. First it com m its the current edit if there is one in progress. Second it
invokes the Update m ethod for t he dap1 DataAdapter .
The procedure com m its the current edit in one of two ways depending on the
posit ion of t he Shippers DataTable row showing in t he form . I f the posit ion is any
other than the first row (posit ion 0) , t he procedure m oves to t he previous row
and then the next row. The m ove to the previous row com m its the current form
values to t he Shippers DataTable by m oving off the current row. Then the m ove
to the next row returns the form ’s focus to the row before the m ove to t he
previous row. I f t he form is showing the first row in t he Shippers DataTable, t he
procedure j ust issues a com m and to m ove to t he previous record. This com m its
the form ’s values to t he Shippers DataTable w ithout changing the row that
appears in the form .
The Update m ethod invokes the Com m and obj ect s associated with t he
UpdateCom m and, I nsertCom m and, and DeleteCom m and propert ies of dap1 .
Because the sam ple applicat ion im m ediately synchronizes indiv idual insert and
delete act ions, t he Update m ethod behind the Modify but ton synchronizes just
rows with changed values in t he Shippers DataTable w it h t he Shippers table in
the Northwind database on the local SQL Server instance. However, all changed
rows since the last click of t he Modify but ton at tem pt to update corresponding
Shippers table rows on the SQL Server instance. The syntax for t he Update
m ethod in t he sam ple specifies the nam es for t he data set and the DataTable
wit hin it . Failing to explicit ly generate the DataTable nam e can generate an error
in this context .
Private Sub cmdModify_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Commit the current edit by moving off and returning to
 ’the current row in the DataTable.
 If Me.BindingContext(das1, “Shippers”).Position = 0 _
 Then
 Me.BindingContext(das1, “Shippers”).Position -= 1
 Else
 Me.BindingContext(das1, “Shippers”).Position -= 1
 Me.BindingContext(das1, “Shippers”).Position += 1
 End If

 ’Invoke the Update method to copy the change
 ’to the SQL Server data source.
 dap1.Update(das1, “Shippers”)

End Sub

Code for the Clear and I nsert But tons

Recall t hat the form Load event procedure binds the text boxes to colum ns in the
Shippers DataTable. Therefore, let t ing a user m ark over text box values and

invoke the Update m ethod with a click of t he I nsert but ton won’t add a new
record. I nstead, it w ill m odify an exist ing row in t he Shippers DataTable. To add a
new row to t he DataTable (and eventually to the Shippers table on a SQL Server
instance), you need to start w ith an unbound form . I f this form is em pty, it
rem inds the user that it is for data ent ry. Next add the text box values as a new
row to t he local DataTable, and finally invoke the Update m ethod to propagate
the new row from the local DataTable to t he corresponding table on the SQL
Server database.
The cm dClear_Click event procedure perform s three tasks. The preceding
paragraph m ent ioned two of t hese funct ions: rem ove the data bindings for t he
text boxes and clear t he contents of t he text boxes. You can rem ove all data
bindings for a cont rol w ith the Clear m ethod for the DataBindings collect ion.
(Recall t hat you can have m ult iple data bindings for different propert ies on a
cont rol.) You can clear t he contents of a text box by assigning an em pty st r ing
("") t o it s Text property. There is also an explicit Clear m ethod for the text box
cont rol. The sam ple dem onst rates the approach using an em pty st r ing.

Note

The cmdClear_Click event procedure starts with an
assignment that moves the text box to the first row before
clearing the data bindings. This step is necessary to ensure
that the first row in the local DataTable will be editable
through the form after a new row is inserted with the I nsert
but ton.
The user is supposed to click t he I nsert but ton (cm dInsert) aft er enter ing values
for a new shipper. The Click event procedure for cm dI nsert starts by adding a
new row to t he local DataTable based on the text box Text property set t ings.
Next t he procedure invokes the Update m ethod for the dap1 DataAdapter to
synchronize the local DataTable w it h it s corresponding table on the SQL Server
instance to which the DataAdapter connects. Then the procedure restores the
data binding set t ings for the three text boxes. The last act ion the Click event
procedure perform s is to assign the Posit ion property for t he BindingContext
obj ect of Form 7 to the last row in t he local DataTable. This exposes the newly
entered row on the form that was inserted into the last row of the local
DataTable.
I t ’s helpful t o review the steps for adding a new row to the local DataTable t o get
a feel for the object m odel associated with t he DataTable obj ect . (See Figure 10-1
as well.) The steps start at the top of the cm dI nsert_Click event procedure by
declaring and instant iat ing a new DataRow object based on the Shippers
DataTable. Assign the Text property values for TextBox2 and TextBox3 to t he
Com panyNam e and Phone colum ns of t he new DataRow obj ect . Then invoke the
Add m ethod for the Shippers DataTableRows collect ion to add the new row object
as the last row in t he DataTable.
Private Sub cmdClear_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdClear.Click

 ’Always insert from first row to enable
 ’updating that row later.
 Me.BindingContext(das1, “Shippers”).Position _
 = Me.BindingContext(das1, “Shippers”).Position.MinValue

 ’Disconnect the form’s textboxes from any
 ’data bindings.
 TextBox1.DataBindings.Clear()
 TextBox2.DataBindings.Clear()

 TextBox3.DataBindings.Clear()

 ’Clear text box contents.
 TextBox1.Text = “"
 TextBox2.Text = “"
 TextBox3.Text = “"

End Sub

Private Sub cmdInsert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdInsert.Click

 ’Add text box values to new row in data set Shippers table.
 Dim newRow As DataRow = das1.Tables(“Shippers”).NewRow()
 newRow(“CompanyName”) = TextBox2.Text
 newRow(“Phone”) = TextBox3.Text
 das1.Tables(“Shippers”).Rows.Add(newRow)

 ’Update for insert ADO.NET automatically passes data source
 ’identity value to current row for Shippers table in data set.
 dap1.Update(das1, “Shippers”)

 ’Re-bind each text box to a different Shipper’s
 ’column in the das1 data set.
 TextBox1.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.ShipperID”))
 TextBox2.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.CompanyName”))
 TextBox3.DataBindings.Add _
 (New Binding(“Text", das1, “Shippers.Phone”))

 ’Move to last row to show inserted row.
 Me.BindingContext(das1, “Shippers”).Position _
 = Me.BindingContext(das1, “Shippers”).Position.MaxValue

End Sub

Code for the Delete But ton

When a user clicks the Delete but ton (cm dDelete) , t hey launch its Click event
procedure, which appears next . Before the procedure can drop the row from the
local Shippers table, it m ust locate the row corresponding to t he values that
appear on the form . There is a Find m ethod for the Rows collect ion of a Data-
Table, but t he m ethod can search only by a pr im ary key colum n. When the
DataAdapter f ills the data set with t he Shippers table colum n values from the
local SQL Server instance, it doesn’t also create a prim ary key for t he ShipperI D
colum n. As a result , you cannot use the Find m ethod for t he Rows collect ion of a
DataTable. However, t he Find m ethod for a DataView object based on the local
Shippers DataTable doesn’t require a pr im ary key. Therefore, t he procedure can
use this m ethod to find the row to delete.
The cm dDelete_Click event procedure starts by declar ing and instant iat ing a
DataView based on the local Shippers DataTable. Next t he procedure sets the
Sort propert y of the DataView so that it s rows are sorted in ascending order
based on ShipperI D value. This step is necessary so that t he Find m ethod can
return the row index value for t he first ShipperI D m atching a value. Row index
values start at 0 for the first row and progress by 1 for each row.
After f inding the row to delete, t he procedure perform s two tasks. First it invokes
the Delete m ethod for t he row in t he local Shippers DataTable m atching the

discovered row index value. Second it invokes the Update m ethod to synchronize
the local Shippers DataTable w it h t he Shippers table in the SQL Server database.

Note

Recall that the DataTable model lets developers remove rows
with either the Delete or Remove method. When delet ing a
row for use with the Update method, never use the Rem ove
method because the Remove m ethod doesn’t leave the row
available for use by the Update method. See “The DataSet
Class” sect ion for more background on this topic.
Private Sub cmdDelete_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdDelete.Click

 ’Create a dataview based on the Shippers table in
 ’the data set and find the row index that matches
 ’the current ShipperID.
 Dim dav1 As DataView = _
 New DataView(das1.Tables(“Shippers”))
 dav1.Sort = “ShipperID"
 Dim rowIndex As Integer = _
 dav1.Find(TextBox1.Text)

 ’Mark the row for deletion in the data set.
 das1.Tables(“Shippers”).Rows(rowIndex).Delete()

 ’Invoke the Update method to complete the deletion
 ’in both the SQL Server and data set Shippers tables.
 dap1.Update(das1, “Shippers”)

End Sub

Chapter 1 1 . Program m ing ASP.NET
Solut ions
ASP.NET is the Web developm ent environm ent for building Web solut ions in the
.NET Fram ework. Like ADO.NET, t he .NET Fram ework data com ponent , ASP.NET
works with any .NET language, including Visual Basic .NET. I n other words, you
can build Web applicat ions direct ly with Visual Basic .NET. Building Web
applicat ions with Visual Basic is highly sim ilar to creat ing Windows applicat ions in
Visual Basic. This sim ple fact (now Visual Basic can build Web solut ions) prom ises
to open up Web developm ent to m illions of Visual Basic developers. I n t he past , a
large segm ent of Visual Basic developers avoided creat ing Web solut ions because
of t he m any differences between Windows developm ent t echniques and
t radit ional Web developm ent techniques. I f you are a Visual Basic developer who
has been wait ing for t he r ight t im e to start creat ing Web solut ions, now is the
t im e, and ASP.NET is the way.
So what if you already know ASP developm ent? Can ASP.NET help? Maybe even
m ore to the point , w ill ASP.NET hurt your exist ing Web solut ions? ASP.NET
com piles your code so that t he com piled version of your pages will always run
faster t han interpreted ASP pages. I n addit ion, ASP.NET split s the graphical
layout of Web pages from the program m at ic logic cont rolling Web pages into two
separate files. This prom ises to great ly expedite your developm ent efforts by
rem oving the need for interspersing HTML and som e script ing code, such as
VBScr ipt or JScr ipt . Because ASP.NET Web pages can run side by side with older
ASP pages, t hey don’t hurt or break exist ing applicat ions. I nstead, ASP.NET
solut ions can com plem ent ASP applicat ions by expedit ing the developm ent of new
features for previously exist ing Web solut ions.
This chapter int roduces Visual Basic developers to building Web solut ions with
ASP.NET. I start the chapter with an overview of conceptual and hands-on design
issues that can m ake you m ore product ive when you get around to wr it ing code.
Next I int roduce code developm ent techniques with ASP.NET even while I
cont inue to highlight special Web issues, such as dynam ically adapt ing to the
browser on which your solut ion runs. Com m unicat ing between Web pages is
different t han with t radit ional Windows applicat ions because the HTTP protocol
used in near ly all Web applicat ions is stateless. That is, t he protocol by it self
doesn’t convey anything about the history of v isits to a Web server by a browser
in a session. An ent ire sect ion goes into clarify ing session m anagem ent and
offer ing a m ix of rem edies opt im ized for different sit uat ions. Perhaps this
chapter ’s m ost im portant sect ion discusses and dem onst rates how to use SQL
Server databases in ASP.NET solut ions. You will learn about classic data issues,
such as browsing a data source, creat ing parent -child form s, and perform ing
update, insert , and delete operat ions. The final sect ion highlights how to
graphically and program m at ically m anage the validity of data on Web pages in
ASP.NET.
The resources for t his chapter include a series of sam ples. The discussion of each
sam ple describes the key files and folders for running the sam ples from Visual
Studio .NET and from within a browser.

Review of ASP.NET Design I ssues

ASP.NET is the collect ion of t ools available in the .NET Fram ework for creat ing
Web applicat ions. This sect ion orients you to Web developm ent issues and

int roduces design interfaces for creat ing solut ions. Understanding the m aterial in
this sect ion is a v ital stepping-stone for t he next sect ion, which gets you started
creat ing and running ASP.NET solut ions.

Round- Trips

ASP.NET is the collect ion of .NET tools that explicit ly target Web applicat ion
developm ent . The def ining elem ent of Web applicat ions is that browsers
com m unicate with a Web server in a call-and-response dynam ic. The browser
sends a page of content as a file t o t he Web server, and the server can respond
with a new page of inform at ion to t he browser. You can think of t his exchange of
inform at ion between the browser and the Web server as a round- t r ip.
While browsers can run program s locally without exchanging inform at ion with t he
Web server, it ’s the round- t r ip feature that dist inguishes Web applicat ions from
classic Windows applicat ions. One aspect of Web secur ity is t hat the abilit y of
browsers to run program s locally is rest r icted. Windows applicat ions, in cont rast ,
specifically exploit the resources of a local workstat ion to provide a r ich
com put ing environm ent . Chapter 10 described how to deliver data access and
m anipulat ion capabilit ies via a data set residing on a local workstat ion. I n
ASP.NET applicat ions, t he data set typically resides with t he Web page that a
browser and a Web server exchange with one another. Any updates result ing
from the com m unicat ion of a Web server with a database server result in a
refreshed data set for return to a Web browser. Because the page m oves back
and forth between the browser and the Web server, you should scale t he size of
data sets residing on the page so that the data sets don’t significant ly add to the
exchange t im e between a browser and a Web server.
Figure 11-1 graphically port rays how ASP.NET facilitates the com m unicat ion
am ong a browser, a Web server, and a database server, such as a SQL Server
instance. Not ice in t he figure that a cylinder represent ing a data set resides on a
page. The page is passed from a browser to a Web server and back again. The
exchange between a browser and a Web server takes place through a Web. This
can be the I nternet , a com panywide int ranet , or your HTTP connect ion to a local
Web server running on your m achine. I n fact , m any of the sam ples in this chapter
are configured so you can test them with a local Web server on your com puter.
Not ice that the browser doesn’t direct ly inter face with the database server.
I nstead, the Web server com m unicates with t he database server and exchanges
data with t he browser; t he Web server stands between the browser and the
database server. This process enables the browser to v iew data on the database
server and synchronize it s updates with t hose of other database users.

Figure 1 1 -1 . A schem at ic illust rat ing the round- t rip process for data on a
W eb page in ASP.NET.

A typical ASP.NET applicat ion will be run in an environm ent in which m any
browsers are connected to a single Web server or a farm of Web servers. For
sim plicit y , I discuss the case of t he single Web server, but t he sam e general
principles apply to a farm of Web servers. The asynchronous nature of
com m unicat ion between a Web server and browsers facilitates the m aintenance
of a large num ber of concurrent browser sessions with a single Web server. Each
of t hese browsers can have a different session state with the Web server. I n
other words, t he sam e page can show different contents to different users
depending on the interact ions of each user with the Web server. At the sam e
t im e, a database server can provide a consistent set of inform at ion across
m ult iple browser sessions.
Another defining character ist ic of Web applicat ions is that a Web server can serve
pages to m any different k inds of browsers. Although all browser types render
HTML code in pages served from a Web server, the rendering isn’t necessarily
invariant from one browser type to the next . Som e browsers handle client -side
script ing in one language but not another. Dif ferent browser versions target
different HTML versions (3.2 and 4.0 are two com m on HTML versions). Som e
support absolute posit ioning, but support isn’t universal for this feature. For
differences such as those noted, it ’s not uncom m on for Web applicat ions to have
to “snif f” t he browser type to determ ine it s characterist ics and then send a page
that is rendered and behaves well on that browser.
ASP.NET offers a couple of approaches to handling Web applicat ion developm ent
issues. First , ASP.NET can elicit HTML from Web servers in an at tem pt to
m inim ize the im pact of different browser types on the way that a page appears in
a browser. Second, ASP.NET has built - in capabilit ies for detect ing browser types

and their capabilit ies. Your applicat ions can tap these capabilit ies to direct
browsers to pages that are rendered well wit hin them .

Note

I t ’s a big drain on lim ited Web applicat ion development
resources to detect browsers and prepare mult iple pages that
are rendered well in different browsers. As a business
employing talented Web developers, wouldn’t you rather
those developers spend their t ime creat ing more useful
content in different pages than creat ing m ult iple copies of a
sm aller number of less useful pages so as to opt im ize for
different browsers? Because ASP.NET is free with the I IS 5.0
Web server, and the Internet Explorer browser is free with
most Microsoft products and from Microsoft ’s I nternet site, I
recommend you use the I nternet Explorer browser for your
ASP.NET applicat ions. Note that Microsoft didn’t encourage
me to make this statement . I nstead, I make the statement
on the basis of my observat ions about how tax ing it is on
organizat ions to create Web solut ions that work well with
mult iple browsers.

Pages and the Page Class

As indicated in Chapter 8, ASP.NET builds on ASP. For exam ple, Web servers can
discern an ASP.NET page based on it s extension, .aspx. The extension for an
ASP.NET page is the sam e as the extension of ASP pages with an x appended to
it . For exam ple, an ASP.NET page will have a nam e like m ypage.aspx.
Any ASP.NET solut ion can have m ult iple pages within it . You can designate one
page as the start page for an applicat ion. (There is no startup object as there is
with Windows applicat ions.) An ASP.NET solut ion can contain m ult iple pages, and
users can navigate within and between the pages of a solut ion. I n addit ion, you
can navigate to old .asp page f iles or even other types of f iles, such as .htm or
.htm l f iles.
When an ASP.NET applicat ion opens an .aspx f ile, t he applicat ion launches the
Page_Load event procedure (unless you rem ove it) . The Page class is a
program m ing abst ract ion of an .aspx f ile. This Page class provides m any valuable
services. For exam ple, you can use a page’s I sPostBack property to determ ine
whether a page is being displayed for t he f irst t im e in a session or is the result of
a browser post ing a page back to a Web server. A page’s Session property
enables your applicat ion to m anage var iables across m ult iple asynchronous
connect ions to a Web server from a browser within a session. A page’s
Applicat ion propert y points to an Applicat ion obj ect for shar ing var iable values
across an applicat ion’s users. One of the m ost excit ing features of the Page class
is the way that it autom ates the m anagem ent of form at t ing and content between
round- t r ips; I ’ ll discuss this t opic m ore fully in the “Session State Managem ent”
sect ion. With t he Response and Request propert ies for a page, you can explicit ly
m anage the exchange of inform at ion between a Web server and a browser. The
Response property enables you to echo content to Web pages so that you can
m onitor the ingoing and outgoing values for cont rols and variable values on Web
pages. Developers will recognize this capabilit y as part icular ly handy for
debugging.

My personal favor ite feature of ASP.NET is t he way that it separates page layout
issues from program logic. Those of you fam iliar with ASP will recall how you had
the opportunity (indeed it was a requirem ent) t o m ix HTML layout with your script
for m anaging the logic on a page. Alt hough you can st ill do this, Visual Studio
supports a two- file st ructure for t he Web page class. The file with the .aspx
extension contains the HTML layout code. A new, second, f ile contains the
program logic. This f ile’s extension depends on the program m ing language. For
exam ple, if your Web page file has the nam e yourpage.aspx, it s code file in Visual
Basic will have the nam e yourpage.aspx.vb. The page with the .aspx extension
contains cont rols, such as labels, t ext boxes, and list boxes. The code file (with
the aspx.vb extension) includes page init ializat ion code, event procedures for t he
objects on the page, and other rout ines and declarat ions to m anage the behavior
of a page.
An ASP.NET applicat ion that you develop with Visual Studio has two folders for
m anaging a solut ion. Your .aspx and .aspx.vb f iles reside in a folder on the Web
server. The project folder ’s default locat ion is in t he wwwroot subdirectory of the
I netpub folder of t he I I S server host ing your applicat ion. You can have m ult iple
files within t he Web folder for a solut ion, including other Web pages and graphic
files. You open a Web solut ion by invoking any .aspx file within the folder on the
Web server. A second folder in your Visual Studio solut ion directory contains the
solut ion file (.sln) for an ASP.NET proj ect . This second folder is the sam e one
Visual Studio uses to store the files for your Windows applicat ion solut ions. Use
the .sln file t o open your solut ion in Visual Studio when you want to edit the
design of a solut ion. Both the Web folder and the regular Windows folder can
have the sam e nam e to facilitate t heir coordinat ion.

Controls on Pages

You start an ASP.NET proj ect in Visual Studio .NET by click ing New Project on the
Visual Studio .NET Start Page and then highlight ing the ASP.NET Web Applicat ion
tem plate. Designate a folder nam e for your new project . The default locat ion is on
the localhost I I S server. See the overview of ASP.NET in Chapter 8 for t he three
elem ents that you need to create ASP.NET solut ions. As Visual Studio .NET starts
the proj ect , it creates a Web site for the solut ion on the Web server.
When the proj ect opens, you will v iew an em pty Web page (with the .aspx
extension) . The default nam e for the page is WebForm 1.aspx. You can assign a
new nam e that is m ore m eaningful in t erm s of your applicat ion by r ight -clicking
the file’s nam e in Solut ion Explorer and choosing Renam e to assign a new nam e.
Use the Toolbox to add cont rols to a blank page. You can display the Toolbox by
choosing Toolbox from the View m enu from within Design v iew for the startup
page. There are three categories of nat ive cont rols that you are likely t o add to
an .aspx page. These reside in t hree separate tabs within t he Toolbox.

• First , you can click the HTML tab in t he Toolbox to expose classic HTML
cont rols. These cont rols can operate as HTML elem ents or as a new type of
HTML server cont rol. I f you are used to building Web solut ions with ASP or
som e other Web developm ent language (such as Perl) , you probably
already have a working knowledge of HTML cont rols. One key dist inct ion
between classic HTML form cont rols and HTML server cont rols is t hat
server cont rols offer an object m odel for program m ing on a Web server.

• Second, you can click the Web Form s tab in the Toolbox to expose Web
server form cont rols designed explicit ly for use with ASP.NET. These
cont rols are rendered as HTML on Web pages, but they have propert ies,
m ethods, and events associated with t hem . You can use Web server
cont rols on the ASP.NET Page class instances sim ilar ly to the way you use
Windows form cont rols on form s in Windows applicat ions.

• Third, you can use the item s on the Data tab in the Toolbox to invoke
wizards for declar ing and instant iat ing ADO.NET objects, such as a data
adapter for SQL Server or a data set . These ADO.NET objects reside on a
page at design t im e, and they can thus sim plify your code by reducing the
need to declare and instant iate objects. See Chapter 1 for t he discussion
of an exam ple that dem onst rates the use of t hese form s in a Windows
applicat ion. This chapter contains supplem entary ASP.NET applicat ions
that illust rate the use of Data cont rols on Web pages.

HTML cont rols and Web server cont rols both represent t ext boxes, but tons, and
sim ilar k inds of cont rols. The list of HTML cont rol item s m aps to t he classic HTML
form cont rols, such as a label, a text f ield, a subm it but ton, and a reset but ton.
HTML cont rols can run either as classic HTML form cont rols or as HTML server
cont rols. You need to designate a special at t r ibute (runat= "server") in order for
the it em s on the Toolbox’s HTML tab to be available for program m ing on a Web
server. HTML cont rols with the special at t r ibute set t ing are often designated HTML
server cont rols in the ASP.NET docum entat ion. You m ust give HTML server
cont rols a nam e at design t im e by assigning a value to their I D at t r ibute in order
to reference them program m at ically on a Web server. Without the special runat
at t ribute set t ing, HTML cont rols pass their values along in eit her of the two
t radit ional ways: in the HTTP header or in t he body of a form on an .aspx Web
page. I f you use the special at t r ibute set t ing, you can m anipulate HTML cont rol
propert ies sim ilar ly t o t he way you m anage cont rols on a Windows form .

Note

The HTML form ’s m ethod at t r ibute tells a Web server where
to look for values with a form on a Web page. The “get ”
set t ing for a method at t r ibute says to look in the HTTP
header. This is a query st r ing appear ing after the URL to
which a Web page navigates. The “post” set t ing designates
the storage of values in the body of a Web page.
Web server cont rols convey HTML to browsers. However, t he HTML syntax for
these cont rols doesn’t m ap in a one- to-one way to HTML form cont rols. For
exam ple, t he RadioBut tonList Web server cont rol contains text inside an HTML
table elem ent . This cont rol doesn’t m ap to t he HTML Radio But ton cont rol,
alt hough both cont rols can have a sim ilar look on a Web page. Selected Web
server cont rols include But ton, Label, ListBox, DataGrid, HyperLink, and about 25
m ore. You can see the full list of Web server cont rols with links for dr illing down
further into t he propert ies, m ethods, and events for each one in the “Web Server
Cont rols” t opic of t he Visual Studio .NET docum entat ion.

Note

You can open the Visual Studio .NET documentat ion from the
Programs menu on the Windows Star t but ton. Choose
Microsoft Visual Studio .NET Documentat ion from the
Microsoft Visual Studio .NET item on the Programs menu.
Use the Search tab to return a list of items matching a
search cr iter ion, such as Web Server Controls. I f you have
difficulty finding a part icular topic because too many items
return, sort by Tit le by click ing the Tit le header in the Search
results window. Then scroll through the items, which are now

listed in alphabet ical order, to the item you want .
Web server cont rols and HTML server cont rols share selected features in
com m on. For exam ple, one killer feature is the abilit y for form cont rols to
m aintain their values on round- t r ips to a Web server. This m aintenance of form
field values can require a lot of program m ing with t radit ional HTML cont rols on
HTML form s. However, Web server cont rols and HTML server cont rols provide this
feature without any program m ing. Another significant feature shared by Web
server cont rols and HTML server cont rols is t he abilit y to use the validat ion
cont rols to assess the content of cont rols on a form . Validat ion cont rols enable
certain validity tests, such as whether the cont rol contains an ent ry, whether the
cont rol has a value in a specified form at , and whether t he value is in a specified
range. Again, no program m ing is necessary for base funct ionalit y. However,
learning a few program m ing t r icks for t he validat ion cont rols can enable you to
refine the user exper ience.
I st rongly urge you to use Web server cont rols instead of HTML server cont rols in
all your ASP.NET applicat ions. As their nam es im ply, Web server cont rols run
autom at ically on the Web server. There is no special at t r ibute for you to set in
order to use the cont rols on a Web server. Web server cont rols are m uch m ore
extensive in their variet y than HTML server cont rols. I n addit ion to the standard
HTML cont rol t ypes, Web server cont rols offer a var iety of specialized cont rols to
facilitate your display and m anipulat ion of data, including a DataGrid cont rol for
displaying data as a table. Developers who build solut ions for enter ing or showing
dates are likely to find the Web server Calendar cont rol of special value. This
cont rol enables enter ing and displaying dates on a standard m onthly calendar
display. The general HTML form at for a Web server cont rol appears here. The asp
pref ix denotes the cont rol as a Web server cont rol. The cont rolnam e param eter
specifies the type of cont rol (for exam ple, label) . The at t r ibutes param eter
corresponds to a list of property set t ings.
<asp:controlname attributes runat="server">

ASP.NET Design I nterfaces

I have been developing Web solut ions pr im arily with Microsoft t echnology since
approxim ately 1995, and the ASP.NET design interface is by far m y favor it e over
that t im e span. This is because the ASP.NET design interface offers you the
flex ibilit y of developing a Web applicat ion very m uch as you create Windows
solut ions with Visual Basic .NET. I t leaves m e free to focus on m y solut ion instead
of being dist racted by Web layout developm ent issues. I n other words, ASP.NET
provides a design environm ent that m akes m e feel as though I ’m creat ing a
typical Windows solut ion— except it ’s for the Web. (See Chapter 8 for m ore
coverage on this point .) Nonetheless, the ASP.NET design environm ent st ill has
som e unique features, which will be covered in this sect ion.
After init ially creat ing a new ASP.NET proj ect (as described in t he preceding
sect ion) , you are confronted with t he HTML Designer, which displays a blank Web
layout page. By default , this page will have the filenam e WebForm 1.aspx. The
first point to note is t hat the tab for the page has two cont rols at it s bot tom . The
page opens with t he Design cont rol selected (unless you change the default
set t ing) , which presents a graphical v iew of the page. Click ing the HTML cont rol
displays the HTML code behind the page. I n other words, the HTML Designer
offers two v iews for each page— a Design v iew for graphical developm ent of a
page and an HTML code view for program m at ic design of a page.
When you look at the page in HTML view, you’ ll see that it starts with an @Page
direct ive. I n t his direct ive are set t ing assignm ents that you should typically not
edit . Next t here is a docum ent declarat ion declaring the page to be an HTML 4.0
docum ent .

After the two prelim inary declarat ion statem ents, the HTML code window displays
an htm l tag. A m atching / htm l tag ends the docum ent . Other HTML tags nest
between these beginning and ending tags for the HTML content within a
docum ent . Two sets of m atching tags nest direct ly beneath the htm l and / htm l
tags. The content between the head and / head t ags is m ost ly boilerplate m ater ial
rout inely prepared by Visual Studio for all .aspx page files that it generates.
However, t he t it le and / t it le tags contain the t it le t hat appears in the t it le bar of a
Web browser window when the browser displays the page. You can edit a page’s
t it le either from the HTML code window or t he Propert ies window for t he
docum ent . Changes in either locat ion update the other locat ion autom at ically .
The next pair of nested tags within t he htm l and / htm l tags are the body and
/ body tags. Unless you change the default set t ings, the body tag will have an
MS_POSI TI ONI NG at t r ibute set t ing of Gr idLayout . This handy set t ing let s you
drag and drop cont rols around a Web page j ust as on a Windows form . The
MS_POSI TI ONI NG at t r ibute set t ing corresponds to t he pageLayout property
set t ing in t he Propert ies window for the docum ent . The default set t ing for t he
pageLayout set t ing m atches the MS_POSI TIONI NG at t r ibute set t ing of
Gr idLayout . Choosing the other property set t ing of FlowLayout for t he pageLayout
property rem oves the MS_POSI TI ONI NG at t r ibute from the HTML code window.
This alternat ive layout set t ing allows you to posit ion cont rols on a Web page as
you do content on a typical word processing docum ent . This is the t radit ional
HTML way of posit ioning cont rols on a page, and it provides your greatest
com pat ibilit y with browser t ypes— especially older browser types that don’t
support absolute posit ioning. However, you give up the convenience of being able
to drag and drop cont rols on a Web page. The form and / form tags reside within
the body tags. All the cont rols on a Web page appear within t he form and / form
tags. I will discuss these tags next as I review the page design for our
WebApplicat ion1 proj ect , which was init ially discussed in Chapter 8.

Note

The WebApplicat ion1 sam ple, like most of the sam ples in this
chapter , exists as two folders. Both folders have the name
WebApplicat ion1. One contains just two files in its root . One
of these files is WebApplicat ion1.sln. The folder containing
this file belongs in the directory that your computer uses for
stor ing Visual Basic .NET Windows solut ions. You can open
the WebApplicat ion1 solut ion in Visual Studio by choosing
Open Solut ion from the File m enu and select ing
WebApplicat ion1.sln. You may need to browse to the folder
containing WebApplicat ion1.sln before being able to select it .
The second folder contains WebForm1.aspx in its root . This
folder belongs in the wwwroot directory of the Inetpub folder
on the com puter from which you will be running the
applicat ion. You can open the Web page by browsing
ht tp: / / < webserver> / WebApplicat ion1/ WebForm1.aspx .
Recall t hat the WebApplicat ion1 proj ect from Chapter 8 contains two cont rols: a
but ton and a label. Click ing the but ton causes the label to show “Hello World.”
Figure 11-2 reveals the but ton cont rol above the label cont rol in Design view for
WebApplicat ion1’s WebForm 1.aspx file. Both cont rols are Web server cont rols. I
selected them from the Web Form s tab of t he Toolbox. When you add a cont rol
from the Toolbox to a Web page, you can select it in the Toolbox and then size
the cont rol by dragging it out on your Web page. Alt ernat ively, you can r ight -click
the cont rol t ype in t he Toolbox and choose Copy. Then r ight -click in Design v iew

for the Web page, and choose Paste. This adds the cont rol with preconfigured size
set t ings in the upper left corner of t he page. I f your docum ent has a Gr idLayout
set t ing for it s pageLayout property, you can then just drag the cont rol to it s
desired locat ion. Figure 11-2 shows the label and but ton cont rols with t heir
preconfigured size set t ings.

Figure 1 1 - 2 . The ASP.NET Design view for W ebForm 1 .aspx in the
W ebApplicat ion1 project .

Figure 11-2 shows several toolbars. All t he cont rols on the bot tom row, after the
first two, belong to t he Layout t oolbar. I f t his t oolbar isn’t v isible, you can m ake it
appear in t he usual way for Windows applicat ions— right -click any toolbar, and
select the one you want (Layout) from the context m enu. (You can also select
Toolbars from the View m enu and select the appropriate t oolbar from the list .)
The cont rols on this t oolbar can m ake fast work of typical form layout design
tasks, such as aligning, sizing, and spacing cont rols. Not ice also in t he f igure that
the Web page appears with a gr id. The default set t ing is for cont rols to snap to
the grid m arks as you m ove cont rols around the form . I f you prefer m ore
granular posit ioning or you don’t want to show a gr id, you can achieve these
results by choosing Opt ions from the Tools m enu. I n t he Opt ions dialog box,
Open the HTML Designer folder and select Display. The r ight port ion of the dialog
box then reveals cont rols for set t ing the Snap To Gr id and Show Grid opt ions.
This port ion of t he Opt ions dialog box also includes text boxes for you to specify
the spacing between grid m arks in Design v iew. You can also cont rol the
appearance of the grid by r ight -click ing any blank area of a page in Design view
and choosing Propert ies. I f the pageLayout property for a page is Gr idLayout , t he
General tab of the DOCUMENT Propert y Pages dialog box exposes the Show Grid
check box. Clearing the check box stops the grid from appear ing, but cont rols st ill
snap to t he gr id when you m ove them .
I f you switch from Design v iew to HTML view, you can see the form and / form
tags inside bounding body and / body tags. Just as the form and / form t ags are
within body and / body t ags, so are the tags for the but ton and label cont rols
within the tags for t he form . You can see from the following HTML excerpt for the
WebForm 1.aspx page that t he but ton and label cont rols are Web server cont rols

because their init ial tag begins with the asp prefix (asp: But ton and asp: Label) .
After the tag designat ion init iat ing a cont rol, a series of at t r ibute set t ings defines
the cont rol features. The at t r ibute set t ings are so num erous that they cause the
cont rol tag to wrap to a second line. The id at t r ibute indicates the nam e by which
your program can refer to the cont rol. The TOP at t r ibute designates how far
down, in pixels, a cont rol is from the top page border. Not ice that the label
cont rol is 40 pixels farther down the page than the but ton. The but ton cont rol is 7
pixels closer t o the page’s left border t han the label cont rol.
<body MS_POSITIONING="GridLayout">
 <form id="Form1” method="post” runat="server">
 <asp:Button id="Button1” style="Z-INDEX: 101; LEFT: 8px;
 POSITION: absolute; TOP: 8px” runat="server” Text="Button">
 </asp:Button>
 <asp:Label id="Label1” style="Z-INDEX: 102; LEFT: 15px;
 POSITION: absolute; TOP: 48px” runat="server">Label
 </asp:Label>
 </form>
</body>

Right -click ing any blank area in the Design v iew that appears in Figure 11-2
opens a context m enu from which you can choose View Code. This exposes the
Visual Basic code behind the form . (See Figure 11-3.) The tab displaying the code
behind the form has the nam e WebForm 1.aspx.vb. This is also the nam e of the
file containing the code behind the form . The Solut ion Explorer window to the
right of t he code window shows the WebForm 1.aspx.vb file selected. You won’t
see this f ile unless you’ve selected Show All Files on the Solut ion Explorer toolbar.
The declarat ions at the top of the m odule window indicate that t he code resides in
a class instance nam ed WebForm 1 , which inher its pro-pert ies, m ethods, and
events from the Page nam espace in t he System .Web.UI hierarchy. I n addit ion,
the But ton1 and Label1 cont rols on the Web page are instances of t he But ton and
Label classes. The definit ions for t he But ton and Label classes reside in the
System .Web.UI .WebCont rols nam espace.

Note

Recall that you can discover the funct ion of cont rols on a
toolbar, such as the Show All Files cont rol, by hovering your
cursor over the control unt il a descript ive phrase appears.

Figure 1 1 - 3 . The code w indow for the W ebApplicat ions1 sam ple w ith the
W ebForm 1 .aspx.vb file selected in Solut ion Explorer.

When you choose to v iew the code for an em pty Web page, you will see just one
procedure, the Page_Load event procedure. This procedure will contain a
com m ent that reads, “Put user code to init ialize the page here.” I retained this
com m ent in Figure 11-3 for your reference. The Page_Load event procedure
works m uch like the Form _Load event procedure for Windows applicat ions. You
can m ake assignm ents that need to take place before a user interacts with a Web
page. I n t he WebApplicat ion1 sam ple, t he Page_Load event procedure assigns
“Click m e” to t he Text property for But ton1 and clears the Text propert y for
Label1 . The But ton1_Click event procedure can be included because of the
Protected WithEvents declarat ion at t he top of t he m odule.

Creat ing and Running ASP.NET Solut ions

Building Web solut ions with ASP.NET can be very st raight forward for Visual Basic
developers. This sect ion includes several sam ples to illust rate basic Web design
issues. You start w it h a review of techniques for com piling and v iewing Web
pages. This review leads to a sam ple that dr ills down on techniques for m anaging
the appearance of cont rols on a Web page. I n t he process, you learn syntax
issues for the Page_Load event procedure as well as event procedures for
cont rols on a Web page. Another pair of sam ples dem onst rates how to const ruct
a m ult ifunct ion calculator. These sam ples illust rate t echniques for working with
text boxes on a Web page as well as how to opt im ize pages for different types of
browsers. The sect ion concludes with a sam ple that autom at ically detects the
type of t he browser request ing a page and t ransfers cont rol to a page opt im ized
for that browser type.

Com piling and View ing W eb Pages

I f you install the folder with t he WebForm 1.aspx file for WebApplicat ion1 in t he
wwwroot folder for t he Web server on your local com puter, you can open the
solut ion in a browser with the following URL:
ht tp: / / localhost / WebApplicat ion1/ WebForm 1.aspx

This URL designates the local Web server by specifying localhost . I f you have the
WebApplicat ion1 folder containing WebForm 1.aspx installed on a different
com puter running I I S and the .NET Fram ework, you can open the Web page in a
browser with t he following URL. Servernam e t ypically specif ies the nam e of t he
com puter running the Web server.
ht tp: / / < servernam e> / WebApplicat ion1/ WebForm 1.aspx
I recom m end running pages from a browser. I n fact , if you are sure that your
applicat ion will have to be run by users with different browser types, you should
test your Web pages with as m any of t hese browser types as possible. You m ight
even consider t ry ing out your Web pages with different set t ings. Som e set t ings
can affect how the page works in a browser— part icular ly if the page taps any
client -side (t his m eans browser) funct ionalit y . I will cover exam ples of t hese
issues later in t his chapter.
You m ust com pile any changes to a page before you can v iew those changes in a
browser. Therefore, for init ial t est ing purposes, you m ight care to open your Web
pages from within Visual Studio so you can m ore easily debug your solut ions. You
can r ight -click a page that you want t o open in Solut ion Explorer and choose one
of two m enu it em s to v iew the page. I f you haven’t m ade any changes to the
page since the last build, you can select View I n Browser. This opens a Browse
window within Visual Studio t hat sim ulates the appearance of the page as if it
were in a browser. I f you edit ed the page’s layout or code behind the page since
the last t im e the page was viewed, choose Build And Browse from the context
m enu when you right -click the page in Solut ion Explorer. This recom piles the
solut ion with any changes that you m ade before displaying the page within t he
Visual Studio Browse window. No m at ter which approach you use to open a
Browse window, t he window appears on a separate tab like the ones for the Web
page’s layout and the code behind the page. Right -click within t he Browse window
for a select ion of com m on browser com m ands, such as Back, Forward, and
Refresh Browser.
Figure 11-4 shows WebForm 1.aspx from WebApplicat ion1 when it init ially opens
in I nternet Explorer and after a click of the but ton labeled Click Me. One click of
the but ton causes a label below the but ton to show Hello World. Repeatedly
click ing the but ton seem s to have no effect , although the Page_Load and
But ton1_Click event procedures operate for each click. This is because each click
returns the Web page back to the server for processing. The reason nothing
appears to change is t hat the label’s Text property gets set to t he sam e value on
each return to t he server as a result of a click of But ton1 .

Figure 1 1 - 4 . The top w indow show s how W ebForm 1 .aspx from
W ebApplicat ion1 appears w hen it in it ia lly loads. The bot tom w indow

show s the W eb page after a click of the button.

Rem em bering the State of a Page

One way to im prove on the operat ion of the page in WebApplicat ion1 is to keep
t rack of whether a browser opens a page for t he first t im e or whether a browser
sends a page back to t he server t hat is already open within that browser. You can
addit ionally coordinate this knowledge with t he appearance of the page. This will
give users fresh inform at ion that reflects the state of t he page— not j ust the sam e
inform at ion on every click.
The PostbackSam ple proj ect has a Web page nam ed WebForm 1.aspx that reflects
four separate states. Furtherm ore, although the page address, WebForm 1.aspx in
the PostbackSam ple folder, stays the sam e, t he appearance of t he page’s form
changes with each successive click. The page’s appearance indicates the state of
the form on the page. When there are no m ore states to show, the page m akes
all but tons invisible so that a user cannot repeatedly click a but ton without
anything happening.

Note

Like the WebApplicat ion1 sample, the PostbackSample exists

as two separate folders. Place the folder that contains
WebForm1.aspx in the wwwroot directory of the Inetpub
folder for the computer serving as a Web server. Place the
folder with PostbackSample.sln in the directory stor ing your
Visual Studio projects.
Figure 11-5 shows how the WebForm 1.aspx page appears for each successive
state. The top window shows the page when a user init ially navigates to the page.
This init ial state for t he PostbackSam ple applicat ion has the sam e appearance as
the init ial page for the WebApplicat ion1 solut ion. After a user clicks the but ton
labeled Click Me, the page returns saying, “Hello World” , but the page changes it s
look in other ways as well. Specif ically, t he PostbackSam ple applicat ion m akes
But ton1 inv isible. I n addit ion, t he applicat ion shows a new but ton, But ton2 , w ith
a Text property of “Hello Showed”. By clicking this second but ton, the user causes
the Web page to t ravel to the server and back to the browser. While at the Web
server, the layout of the page changes again. This t im e, t he but ton with a label of
Hello Showed changes it s label t o “Click for advice”. I n addit ion, Label1 appears
with a new Text propert y of “Get busy.” Clicking the but ton one m ore t im e
changes the appearance to t he window at the bot tom of Figure 11-5. I n this f inal
state, no but tons are v isible for a user to click. I n addit ion, the code behind the
page has no m ore dist inct appearances left t o present . I n addit ion to m aking both
but tons invisible, the Text property for Label1 changes to “Stay busy.”

Figure 1 1 - 5 . A single W eb page, W ebForm 1 .aspx in the PostbackSam ple
project , presents four different appearances depending on the state of

the W eb page and the controls on it .

Figure 11-6 shows the Design v iew of WebForm 1.aspx in t he PostbackSam ple
proj ect . Not ice that it contains two but tons and a label (Label1) . I dragged the
size of But ton2 so that it is slight ly wider t han But ton1 . I f you ever program m ed
with ASP, you’ll appreciate how rem arkable the sim plicity of t he page is. Not ice
specifically t hat no code is m ixed in with the page.

Figure 1 1 - 6 . The Design view of the W eb page that appears in the four
different states show n in Figure 1 1 - 5 .

Because the layout for t he Web page is so basic, the cont rol of t he page’s
appearance m ust be in t he logic of the code behind the page. Before focusing on
the specific code behind the page, I want t o int roduce the I sPostback property for
a page. This propert y tells the server whether t he page is loading init ially or as
the result of t he user clicking a cont rol on the page that sends the page back to
the server. I f t he I sPostback property is False, t he page is opening init ially . I f the
I sPostback propert y is True, the page is being sent back to t he server by the user
click ing on a cont rol. The logic of t he PostbackSam ple applicat ion takes
advantage of t he I sPostback property t o help cont rol the appearance of the Web
page.
The following list ing shows the three event procedures m anaging the appearance
of WebForm 1.aspx in t he PostbackSam ple proj ect . The list ing com m ences with
the Page_Load event procedure. This procedure fires each t im e the page opens—
whether init ially or otherwise. However, within t he Page_Load event , dif ferent
code executes depending on the value of t he I sPostback property and the Text
property set t ing for But ton2 . I f the I sPostback property is False, the procedure
m akes three property assignm ents that m ake the page appear like the top
window in Figure 11-5. The ElseI f and Else clauses for the I f statem ent handle
cases in which the Web page returns to t he server after opening init ially . The
ElseI f clause specifically handles the case in which a page returns to t he server
with t he But ton2 Text property equal t o “Hello Showed”. I f the page returns to
the server with a different value for the But ton2 Text property, the I f statem ent
routes cont rol to the Else clause.
The But ton1_Click event fires when the user clicks But ton1 . There is only one
chance to do this because the Click event procedure m akes the but ton invisible.
I n addit ion, the procedure assigns “Hello World” and “Hello Showed” as values to
the Text property for Label1 and But ton2 , respect ively.
The But ton2_Click event procedure can fire in either of two circum stances, and it
needs to respond different ly to each case. Therefore, it uses an I f…Then…ElseI f
statem ent t o cont rol which statem ent to execute. When Label1 shows “Get
busy.”, the procedure changes the Text propert y for But ton2 to “Click for advice”.
I f the label shows “Stay busy.” , the ElseI f clause operates to m ake But ton2
inv isible.
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’If it is a first-time presentation, then
 ’set like WebApplication1, or
 ’if it is a postback with Hello Showed button,
 ’then change message to Get busy, or else
 ’change message to Stay busy.
 If IsPostBack = False Then
 Button1.Text = “Click me"
 Button2.Visible = False
 Label1.Text = “"
 ElseIf IsPostBack = True And _
 Button2.Text = “Hello Showed” Then
 Label1.Text = “Get busy."
 Else
 Label1.Text = “Stay busy."

 End If
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Make label say Hello World.
 Label1.Text = “Hello World"

 ’Make Text for Button2 read Hello Showed and
 ’make Button2 visible.
 Button2.Text = “Hello Showed"
 Button2.Visible = True

 ’Make Button1 invisible.
 Button1.Visible = False

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 ’If Label1 says Get busy, show Button2
 ’with a Text property of Click for advice,
 ’else make Button2 invisible.
 If Label1.Text = “Get busy.” Then
 Button2.Text = “Click for advice"
 ElseIf Label1.Text = “Stay busy.” Then
 Button2.Visible = False
 End If

End Sub

A Mult ifunct ion Calculator W eb Page

One of t he t ruly cool features of form s on pages in ASP.NET is t hat the property
values for cont rols persist between round- t r ips t o the servers. The preceding
sam ple didn’t highlight t his feature because the whole point of that sam ple was to
show how to change the values of cont rols on successive round- t r ips to the
server. This sam ple, t he WebCalculator project , takes advantage of autom at ic
persistence of cont rol property values dur ing the round- t r ip from a browser t o a
Web server and back again. I f you did m uch ASP coding, you m ay recall t hat it
was necessary to wr ite code if you wanted cont rols to display the sam e values on
the way back from a server as on the way up to a server.
The WebCalculator proj ect highlights the autom at ic persistence of cont rol values
by let t ing users enter values in two text boxes. When the user clicks one of four
but tons for a t ype of ar ithm et ic between the values appear ing in t he text boxes,
the page goes off to t he server. The procedures for perform ing the ar ithm et ic
work direct ly with the Text property for the text box cont rols on the Web page. I n
other words, t he values pass to the server v ia t he text box cont rols. With
t radit ional HTML form s, the values pass to the server as nam e and value pairs.
The nam e represents the cont rol nam e, and the value represents t he ent ry in the
cont rol. I f values need to appear in a page when it returns to a browser from a
server on a t radit ional HTML form , you m ust wr ite code to reassign the values to
cont rols on the page the server sends back to the browser.
The WebCalculator proj ect is a four- funct ion calculator. Each funct ion has it s own
but ton with a Text property set t ing represent ing the type of calculat ion it

perform s— nam ely, + , - , * , and / . Users enter values in t he first two text boxes
on the Web page. Users access this proj ect by navigat ing to WebCalculator.aspx
in the WebCalculator project . When I f irst created the proj ect , ASP.NET assigned
WebForm 1.aspx as the stat page nam e for the project . However, I revised the
nam e to WebCalculator.aspx in Solut ion Explorer using the technique described
previously. When the page goes to t he server, it perform s the calculat ion denoted
by the but ton a user clicks. A sim ple event procedure for each but ton handles
this. Each of the event procedures for t he four but tons calls another procedure
that form ats the value returned to t he browser in t he third text box on the page.
This form at t ing procedure assigns a color to t he text box ForeColor property
based on the value returned and m akes the font bold.
Figure 11-7 shows the WebCalculator project working for a pair of values in t he
first and second text boxes. The top window shows the WebCalculator.aspx page
before a user clicks one of t he four funct ion but tons. Not ice that t he user entered
values in t he first and second text boxes (-2.2 and 3.3) . The third text box is
em pty. The bot tom window shows the page that returns from the Web server
after the user clicked the bot tom but ton on the form with a Text property equal to
/ . I n the bot tom window, the applicat ion populates the third t ext box with t he
quot ient of -2.2 div ided by 3.3. The text box displays the result to single-
precision accuracy. Because the value is negat ive, it appears in red within the
browser window. I n addit ion, the value in the third text box appears in a bold
font .

Figure 1 1 - 7 . The W ebCalculator .aspx page before and after a t r ip to the
W eb server. The user invoked the round- t rip to the server by clicking the

bot tom but ton (/) .

The but tons on the page have I D propert y set t ings of But ton1 through But ton4
from the top but ton to the bot tom but ton. The core of t he applicat ion is the event
procedures behind each of t hese but tons. The m odule for the page starts by
declaring a single-precision var iable nam ed sgn1. This var iable stores the result
of t he calculat ion perform ed on the contents of TextBox1 and TextBox2 . Because
the m odule declares sgn1 as a Single data type and its input values are converted
from a St ring data type to a Single data t ype, the result of the ar ithm et ic
com putat ion has a single data type. However, t he Text propert y of TextBox3
requires a Str ing data t ype. Therefore, t he assignm ent of sgn1 to a Text property
invokes the ToSt r ing m ethod to convert a num eric value to a st r ing.
Each of t he Click event procedures for t he but tons invokes the
ColorText I nTextBox3 procedure. This procedure has an I f statem ent with Then,
ElseI f, and Else clauses. The I f statem ent assigns one of three colors to TextBox3
based on the value in sgn1 . Posit ive values result in a ForeColor property
assignm ent for TextBox3 of green. Negat ive values lead to a red ForeColor
property assignm ent . I f the sgn1 value is 0, the procedure assigns black as the
foreground color for TextBox3 . No m at ter what color t he procedure assigns to t he

ForeColor property for TextBox3 , t he procedure concludes by m aking the font
bold.
Dim sgn1 As Single
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Add text boxes.
 sgn1 = CSng(TextBox1.Text) + CSng(TextBox2.Text)
 TextBox3.Text = sgn1.ToString
 ColorTextInTextBox3()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Subtract text boxes.
 sgn1 = CSng(TextBox1.Text) - CSng(TextBox2.Text)
 TextBox3.Text = sgn1.ToString
 ColorTextInTextBox3()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Multiply text boxes.
 sgn1 = CSng(TextBox1.Text) * CSng(TextBox2.Text)
 TextBox3.Text = sgn1.ToString
 ColorTextInTextBox3()

End Sub

Private Sub Button4_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button4.Click

 ’Divide text boxes.
 sgn1 = CSng(TextBox1.Text) / CSng(TextBox2.Text)
 TextBox3.Text = sgn1.ToString
 ColorTextInTextBox3()

End Sub

Sub ColorTextInTextBox3()

 ’Assign forecolor to TextBox3 based on result value.
 If sgn1 > 0 Then
 TextBox3.ForeColor = Drawing.Color.Green
 ElseIf sgn1 < 0 Then
 TextBox3.ForeColor = Drawing.Color.Red
 Else
 TextBox3.ForeColor = Drawing.Color.Black
 End If

 ’Make font bold to highlight assignment.
 TextBox3.Font.Bold = True

End Sub

A Mult ifunct ion Calculator in a Table

All t he sam ples in t his chapter to this point display Web pages in a Microsoft
I nternet Explorer browser. I tested the pages with the I nternet Explorer 5 and
I nternet Explorer 6 browsers. However, m any visit ors browse I nternet sites with
non–I nternet Explorer browsers. I am the Webm aster at
www.Program m ingMSAccess.com , a site that caters to the interests of Microsoft
Access, Microsoft SQL Server, and Visual Basic developers. This sit e explicit ly
targets the interests of those loyal to Microsoft products, and it has done this for
about four years as I write this chapter. Nevertheless, about 15 percent of t he
visit ors t o the site browse pages with a Netscape browser. The overwhelm ing
m ajor ity of t he Netscape browser sessions are conducted with a Netscape 4.x
browser.
As stated previously, I fully believe in support ing one browser. My personal
preference is for the m ost recent version of t he I nternet Explorer browser
because it provides the latest features from a proven software leader— Microsoft .
When developing int ranet and ext ranet solut ions, you can m andate a single
browser for t he solut ion. When developing I nternet solut ions, t he guidelines for
deciding which browser (or how m any browsers) t o support can be m ore com plex
because you cannot m andate that users browse your sit e with a specif ic browser.
Therefore, for I nternet solut ions, you have at least a couple of opt ions. First , you
can prom inent ly state in browser-neut ral text that a page is opt im ized for one
browser. I f users want t o v iew the page, t hey can install the browser for which
the page is opt im ized. Second, you can develop different pages for different
browsers. This sect ion illust rates the second approach with the sam ple from the
preceding sect ion.
I n deciding whether t o prepare m ult iple versions of a page for different browser
types, the first step is to v iew the page in all the target browsers that you plan to
support . For exam ple, Figure 11-8 shows the WebCalculator.aspx page in a
Netscape 4.01 browser. Not ice that t he page doesn’t look like the windows in
Figure 11-7. The prim ary reason for the divergence in appearance is that the
Netscape browser doesn’t support absolute posit ioning. ASP.NET uses this feature
to enable the posit ioning of cont rols on a Web page with drag-and-drop
techniques.

Figure 1 1 - 8 . The W ebCalculator .aspx page in a Netscape 4 .0 1 brow ser.

Many t radit ional Web developers have exper ience using tables to posit ion cont rols
on a Web page. When you posit ion cont rols by placing them inside table cells, you
don’t need to rely on absolute posit ioning cont rol property set t ings to designate
the locat ion of a cont rol on a form . By using a table instead of absolute posit ion
cont rol set t ings, you can develop a page that is m uch m ore likely to appear
sim ilar in both I nternet Explorer and Netscape browsers. The t r ick t o achieving
sim ilar results in different browsers by posit ioning cont rols in tables is t o set t he
pageLayout property to FlowLayout . Recall t hat this set t ing causes content to
appear on a Web page in t he flow pat tern of a word processor instead of t he
classic Visual Basic drag-and-drop style.
I built another version of the WebCalculator .aspx page in t he WebCalculator
proj ect to dem onst rate the steps for creat ing a calculator in a table. Start by
creat ing a new Web page in the WebCalculator project . Choose Project , Add Web
Form from the Visual Studio m ain m enu in Design v iew. I n the Add New I tem
dialog, choose the Web Form tem plate, nam e the new Web page
WebCalculatorI nTable.aspx, and click Open. I f you are using the sam e project
and you want t o duplicate m y steps, nam e the new Web page som ething else, for
exam ple, MyWebCalculatorI nTable.aspx. Set t he pageLayout property for the
docum ent t o FlowLayout (as descr ibed in t he “ASP.NET Design I nter faces”
sect ion) .
Add a table with four colum ns and three rows to the WebCalculatorI nTable.aspx
Web page. Start by choosing I nsert and then Table from the Table m enu. Set the
Colum ns box to 4 and click OK on the I nsert Table dialog box, leaving the default
set t ing of 3 for the Rows box. Next em bed a new table in t he second colum n of
the original table’s third row. The em bedded table should have one colum n of four
rows with a width of 27 pixels. After posit ioning the cursor where you want t he
em bedded table, choose Table, I nsert , Table. Set the Rows box to 4 and the
Colum ns box to 1. Assign 27 to t he Width box. Then click OK.
Next copy the text box and but ton cont rols from the WebCalculator.aspx page to
the WebCalculatorI nTable.aspx page. You can also copy the label with a Text
property of “Web Calculator”. Arrange the layout so that it looks like Figure 11-9.
I achieved this look with a sequence of copy-and-paste operat ions from the
WebCalculator.aspx page to the WebCalculatorI nTable.aspx page. No other
operat ions were necessary.

Note

I purposely excluded the equal sign (=) before the third text
box to simplify the steps and elim inate the possibilit y of an
inv isible character causing alignment problems. I f you are
reasonably exper ienced at edit ing HTML code, you can add
the equal sign in the HTML view.

Figure 1 1 - 9 . The W ebCalculatorI nTable.aspx page in Design view after
adding the th ird text box to the table on the page.

Next add the code behind the WebCalculator.aspx page to the m odule behind the
WebCalculatorI nTable.aspx page. Start by copying the sgn1 variable declarat ion,
the four event procedures, and the sub procedure that appear in the preceding
sam ple from the m odule behind the WebCalculator.aspx page. See the “ASP.NET
Design I nterfaces” sect ion for how to open the m odule behind a Web page. Then
open the m odule behind the WebCalculatorI nTable.aspx page. Paste the copied
code over t he default version of the Page_Load event procedure because this
procedure isn’t necessary for t he current sam ple. Now that you have com posed
the page, com pile and v iew it from Visual Studio by r ight -click ing the page in
Solut ion Explorer and choosing Build And Browse. This will allow you to ver ify t he
look and test the operat ion of the calculator.
Figure 11-10 shows WebCalculatorI nTable.aspx in both I nternet Explorer and a
Netscape browser. The I nternet Explorer browser appears in t he top window. As
you can see, the WebCalculatorI nTable.aspx page looks about t he sam e as it s
predecessor, WebCalculator.aspx, in the I nternet Explorer browser. The m ajor
difference is t hat you can see the overall table border and the border for all
populated cells.
The Netscape browser v iew of t he WebCalculatorI nTable.aspx page appears in the
bot tom window of Figure 11-10. This version of a calculator page in t he Netscape
browser is a huge im provem ent from the result wit h t he WebCalculator.aspx
page. First , you can see the calculator . Second, the calculator generates num eric
results that are ident ical to t hose from the calculator in I nternet Explorer.
However, t here are som e form at t ing differences. Not ice that the calculator
but tons vary in size depending on the width of t he ar it hm et ic sym bol on the
but ton. For exam ple, the plus sign (+) is wider than the div ision sign (/) . As a
consequence, the cont rol for t he plus sign is wider. The I nternet Explorer browser
view of the page recognizes the width set t ing (24 pixels) for t he but tons so that

all but tons have the sam e widt h. I n addit ion, t he Netscape browser doesn’t
m odify t he color of t he third t ext box based on the value appearing within it . This
is because the code used to m anipulate t he color depends on proprietary ASP.NET
property set t ings.
Exper ienced Web developers will argue that I could have worked around both of
the dist inct ions between the two browsers using m ore elaborate HTML coding.
While this m ay be so, one m ajor benefit of ASP.NET is that it insulates Visual
Basic developers from doing m uch HTML coding when they are building their Web
solut ions. Taking away this benefit in t he interest of browser-neut ral applicat ions
can regress Web applicat ion code developm ent t o the spaghet t i-coding styles
com m on in som e ASP applicat ion code. At the very least , achieving browser-
neut ral code will dr ive down the efficiency of t he Visual Basic developers on a
proj ect as they ram p up the HTML learning curve. I f t he coding efficiency of your
developm ent t eam and powerful solut ions are im portant , you should definit ely
consider adopt ing a browser t hat helps your developers code Web solut ions
efficient ly. As I said before, I recom m end the latest version of the I nternet
Explorer browser.

Figure 1 1 - 1 0 . The W ebCalculatorI nTable.aspx page appearing in an
I nternet Explorer brow ser (top w indow) and a Netscape brow ser

(bottom w indow) .

Sniff ing the Brow ser

For very high priorit y proj ects, such as e-com m erce sites and sit es that need to
serve hundreds of t housands of v isit ors a day, it m ay be necessary to detect
browsers so that the site can return pages opt im ized for t he specific browser type
m aking a request . I n such situat ions, ASP.NET developers can use the Browser
property of the Request object . The Browser property returns the Browser obj ect ,
which, in t urn, has a ser ies of propert ies that enable your applicat ions to “sniff,”
or detect , the browser t ype as well as it s capabilit ies. Search for the
“Ht tpBrowserCapabilit ies Class” topic in Visual Studio .NET Help for detailed
docum entat ion on the propert ies of the Browser object .
When you design a program to detect the browser in t he code behind a Web
page, t here is typically no need to provide a user interface on the Web page. The
whole point of the code behind the page is t o direct the user to another page,
which is opt im ized for a specif ic k ind of browser. This redirect ion should happen
alm ost instantaneously. The page doing the detect ing directs a user to a page
that has an interface opt im ized for t he user’s browser. You can use the Redirect
m ethod of t he ASP.NET Response object to t ransfer cont rol t o another page. The
Redirect m ethod takes a st ring containing a URL for it s argum ent .

The sam ple for t his sect ion dem onst rates the syntax for detect ing the browser
type. I t is likely t hat you will need a m ore com plex program if your needs
necessitate browser detect ion (for exam ple, a program that can detect m ore than
two broad categor ies of browser brands) , but t his sam ple illust rates how to get
started with browser detect ion. The sam ple t ransfers cont rol t o either of t he two
pages, both of which are in the WebCalculator project . (See the preceding two
sect ions.) The Web page perform ing the detect ing has the nam e
MyWebCalculator.aspx in t he SniffBrowser proj ect . This Web page can be blank.
The page executes on the server, and it doesn’t appear in browsers. The code
behind the page presents the URL that is t he argum ent of a Redirect m ethod for a
Response object .
The following list ing shows the sole procedure behind the MyWebCalculator.aspx
page. When a user navigates to the page, the Page_Load event procedure looks
at the first two characters of t he browser nam e. The Type property for t he
Browser object returns the nam e and m ajor version num ber of t he browser type
originat ing a request . I f the browser’s nam e begins with I E, cont rol t ransfers to
the WebCalculator.aspx page in the WebCalculator project on the ccs1 Web
server. Otherwise, cont rol goes to t he WebCalculatorI nTable.aspx page in t he
WebCalculator proj ect on the ccs1 Web server. Therefore, a Netscape browser
and an I nternet Explorer browser both navigat ing to the MyWebCalculator.aspx
page in the SniffBrowser project will navigate ult im ately to different pages.

Note

You will need to replace the ccs1 Web server nam e in the
code for the MyWebCalculator.aspx page. Replace ccs1 with
the nam e of a Web server host ing the applicat ion in your
comput ing environment .
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Left(Request.Browser.Type, 2) = “IE” Then
 Response.Redirect _
 (“http://ccs1/WebCalculator/WebCalculator.aspx”)
 Else
 Response.Redirect _
 (“http://ccs1/WebCalculator/” & _
 “WebCalculatorInTable.aspx”)
 End If
End Sub

Session State Managem ent

The HTTP protocol on which you build ASP.NET solut ions doesn’t retain
inform at ion about Web pages between successive round-t r ips from the browser t o
the server. Therefore, ASP.NET offers var ious solut ions for conveying inform at ion
about pr ior visits to a Web server. Microsoft uses the term session state
m anagem ent to describe the context of a v isit by a Web page to a Web server.
This context can include such item s as inform at ion about t he last visit , t he sum of
all previous v isits, and the ident it y of t he v isit or . This sect ion int roduces a
collect ion of sam ples that dem onst rates selected session state m anagem ent
techniques with a general overview of session state m anagem ent solut ions
st rategies.

Overview of Session State Managem ent I ssues

I n Web applicat ions, Web servers don’t t ypically retain data on a page between
round- t r ips; t his is because of t he servers’ use of t he HTTP protocol. Therefore,
on two separate round-t r ips from a browser t o a server, t he server has no built - in
way to determ ine whether the page is from the sam e user. This stateless
character ist ic of Web pages is one im portant reason why a single Web server can
handle a large num ber of requests from m any different users. On the other hand,
your Web applicat ions will t ypically need to work around the stateless
character ist ic of Web pages so that Web servers can “rem em ber” inform at ion
about a session with a user from one request to the next .
There are two basic approaches to m aintaining the state of a session between
round- t r ips of a page to a Web server. First , you can store inform at ion on the
browser’s com puter and pass it on a Web page to the Web server. This approach
im proves scalabilit y by reliev ing the Web server of handling this session state
data. The drawback of t his approach is that inform at ion that you pass on a Web
page is available t o be read by unauthor ized indiv iduals while t he page is in
t ransit between a browser workstat ion and the Web server. Second, you can
store inform at ion on a Web server or another com puter to which the Web server
has access. You can norm ally specify variables and m aintain values associated
with t hem over t he life of a session or an applicat ion. There are advantages to
each approach (Session or Applicat ion var iables) , but Session var iables are m ore
com m only used in m any pract ical Web developm ent projects.

Server- Side Session State Managem ent

You can think of Applicat ion var iables as global var iables that perm it m ult iple
users of an applicat ion to share access to data on a single Web server. While
m ult iple users can access an Applicat ion variable, t hese variables are v isible only
to users running that applicat ion on the server used to create the var iable. Use
Applicat ion var iables for frequent ly used values that don’t change often.
Applicat ion var iables have a lifet im e associated with the durat ion of an
applicat ion. When an applicat ion shuts down, t he var iable values, which reside in
m em ory, are lost . I f you need to persist t he values beyond the lifet im e of an
applicat ion, consider saving the variables to a storage m edium at per iodic
intervals. Because m ult iple users have access to Applicat ion variables, it is
im portant to m inim ize conflicts between users. Such conflicts can slow an
applicat ion.
Session variables allow the t racking of var iable values within a session for an
applicat ion on a Web server. With these var iables, your applicat ions can m aintain
separate sets of values for each user of an applicat ion. Because your applicat ions
m aintain separate values for each user, there is no issue of conflicts between
users. Therefore, you can use Session var iables in sit uat ions that require frequent
updates for indiv idual users.
You can store Session variables in process on a Web server as in ASP. I n addit ion,
you can store Session variables out of process on a stand-alone rem ote Windows
server, such as Windows 2000 Server, or on a SQL Server instance. These lat ter
two opt ions are an ASP.NET innovat ion. The abilit y t o store Session variables out
of process allows Session var iables to have a scope that extends across m ult iple
Web servers running an applicat ion or even restarts of a Web server. See the
“SessionStateMode Enum erat ion” topic in the Visual Studio .NET docum entat ion
for details on set t ing the m ode for a Session variable in t he code behind a Web
page. By default , Session var iables are in process. This in-process set t ing y ields
super ior perform ance, although it doesn’t extend the scope in t he sam e way that
out -of-process storage does.

Client - Side Session State Managem ent

There are four approaches to session state m anagem ent with client -side tools.
These are cookies, hidden variables, query st r ings, and v iew state. View state is a
new opt ion int roduced with ASP.NET.
Cookies are pr im arily an ident if icat ion technology. Web applicat ions can read
cookies residing on a browser ’s workstat ion to determ ine who the user is and
custom ize the interface based on a knowledge of the user ’s ident it y or
m em bership in a group. For exam ple, you can expose users to I T books instead
of elect ronics products if the users previously im plicit ly or explicit ly expressed a
preference for seeing I T books. Cookies are versat ile because they can contain
inform at ion specific to a user, session, or client . One especially signif icant
weakness of cookies is that users can configure their browsers not to store them .
Therefore, your applicat ion cannot count on their availabilit y. Another weakness
of cookies is their suscept ibilit y to tam per ing because they reside on a user ’s hard
drive.
Query st r ings are nam e and value pairs appended to the end of a URL. These
nam e-value pairs can contain inform at ion about anything, including the state of a
session, such as a user id value. You m ust specifically assign the “get ” set t ing to
the m ethod at t r ibute for a form on a Web page to pass var iables v ia a query
st r ing. Query st r ings are part icular ly useful for exchanging inform at ion between
Web pages— even if the Web pages belong to different applicat ions. Because
query st r ings reside at t he end of a URL, they offer no secur ity . Query st r ings are
available to the or iginat ing and dest inat ion com puters as well as to anyone who
can v iew the HTTP header for a page as it hops between com puters from an
originat ing com puter t o a dest inat ion com puter. I n addit ion, the m axim um
num ber of characters is oft en rest r icted to 255. However, query st r ings are a fast
and easy technique to im plem ent for sit uat ions in which you need to exchange a
relat ively sm all am ount of session state inform at ion across m ult iple applicat ions
and where secur ity isn’t a cr it ical issue.
Hidden f ields offer a t radit ional t echnique for exchanging data between a Web
page and a Web server so that t he f ield value isn’t rendered on the Web page.
You m ust specif ically assign the “post ” set t ing for t he m ethod at t r ibute of a Web
page’s form to pass var iables via a hidden field. Although a hidden field isn’t
rendered on a Web page, it is st ill readily available if you v iew the HTML for t he
page in a t ext edit or . The term hidden m erely reflects the fact that t he f ield
doesn’t appear on a Web page in a browser.
View state is an innovat ion int roduced with ASP.NET for exchanging inform at ion
between a Web page and a Web server. ASP.NET applicat ions rout inely store
inform at ion about t he cont rols on a Web page in a v iew state f ield for t he page.
Microsoft enables ASP.NET developers to take advantage of t his built - in field. The
view state field on a Web page updates at both the browser and Web-server sides
of a page’s round-t r ip. View state var iables, including the built - in ones and your
custom ones, are converted to st r ings, hashed, and stored in a hidden f ield on the
Web page. Therefore, values have som e encrypt ing, but the data is available for
tam pering (and decrypt ing) . As with the other client -side techniques for
m aintaining state, t his technique doesn’t consum e any server-side resources. I n
addit ion, t he syntax is sim ilar to t he syntax for specify ing Session variables.
Therefore, ASP developers who are fam iliar with t echniques for using Session
variables can apply sim ilar techniques for taking advantage of custom view state
variables.

Using a Session Variable

The first session state m anagem ent sam ple illust rates the use of Session
variables. This sam ple is also interest ing because it reveals how to use a ListBox

cont rol to create a sim ple shopping cart applicat ion. The sam ple exists as
WebForm 1.aspx and WebForm 1.aspx.vb in the SessionVar iableSam ple proj ect . As
is norm al with ASP.NET applicat ions, t here is another folder with the
SessionVar iableSam ple.sln f ile. Open the .sln file in it s folder t o exam ine the
solut ion with Visual Studio .NET.

W eb Page Layout and Operat ion

The WebForm 1.aspx layout consists of three but tons, a pair of t ext boxes, a list
box, and three labels— one label for each text box and a third label for t he Web
page. Figure 11-11 shows the Design v iew of WebForm 1.aspx.

Figure 1 1 - 1 1 . Design view of W ebForm 1 .aspx in the
SessionVariableSam ple project .

But ton1 , But ton2 , and But ton3 have text property set t ings of “Add”, “Rem ove
I tem ”, and “Refresh Me”, respect ively. Each of these but tons has a Click event
procedure in t he code behind the Web page. The operat ion of t hese event
procedures interacts with t he ent r ies in t he two text boxes and the list box on the
Web page. The text box next t o the label showing “Num ber” is TextBox1, and the
other text box on the page is TextBox2 . The I D property set t ing for t he ListBox
cont rol is ListBox1.
Enter ing a num ber in TextBox1 and clicking But ton1 (Add) t ransfers the value
from TextBox1 t o t he bot tom ent ry in ListBox1 . I n addit ion, click ing But ton1
updates the value in TextBox2 , which shows a running sum of t he values in
ListBox1 . Repeatedly enter ing values in TextBox1 and click ing But ton1 populates
a “shopping cart ” of num bers in the list box. The list box shows up to four
num bers at a t im e. I f the user adds a fift h num ber t o t he bot tom of t he list box
cont rol, a scroll bar appears. This lets users expose any cont iguous four num bers
in the list .
The Click event procedure for But ton2 (Rem ove I tem) allows a user t o drop an
item from the list . The user starts to rem ove an item by select ing the it em in t he
list box. Next she clicks But ton2 . After rem oving the selected it em , the procedure
also updates the running sum of t he values in t he ListBox cont rol.
Click ing the Refresh but ton on a browser (not t he Refresh Me but ton on the page)
doesn’t generate the typical result of a blank form you m ight expect . I nstead,
I nternet Explorer displays a dialog box that says, in part , t hat the page cannot be

refreshed without resending the inform at ion. When the browser sends the
inform at ion, the server repeats the last operat ion, which can be eit her an addit ion
to or a subt ract ion from the running sum showing in TextBox2 . However, t he
ent r ies in ListBox1 don’t change in a corresponding way. As a result , ListBox1 and
TextBox2 com e out of synchronizat ion. I n cont rast , click ing But ton3 (Refresh Me)
clears all cont rol values. I t is for this reason that But ton3 is on the form . Clicking
this but ton clears all t he cont rols on the form as well as t he running sum that t he
applicat ion m aintains with a Session var iable.
Figure 11-12 shows the SessionVar iableSam ple applicat ion in operat ion j ust
before a click of But ton1 in t he top window and before a click of But ton2 in t he
bot tom window. I n t he top window, two item s are in t he list box. A third it em ,
with t he value 6, is ready for ent ry just as soon as the user clicks But ton1 . The
bot tom window shows the Web page j ust before an item is rem oved from the
shopping cart that t he list box shows. ListBox1 contains five it em s, four of which
appear in t he window. The fift h can be v iewed by scrolling to it . The sum of all
the it em s is 81 (see the value in TextBox2) , and the sum of t he item s appear ing
in the ListBox cont rol is 80 (2 + 6 + 18 + 54) . Therefore, t he ListBox cont rol
value not displayed m ust be 1. I n any event , click ing But ton2 with 6 selected in
the list box drops this value from the list box so that j ust four num bers are in t he
list and reduces the quant ity appearing in TextBox2 t o 75.

Figure 1 1 - 1 2 . W ebForm 1 .aspx in the SessionVariableSam ple project in
operat ion just before adding and dropping a num ber from the list box.

Program List ing for the SessionVariableSam ple Project

The code behind the Web page in Figure 11-11 consists of four event procedures
and a m odule- level variable declarat ion (st r1) . The var iable declared at the
m odule level appears in a couple of event procedures. I n addit ion, t he sam ple
shows the syntax for m anaging a Session var iable nam ed sum . Because the value
for the sum Session var iable appears on the form as the Text property, you don’t
st r ict ly need the Session var iable to m anage the behavior for the Web page.
However, using a Session variable to cont rol the value in a text box m akes it easy
to v isualize how the Session var iable behaves in the applicat ion.

The Page_Load event procedure appears first in the code list ing, and it f ires
before any of the other three event procedures in the list ing. Within t he
Page_Load event procedure is an I f…Then…Else statem ent . The condit ion for t he
I f statem ent is an expression that is True when the page loads for t he first t im e in
a session. I n t his case, the statem ent executes the statem ents in t he Then
clause. These statem ents init ialize the form for f irst - t im e use. For t he m ajority of
the t im es that t he event procedure fires, t he Page_Load event procedure will pass
cont rol to the statem ents in the Else clause. The two statem ents in t his path save
the Text property set t ing of TextBox1 in st r1 and clear t he contents of t he text
box for the next t im e that it appears in t he browser.
After execut ing the Page_Load event procedure, the code behind the page will
t ypically execute one of the rem aining three event procedures. That ’s because
click ing any but ton on the Web page autom at ically sends the page back to t he
server. The only t im e that the Page_Load event procedure fires without a user
click ing a but ton is on the first t im e that a user navigates to t he WebForm 1.aspx
page in the SessionVariableSam ple proj ect .
When the user clicks But ton1 , three act ions take place. First , the But ton1_Click
event procedure adds the value in st r1 to t he end of t he list of item s in ListBox1 .
Recall t hat the Else clause in t he Page_Load event procedure copies the Text
property value of TextBox1 into the st r1 var iable. Next the procedure adds to the
sum Session var iable t he single value represent ing the st r ing that was in
TextBox1 when it cam e to the server. This creates a new running sum . The Click
event procedure for But ton1 concludes by saving the sum Session var iable value
as a st r ing in the Text property of TextBox2 .
The But ton2_Click event procedure handles the rem oval of an item from the list
box. As you can see, this is a slight ly m ore com plex process. First the procedure
saves the selected it em from the list box into sng1 , a Single var iable. Then the
procedure updates the running sum , but this t im e it reduces the running sum
instead of increasing it . Before concluding, the event procedure needs to perform
two related tasks. The first of t hese is the rem oval of the it em that the user
selected from the list in the list box. The procedure uses the Rem oveAt m ethod
for ListBox1 w ith an integer value argum ent (int1) point ing to t he selected item .
The second task is the clear ing of t he selected it em from the list box. Assigning -
1 to t he SelectedIndex property of ListBox1 accom plishes this task.
I m ent ioned dur ing the review of how the SessionVar iableSam ple operates that
the browser ’s Refresh but ton generates undesired results. Therefore, the
applicat ion includes it s own refresh but ton, labeled Refresh Me, as But ton3 . The
But ton3_Click event procedure blanks both text boxes, clears the list box, and
sets the sum Session variable t o 0. This event procedure t ruly refreshes the Web
page for a new start— just as if the page had init ially loaded.
Dim str1 As String
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then
 ’If new page, initialize text boxes and
 ’sum Session variable (optional step that is
 ’not strictly necessary since these are
 ’default startup values).
 TextBox1.Text = “"
 TextBox2.Text = “"
 Session(“sum”) = 0
 Else
 ’If postback, save value showing in
 ’TextBox1 and clear the control.
 str1 = TextBox1.Text
 TextBox1.Text = “"
 End If

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Add number that was in TextBox1 into ListBox1,
 ’compute a new sum of items in ListBox1 in a
 ’Session variable and show variable value
 ’in TextBox2.
 ListBox1.Items.Add(str1)
 Session(“sum”) += CSng(str1)
 TextBox2.Text = CStr(Session(“sum”))

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 Dim int1 As Integer
 Dim sng1 As Single

 ’Identify value for item marked for removal.
 int1 = ListBox1.SelectedIndex
 sng1 = CSng(ListBox1.Items(int1).Value)

 ’Reduce Session variable sum by item value
 ’and display new sum in TextBox2.
 Session(“sum”) -= sng1
 TextBox2.Text = CStr(Session(“sum”))

 ’Remove item marked for removal.
 ListBox1.Items.RemoveAt(int1)

 ’Clear ListBox1 selected item.
 ListBox1.SelectedIndex = -1

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Refresh form with blank field and session values.
 If TextBox1.Text <> ““ Then TextBox1.Text = “"
 TextBox2.Text = “"
 ListBox1.Items.Clear()
 Session(“sum”) = 0

End Sub

Using a View State Variable

Using a v iew state var iable is sim ilar from a coding perspect ive to using a Session
variable. However, conceptually and operat ionally t here are som e very significant
differences. This sect ion will explore all t hree areas (coding, conceptual,
operat ional) so that you know how to use v iew state var iables as well as what
happens when you use them .

The m ajor conceptual difference between using a v iew state var iable and a
Session variable is t hat the v iew state var iable resides on the Web page, while
the Session var iable typically resides in t he m em ory of t he Web server. While t he
view state var iable is an exam ple of client -side technology, t he Session var iable is
a server-based variable. The v iew state var iable is on the Web page for each
round- t r ip of a Web page between a browser and a Web server. The Session
variable resides on the Web server (or even another server, such as a Windows
server or SQL Server instance) . This m eans that you m ust keep the am ount of
data that you pass with a v iew state var iable t o a m anageable size because
passing a large am ount of data can lengthen the durat ion of a round-t r ip.
Because a Session variable exists on a Web server, you can have a relat ively
large Session var iable on the server and copy only a sm all port ion of it to a Web
page on successive round-t r ips. For exam ple, t he server can hold all orders or all
products in a Session variable represent ing a data set . However, any given
round- t r ip of a page between a browser and server can show just the orders for
one custom er or t he products in one category. Because a v iew state var iable
doesn’t have this f lex ibilit y, it will have to send all t he data back and forth on
each round- t r ip or draw a fresh collect ion of data from a database server on each
round- t r ip. However, when you have a sm all am ount of data for which to
m aintain the state, t he view state variable places lower dem ands on a Web server
and can increase the num ber of users that a Web server can serv ice effect ively.
The sam ple for t he v iew state var iable resides in t he WebForm 1.aspx and
WebForm 1.aspx.vb f iles of t he ViewStateSam ple project . WebForm 1.aspx has a
layout that is ident ical to that of the file of the sam e nam e in the
SessionVar iableSam ple proj ect . When you have a form layout t hat is the sam e in
two proj ects, you can copy an excerpt from the HTML view for t he proj ect created
first to t he HTML view for t he second project . This speeds developm ent t im e, and
it ensures that t he two form s will be exact ly the sam e in both projects. I n this
case (and indeed m ost cases), the appropriate excerpt is the HTML between the
form and / form tags.
Because the syntax for using v iew state var iables is so sim ilar t o t he syntax for
Session variables, you can start t o create the code behind the form for t he
ViewStateSam ple project by copying the code behind the Web page in t he
SessionVar iableSam ple proj ect . Then all you have to do is to perform an edit that
t ransform s all instances of Session("sum") to ViewState("sum") . This results
in a change to just a few lines, which I m ade boldface in t he following list ing to
m ake them easy to detect . Not ice that the syntax for using ViewState to
designate a v iew state variable direct ly parallels the syntax for using Session t o
denote a Session var iable.
Dim str1 As String
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not IsPostBack Then
 ’If new page, initialize text boxes and
 ’sum ViewState variable (optional step that is
 ’not strictly necessary since these are
 ’default startup values).
 TextBox1.Text = “"
 TextBox2.Text = “"
 ViewState(“sum”) = 0
 Else
 ’If postback, save value showing in
 ’TextBox1 and clear the control.
 str1 = TextBox1.Text
 TextBox1.Text = “"
 End If
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Add number that was in TextBox1 into ListBox1,
 ’compute a new sum of items in ListBox1 in a
 ’ViewState variable and show variable value
 ’in TextBox2.
 ListBox1.Items.Add(str1)
 ViewState(“sum”) += CSng(str1)
 TextBox2.Text = CStr(ViewState(“sum”))

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim int1 As Integer
 Dim sng1 As Single

 ’Identify value for item marked for removal.
 int1 = ListBox1.SelectedIndex
 sng1 = CSng(ListBox1.Items(int1).Value)

 ’Reduce ViewState variable sum by item value
 ’and display new sum in TextBox2.
 ViewState(“sum”) -= sng1
 TextBox2.Text = CStr(ViewState(“sum”))

 ’Remove item marked for removal.
 ListBox1.Items.RemoveAt(int1)

 ’Clear ListBox1 selected item.
 ListBox1.SelectedIndex = -1

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ’Refresh form with blank field and state values.
 If TextBox1.Text <> ““ Then TextBox1.Text = “"
 TextBox2.Text = “"
 ListBox1.Items.Clear()
 ViewState(“sum”) = 0
End Sub

Just as the syntax of using a v iew state var iable is sim ilar to that of using a
Session variable, so is t he result of running WebForm 1.aspx in ViewStateSam ple
sim ilar to that of running WebForm 1.aspx in SessionVariableSam ple. Both
versions of WebForm 1.aspx add it em s to and rem ove item s from ListBox1 in t he
sam e way during norm al operat ion. I n addit ion, click ing the browser ’s Refresh
but ton while v iewing WebForm 1.aspx in the ViewStateSam ple proj ect raises the
sam e dialog box about how the page cannot be refreshed without resending the
inform at ion. However, wit h t he v iew state var iable, t he Text property for
TextBox2 doesn’t com e out of synchronizat ion with t he it em s in ListBox1 . The
running sum text box display rem ains unchanged after t he refresh, as do the
item s in t he list box. This is an im provem ent over the Session variable that

generates an error in response to a click of t he browser’s Refresh but ton. On the
other hand, the browser ’s Refresh but ton doesn’t cause the Web page to revert to
values as if the page had opened init ially . Therefore, there is st ill a need for
But ton3 w it h a Text property of “Refresh Me” because this but ton restores the
init ial values to t he Web page.

Using the QuerySt r ing Property to I dent ify a User

A query st r ing is a nam e and a m atching value pair t hat appears at the end of a
URL. A quest ion m ark delim iter separates the end of t he URL and the first query
st r ing nam e-value pair . An equal sign (=) div ides the nam e from its m atching
value within a query st r ing. The URL, t he ? delim iter, and the query st r ing appear
in the HTTP header. You can see the HTTP header in t he Address box of the
I nternet Explorer browser. ASP.NET will autom at ically generate a collect ion of
query st r ings for a Web page that it sends to a Web server if you set t he m ethod
at t ribute for t he page’s form to “get ” . You m ake this at t r ibute assignm ent from
the HTML view for the page in the .aspx file.
When you send a page to a Web server with a m ethod at t r ibute of “get ” for t he
page’s form , cont rols on the form with a single value, such as text boxes and
but tons, will appear as indiv idual m em bers of t he query st r ing collect ion after t he
URL. Each m em ber appears in the query st r ing with a nam e equal to t he I D
property for t he cont rol and a value equal to the Text property for t he cont rol. For
exam ple, if you have a text box with an ID property of UserI D and a Text
property of MyUserI D, t he UserI D text box appears in the collect ion st r ing for the
URL header as UserI D= MyUserI D. I n addit ion, ASP.NET sends a __VI EWSTATE
m em ber in t he query st r ing collect ion to the Web server. The __VI EWSTATE
m em ber is the accum ulat ion of all the propert y values for all cont rols on a page.
This query st r ing collect ion m em ber corresponds to the v iew state for a form .
Recall t hat property values in t he v iew state are encrypted with a hashing
algor ithm .
On a Web server, your applicat ions can recover the m em bers of the query st r ing
collect ion with t he QuerySt ring propert y for the ASP.NET Request object . Before
accessing the query st r ing m em bers, you will t ypically deposit t he collect ion into
a Nam eValueCollect ion object . This object is explicit ly designed to store
st ructures in t he form of a query st r ing collect ion. You can access indiv idual
elem ents within a Nam eValueCollect ion obj ect by m em ber nam e or index value.
The ASP.NET docum entat ion refers to the m em ber nam es for a query st r ing
collect ion as key nam es. The collect ion of all m em ber nam es is t he return value
from the AllKeys property of the Nam eValueCollect ion object stor ing a query
st r ing collect ion.

Sam ple Layout Design and Operat ion

Now that you have a grasp of the pr inciples for using a query st r ing collect ion
with ASP.NET, let ’s look at a specific sam ple to dem onst rate the applicat ion of
query st r ings. Figure 11-13 shows a form in Design view with three text boxes, a
but ton, and som e labels. The form is on the WebForm 1.aspx page in t he
QuerySt r ingSam ple proj ect . The page’s form contains the elem ents for a t ypical
login form . The top two text boxes have the I D property values UserI D and
Password. The TextMode set t ing for t he Password text box cont rol is Password.
This set t ing creates a single- line text box that m asks user input . I n addit ion, t he
Password set t ing for t he TextMode propert y clears the Text propert y of a text box
on return from a Web server. The form for WebForm 1.aspx in t he
QuerySt r ingSam ple proj ect has the m ethod at t r ibute “get ” . As m ent ioned
previously, this at t r ibute set t ing sends the cont rol nam es and values to the Web
server as a query st r ing collect ion in t he HTTP header for the Web page.

Figure 1 1 - 1 3 . A Design view of W ebForm 1 .aspx in the
QuerySt r ingSam ple project .

When the user clicks the but ton, which has the nam e But ton1 , t he page with it s
form goes to t he Web server. The com binat ion of t he Page_Load event procedure
and the But ton1_Click event procedure ext ract s and displays the values for t he
UserI D and Password text boxes in the query st r ing collect ion for t he page’s HTTP
header. On the init ial load, both text boxes are em pty. I f a user populates these
text boxes and clicks But ton1 , the event procedure for t he but ton’s Click event
concatenates the values from the UserI D and Password text boxes with a com m a
delim iter and displays the result in t he third text box at the bot tom of the form .
Figure 11-14 displays WebForm 1.aspx from the QuerySt r ingSam ple project in
operat ion. I n the top window, you see a value in t he UserI D text box and
asterisks across the Password text box to indicate a m asked ent ry. Also, not ice
that the Address box in the browser shows just the URL for the page in the
QuerySt r ingSam ple proj ect on the local Web server. After the user clicks the
but ton in WebForm 1.aspx, the page returns the UserI D and Password text box
ent r ies in t he text box at the bot tom of t he form . The bot tom window shows that
the password for a UserI D value of MyUserI D is MyPassword.

Figure 1 1 - 1 4 . The W ebForm 1 .aspx page from the QueryStr ingSam ple
project in operat ion.

I f you look at t he Address box in t he bot tom window within Figure 11-14, you see
an excerpt from the HTTP header that WebForm 1.aspx sends to the Web server
when a user clicks the but ton on the Web page. The following HTTP header value
shows the full ent ry in the Address box. I broke the line at each m ajor div ider.
For exam ple, t he HTTP header starts with t he URL for WebForm 1.aspx in t he
QuerySt r ingSam ple proj ect . A ? signals t hat a query st ring collect ion follows the
URL. The first query st r ing that appears is t he nam e and value for the
__VI EWSTATE m em ber. I n order, t he HTTP header shows the m em ber nam es and
values for UserI D, TextBox1, But ton1, and Password. UserI D and Password are
the key nam es for t he top two text boxes on the form . TextBox1 is t he nam e for
the third text box at t he bot tom of the page. Not ice that there is no value for t his
query st r ing m em ber. This is because the HTTP header shows the cont rol values
as they t ravel from the browser t o t he Web server, and the Web server assigns a
value to TextBox1 based on the UserI D and Password query st r ing m em ber
values.
http://localhost/QueryStringSample/WebForm1.aspx?

__VIEWSTATE=dDwxNTM3ODQyNzc7Oz4%3D&
UserID=MyUserID&
TextBox1=&
Button1=Button&
Password=MyPassword

Code Behind the Page

The following list ing shows the code behind WebForm 1.aspx in t he
QuerySt r ingSam ple proj ect . The list ing begins with m odule- level declarat ions for
st ruser id and st rpassword. These two st r ing values are populated in the
Page_Load event procedure and displayed by the But ton1_Click event procedure.
The Page_Load event procedure starts with a declarat ion for col1 as a
Nam eValueCollect ion object . The object belongs to t he
System .Collect ions.Specialized nam espace. By using the nam espace as a prefix to
the Nam eValueCollect ion item in the nam espace, I elim inate the need for an
Im ports statem ent at t he top of the m odule. Next the procedure declares two
variable- length st r ing arrays: one for the query st ring key nam es (passedkeys)
and another for t he query st r ing values (passedvalues) . Actually, t he procedure
will use the passedvalues array as a scalar, t hat is, an array with a count of one
elem ent . The last declarat ion in t he Page_Load event procedure is for an integer
value (int1) t hat serves as an index value for t he array m em bers in t he
passedkeys array.
After the declarat ions, t he procedure starts working on the query st ring
collect ion. The f irst step is to pass the query st r ing collect ion to col1 . Next the
procedure takes the collect ion of key nam es in col1 and saves it in passedkeys.
Then the procedure perform s a loop from 0 through 1 less than the count of
elem ents in t he passedkeys arrays. The GetUpperBound m ethod with an
argum ent of 0 autom at ically returns the count of array elem ents less 1. This loop
enum erates the m em bers of t he passedkeys array. When the loop detects a
passedkeys array value with a nam e of either UserI D or Password, the code saves
the corresponding value from col1 in t he f irst elem ent of t he passedvalues array.
Then a Select Case statem ent sorts out whether the key is a user id or a password
and assigns the passedvalues elem ent to an appropriately nam ed st r ing value. At
the conclusion of t he Page_Load event procedure, t he st ruser id and st rpassword
st r ings contain the Text property set t ings for the UserI D and Password text boxes
at the t im e the page left the browser. I f the user clicked But ton1 , the
But ton1_Click event procedure concatenates these two st r ings and assigns them
to the Text property of TextBox1 .
Dim struserid As StringDim strpassword As String

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Declare query string parsing variables.
 Dim coll As _
 System.Collections.Specialized.NameValueCollection
 Dim passedkeys(), passedvalues() As String
 Dim int1 As Integer

 ’Use QueryString property of Request object to pass
 ’query string to col1, a NameValueCollection variable, and
 ’return all key names to passedkeys string array.
 coll = Request.QueryString
 passedkeys = coll.AllKeys

 ’Loop through keys and get value for

 ’UserID and Password keys.
 For int1 = 0 To passedkeys.GetUpperBound(0)
 If passedkeys(int1) = “UserID” Or _
 passedkeys(int1) = “Password” Then
 passedvalues = coll.GetValues(int1)
 Select Case passedkeys(int1)
 Case “UserID"
 struserid = passedvalues(0)
 Case “Password"
 strpassword = passedvalues(0)
 End Select
 End If
 Next int1
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Populate TextBox1 with UserID and Password text values.
 TextBox1.Text = struserid & “, “ & strpassword

End Sub

Using Query St r ings Across Pages

The preceding sam ple showed how to use a page’s query st r ing collect ion to pass
inform at ion to t hat page. You can use this sam ple to t rack and select ively show
inform at ion on a page depending on the state of the user id. You can use the
preceding sam ple as a start ing point for an applicat ion that returns with a form
showing orders for a custom er or 401(k) dist r ibut ions by an em ployee. Another
com m on use for query st r ings is to pass inform at ion between pages. The sam ple
in this sect ion (based on the Page1QSPage2 project) shows how you can
accom plish this as a sim ple extension of the logic from the preceding sam ple.
Figure 11-15 shows the Page1QSPage2 sam ple in operat ion. This sam ple starts
with t he WebForm 1.aspx page in t he Page1QSPage2 project . You can see the
page in the top window of Figure 11-15. As you can see, the page includes a pair
of t ext boxes, a but ton, and three labels. The two text boxes and the but ton are
excerpted from the HTML for t he preceding sam ple. However, in t his case cont rol
doesn’t return to t he sam e page when the user clicks the but ton. I nstead, cont rol
passes to WebForm 1.aspx in t he Page2 proj ect . The bot tom window in Figure 11-
15 shows the second page.

Figure 1 1 - 1 5 . The Page1 QSPage sam ple lets a user pass values from
W ebForm 1 .aspx in the Page1 QSPage2 project to W ebForm 1 .aspx in the

Page2 project .

The sam ple uses a query st r ing appended to t he end of the URL for
WebForm 1.aspx in t he Page2 proj ect . By select ing nam e-value pairs for specific
cont rols into the query st r ing collect ion, you m ake the HTTP header shorter . This
reduces the t ransport t im e. I t also shortens the enum erat ion t im e through the
query st r ing collect ion because the only it em s in the query st r ing are those you
put there for t he task.
Two techniques are especially cr it ical to m aking this sam ple work. First , your
applicat ion m ust const ruct a st r ing based on a URL and a query st r ing collect ion.
Second, your applicat ion m ust navigate to the URL in the st r ing so that the query
st r ing m em bers can pass to the other page designated by the URL.
Before reviewing the code, you m ay benefit from a quick review of t he st r ing
syntax for a URL with an appended query st r ing collect ion. Start w it h ht tp: / / .
Follow this with t he URL for t he target page. For exam ple, you m ight enter
localhost / Page2/ WebForm 1.aspx. Append a quest ion m ark (?) t o t he end of t he

URL. Then follow the first query st r ing m em ber nam e with an equal sign (=) .
Conclude the query st r ing definit ion by adding the value for t he query st r ing
m em ber. I f the query st r ing collect ion has another m em ber, t rail t he query st ring
value with an am persand (&) . Repeat t he process for as m any addit ional query
st r ing m em bers as necessary.
The next list ing shows the code behind WebForm 1.aspx in t he Page1QSPage2
proj ect . I t consists of two event procedures: Page_Load and But ton1_Click . All
the But ton1_Click event procedure does is send the page to t he Web server from
the browser. The Page_Load event procedure const ructs the st r ing with t he URL
and the appended query st r ing collect ion. As you can see, t he code im plem ents
the rules for const ruct ing a query st r ing at the end of a URL. Once the st r ing is
available as st r1, t he Page_Load event procedure invokes the Redirect m ethod for
the Response object to navigate to t he URL and pass the appended query st r ing
collect ion to another page (the one designated in the URL) .
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’Put user code to initialize the page here.
 If IsPostBack Then
 Dim str1 As String = _
 “http://localhost/Page2/WebForm1.aspx” & _
 “?UserID=“ & UserID.Text & _
 “&Password=“ & Password.Text
 Response.Redirect(str1)
 End If
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ’Just causes a postback to the server.
End Sub

The code behind WebForm 1.aspx in the Page2 project is a sim ple adaptat ion of
the code from the preceding sam ple. The Page_Load event procedure does all t he
work in this case because it t he sole purpose of WebForm 1.aspx in the Page2
proj ect to display the query st ring m em ber values passed to it— nam ely, a user id
and password. However, you can readily adapt the sam ple to do som ething with
the user id and password passed to the page.
Dim struserid As StringDim strpassword As String

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Declare query string parsing variables.
 Dim coll As _
 System.Collections.Specialized.NameValueCollection
 Dim passedkeys(), passedvalues() As String
 Dim int1 As Integer

 ’Use QueryString property of Request object to pass
 ’query string to col1, a NameValueCollection variable, and
 ’return all key names to passedkeys string array.
 coll = Request.QueryString
 passedkeys = coll.AllKeys

 For int1 = 0 To passedkeys.GetUpperBound(0)
 If passedkeys(int1) = “UserID” Or _
 passedkeys(int1) = “Password” Then
 passedvalues = coll.GetValues(int1)
 Select Case passedkeys(int1)

 Case “UserID"
 struserid = passedvalues(0)
 Case “Password"
 strpassword = passedvalues(0)
 End Select
 End If
 Next int1

 ’Populate TextBox1 with UserID and Password text values.
 TextBox1.Text = struserid & “, “ & strpassword

End Sub

Data on W eb Pages

Although working with data on a Web page with ASP.NET is m ore involved than in
a Windows form , the process is st ill vast ly sim pler t han with classic ASP m ethods.
Your database developm ent proj ects will st ill gain t he ASP.NET benefit s der ived
from isolat ing code from page layout . I n addit ion, once you m aster t he ADO.NET
techniques for m anaging data in Windows form s, it ’s just a slight ext rapolat ion to
extend those techniques for use with Web pages. This sect ion starts with an
overview of som e defining issues for using data on Web pages. The sect ion then
m oves on to cover four sam ple applicat ions that illust rate typical k inds of
problem s that you m ay want t o include in your Web/ database applicat ions. First
you learn how to create and program a parent -child form . Next the focus shifts to
techniques for browsing through data on a Web page. The third sam ple presents
two procedures for creat ing database objects on a SQL Server instance from a
Web page. The sect ion closes with a sam ple that reveals how to perform all t hree
classic data m anipulat ion tasks from a Web page.

Managing Database Solut ions w ith ASP.NET

Using a SQL Server database with ASP.NET int roduces a special set of issues that
build on your core understanding of ADO.NET and SQL Server. Web pages in an
ASP.NET solut ion t ravel back and forth regular ly between a browser and a Web
server. This sim ple fact raises the quest ion of where you store the data for your
ASP.NET solut ion— on the Web server, t he Web page, or the browser workstat ion.
A related quest ion is how m uch of a SQL Server database at any one instant do
you store in your ASP.NET solut ion— possible answers are one row, a whole table,
or several related tables. Figure 11-1 in this chapter ’s f irst sect ion illust rates
som e of t hese issues graphically by port raying the flow of data on a Web page.
The sam ples that I present all store their data on the Web page. This is suitable
for cases in which there is a relat ively sm all am ount of data to t ransport between
the browser and the Web server. I f a solut ion needs m ore data, there are several
st rategies for handling this. For exam ple, you m ay be able t o im plem ent a
st rategy that successively works with sm all subsets of a larger data source. You
can then create these sm all subsets as your applicat ion needs them from the SQL
Server database. I f a solut ion requires a large data store locally , you m ust store
it on the Web server or browser workstat ion. This int roduces a need for special
data access and ret r ieval t echniques as well as secur ity procedures for the local
data store.
Another k ind of special issue pertaining to the use of data in ASP.NET solut ions
follows from the fact that you are likely to use Web server cont rols on a Web

page instead of Windows Form s cont rols on a Windows form . Displaying data
through these two different sets of cont rols in dist inct containers doesn’t work
ident ically , j ust as ADO.NET data binding doesn’t work ident ically for all cont rols
on a Windows form .
Before closing this int roduct ion, I want t o rem ind you that using Web solut ion
st rategies doesn’t m agically relieve the developer of needing to know about
ADO.NET and SQL Server. For exam ple, if you want t o update data, you will likely
need a data adapter and a data set on the Web page. I n addit ion, you can
im prove the perform ance of your solut ions by using stored procedures instead of
uncom piled SQL statem ents. Also, you m ay find that your solut ions can benefit
from designing and populat ing custom tables. I t m ay even be useful to enable
this funct ionalit y dynam ically from within your ASP.NET solut ion. The following
sam ples in this sect ion will illust rate how to dynam ically create database objects
from within your ASP.NET solut ions.

Populat ing ListBox and DataGrid Controls

One of t he m ost com m on data applicat ions lets users choose from one cont rol so
that they determ ine the data appearing in one or m ore other cont rols. The
sam ple in t his sect ion lets a user choose from a list box to determ ine the subset
of data that appears in a data grid. The list box value has a parent relat ionship
with t he values appear ing in the data grid. Both the list box and the data gr id
der ive their values from a SQL Server database through SqlConnect ion and
SqlDataAdapter objects. This sam ple also describes the AutoPostBack property,
which is a special ListBox cont rol property for ASP.NET applicat ions.

W eb Page Layout and Operat ion

The sam ple exists as WebForm 1.aspx in the ListToGrid proj ect . Figure 11-16
shows the Design view of WebForm 1.aspx. Four cont rols appear on the page.
These are a list box, a t ext box, a but ton, and a data gr id. I n addit ion, two
ADO.NET cont rols, a SqlConnect ion object and a SqlDataAdapter obj ect , appear in
the system t ray at the bot tom of t he page. These lat ter two cont rols don’t appear
on the Web page, but t hey are available for use by the code behind the page. By
graphically creat ing the two ADO.NET cont rols on the page, you save having to
wr ite t he code to declare and instant iate t he objects.

Figure 1 1 -1 6 . A Design view of W ebForm 1 .aspx in the ListToGrid project .

Use the Data tab on the Toolbox to drag the SqlDataAdapter to the Web page.
After you finish interact ing with it s wizard, Visual Studio .NET will autom at ically
create a SqlConnect ion object . This sam ple connects to t he Northwind database.
See Chapter 1 for m ore details of t he steps for adding SqlDataAdapter and
SqlConnect ion objects graphically. The sam ple in t his sect ion uses the following
SQL st r ing to specify the rowset t hat t he data adapter will eventually load into a
data set . The sam ple applicat ion ult im ately assigns the data set t o t he
DataSource property of the DataGrid cont rol.
SELECT ProductID, ProductName, CategoryID, UnitPrice, UnitsInStock,
UnitsOnOrder, Discontinued FROM Products

The nam es for all t he cont rols on the page end with a 1 appended to t he nam e of
the type of cont rol. For exam ple, t he list box, but ton, and SqlDataAdapter
cont rols are respect ively ListBox1 , But ton1, and SqlDataAdapter1 . Because there
is just one item for each type of cont rol, the sam ple discussion refers t o individual
cont rols by the cont rol’s type nam e.
Not ice that no data appears in any of t he cont rols. The DataSource propert ies for
the ListBox and DataGrid cont rols don’t have design- t im e assignm ents. You can
set the DataSource propert ies for t hese cont rols eit her at design t im e or at run
t im e. One advantage to assigning the DataSource property at run t im e is that you
can m ake the assignm ent dynam ic depending on other factors. For exam ple, t he
sam ple sets the DataSource property for t he DataGrid cont rol based on the
select ion in t he ListBox cont rol. You can also use a Session state var iable,
determ ined by any of t he techniques described ear lier in t his chapter, t o
cont r ibute to t he specificat ion of t he DataSource property for t he ListBox and
DataGrid cont rols.
The ListBox cont rol has it s AutoPostBack property set to True in the Propert ies
dialog box. The propert y allows select ions from a list box to post back
im m ediately t o t he Web server. I n m any Web applicat ions, im m ediately post ing a
select ion from a list box to a Web server isn’t necessary. Therefore, the default
set t ing for t his property is False. I n addit ion, the property doesn’t work unless
Act ive Scr ipt ing is enabled for a browser. Because enabling the Act ive Script ing

feature can expose a browser to a securit y v iolat ion, som e browser users m ay
elect to disable t he feature (Act ive Scr ipt ing) . For t his reason, t he sam ple offers a
but ton. By click ing the but ton, users can force a postback of t he Web page to the
Web server. By post ing back the select ion from the list box one way or the other,
the Web server is able to dynam ically set the DataSource propert y for the
DataGrid cont rol based on the m ost recent select ion from the ListBox cont rol.

Note

You can manually cont rol the operat ion of the Act ive
Scr ipt ing feature from the Internet Opt ions dialog box in an
Internet Explorer 5 or later browser. Select Internet Opt ions
from the Tools menu, and then select the Secur ity tab. Click
Custom Level to br ing up the Security Set t ings dialog box.
Scroll down to Act ive Script ing under Scr ipt ing. Then select
Disable, Enable, or Prompt depending on your preference for
how you want the feature to operate. Click OK twice to exit
the Secur ity Set t ings and Internet Opt ions dialog boxes.
The list box displays the category nam es and stores the CategoryI D values from
the Categor ies table in t he Northwind database. When a user selects a category
nam e, t he list box highlights the select ion. The text box displays the
corresponding CategoryID value for the selected category nam e in the list box.
The list box doesn’t draw on the sam e data source as the DataGrid. The sam ple
program m at ically creates a SqlCom m and obj ect and then uses the ExecuteReader
m ethod to populate the list box based on the SqlCom m and obj ect ’s
Com m andText propert y.
Figure 11-17 shows the WebForm 1.aspx Web page in operat ion im m ediately aft er
the select ion of t he Produce category. Because I ran this sam ple on a com puter
with it s Act ive Scr ipt ing feature disabled, it was necessary to click t he but ton to
update the DataGrid cont rol so that it showed products for t he Produce category.
A user can change the products appear ing in the DataGrid cont rol by select ing
another category in the list box and clicking the but ton. I f t he browser ’s Act ive
Script ing feature is enabled, changing the select ion in t he list box will
autom at ically cause the products in the data gr id to be revised without a need to
click t he but ton.

Figure 1 1 - 1 7 . W ebForm 1 .aspx in the ListToGrid project im m ediately after
a select ion and click of the but ton.

Code Behind the W eb Page

The code behind the Web page handles the m anagem ent of t he database
connect ivit y for the cont rols on the page. The code achieves this task by
com plem ent ing and extending the ADO.NET objects in the system t ray as well as
by creat ing ADO.NET objects. All the code behind the page resides in t he
Page_Load event procedure, but two other event procedures play pivotal roles in
the applicat ion, alt hough they contain no code.
The But ton1_Click event procedure is a backup procedure for sending the Web
page to a Web server. The pr im ary vehicle for sending the Web page to a Web
server after t he user m akes a select ion from the list box is t he
ListBox1_SelectedI ndexChanged procedure. Recall that I set the AutoPostBack
property for t he list box to True at design t im e. Therefore, the page goes to the
server after each select ion from the list box, provided the user ’s browser enables
the Act ive Script ing feature. I f this feature is t urned off (or not available because
a browser doesn’t support it) , a user can st ill send the page to the Web server by
click ing the but ton. Neither procedure has any code within it . The only funct ion of
the procedures is to send the page to t he Web server.
The Page_Load event procedure is t r iggered the first t im e a user opens
WebForm 1.aspx in t he ListToGrid proj ect . The Page_Load event procedure also
fires on each subsequent visit to t he Web server no m at ter which of the other two
event procedures init iates the v isit . The code inside the Page_Load event
procedure includes an I f…Then statem ent t hat executes one block of code dur ing
only the f irst v isit t o t he Web server within a session— that is, when Not
(Me.I sPostBack) is True—as well as another code block that f ires on each
subsequent page visit .
The code block that executes only when Not (Me.I sPostBack) is True populates
the ListBox cont rol w it h two colum ns from the Categor ies table. This block begins
by declaring and instant iat ing the SqlCom m and1 object and assigning to a
Com m andText propert y set t ing a SQL query that returns all t he colum ns from all
the rows in t he Categor ies table. The use of the ExecuteReader m ethod in an
assignm ent statem ent designates the Category table as the DataSource property

for ListBox1 . The assignm ent of CategoryNam e to the DataTextField property
determ ines the colum n of values ListBox1 shows. When a user selects a category
nam e, ListBox1 saves a m atching value from its DataValueField propert y set t ing.
Therefore, the assignm ent of CategoryI D t o the DataValueField property
designates that ListBox1 save a CategoryI D value that m atches whatever
category nam e a user selected. I nvoking the DataBind m ethod t ies t he
DataSource set t ing to ListBox1 for t he durat ion of t he set t ing. Before exit ing the
Then clause, the I f…Then statem ent selects the first it em appear ing in ListBox1 ,
which corresponds to t he category nam e Beverages and the CategoryID value 1.
I m m ediately aft er exit ing the Then clause or even if t he clause doesn’t execute,
the procedure assigns a value to TextBox1 t hat equals ListBox1 ’s SelectedI ndex
property value plus 1, which is the sam e as SelectedI tem (the selected
CategoryI D value). On the init ial page load for a session, TextBox1 w ill show the
value 1 because the Then clause sets the SelectedI ndex property t o 0. Otherwise,
the com puted value appearing in TextBox1 w ill m atch the CategoryID for
whatever it em a user selected m ost recent ly from ListBox1 .
The balance of t he Page_Load event procedure aim s to populate DataGrid1. The
process of populat ing the DataGrid cont rol start s by declar ing and instant iat ing a
new DataSet obj ect (ds1) and filling it w it h t he data source specified by the SQL
statem ent for SqlDataAdapter1 . This data source includes a subset of t he colum ns
from the Products table, but it includes all t he rows. Because the applicat ion calls
for the DataGrid cont rol showing j ust a subset of the rows that depends on the
m ost recent ly selected item from ListBox1 , ds1 isn’t an appropr iate data source
for DataGrid1. This is the reason that t he procedure declares and instant iates a
DataView object (dav1) . The filt er for dav1 is the set of rows from ds1 t hat have
a CategoryI D colum n value m atching (ListBox1.SelectedI ndex + 1) .ToSt ring,
which is an expression that returns the CategoryI D for t he m ost recent ly selected
item in the list box. After com put ing dav1 , t he procedure concludes by assigning
it to the DataSource property for DataGrid1. Finally t he procedure concludes by
invoking the DataBind m ethod for DataGrid1. Without t his step, t he DataSource
property for DataGrid1 would not update to show the m ost recent ly selected item
from ListBox1 .
‘This procedure depends on drag-and-drop instantiation
‘of SqlConnection1 and SqlDataAdapter1 for selected
‘columns from the Products tables in the northwind database.
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 If Not (Me.IsPostBack) Then

 ’Setup SqlCommand1 with SqlConnection1 for ListBox1.
 Dim SqlCommand1 As New SqlClient.SqlCommand()
 SqlCommand1.CommandText = “SELECT * FROM Categories"
 SqlCommand1.Connection = SqlConnection1
 SqlConnection1.Open()

 ’Assign CategoryName and CategoryID to ListBox1.
 ListBox1.DataSource = SqlCommand1.ExecuteReader()
 ListBox1.DataTextField = “CategoryName"
 ListBox1.DataValueField = “CategoryID"
 ListBox1.DataBind()
 SqlConnection1.Close()

 ’Select first item in ListBox1.
 ListBox1.SelectedIndex = 0
 End If

 ’Assign to ListBox1 Selected item + 1,
 ’which is the same as CategoryID value.

 TextBox1.Text = (ListBox1.SelectedItem).ToString

 ’Fill Products data table from northwind database.
 Dim ds1 As New DataSet()
 SqlDataAdapter1.Fill(ds1, “Products”)

 ’Specify filter for dav1 based on selected
 ’item in ListBox1.
 Dim dav1 As New DataView(ds1.Tables(“Products”))
 Dim strFilter As String
 strFilter = “CategoryID = “ & _
 (ListBox1.SelectedIndex + 1).ToString
 dav1.RowFilter = strFilter

 ’Assign dav1 as data source for DataGrid1 and
 ’bind source to data grid.
 DataGrid1.DataSource = dav1
 DataGrid1.DataBind()

End Sub

Private Sub ListBox1_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ListBox1.SelectedIndexChanged
 ’AutoPostBack setting of True will generate event
 ’if Active Scripting is enabled.
End Sub

Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 ’Force postback if AutoPostBack setting of True
 ’does not operate.
End Sub

Navigat ing Text Boxes Through a Data Set

Another popular database applicat ion enables browsing of a set of records with a
set of navigator but tons that let users m ove to t he next or previous row as well
as the first and last row. The sam ple for this sect ion (WebForm 1.aspx in t he
NavTextBoxes proj ect) dem onst rates how to build t hat k ind of funct ionalit y into a
Web page while taking advantage of t he SqlConnect ion and SqlDataAdapter
obj ects from the previous sam ple.
One special addit ion to the design of this sam ple is another ADO.NET object , the
Ds1 data set , in t he system t ray. See Figure 11-18 for the appearance of t he Ds1
data set object in the Design v iew of t he Web page for the sam ple. Recall t hat
you can graphically create ADO.NET objects at design t im e. Then your code can
refer to them . I f you don’t need the dynam ic funct ionalit y associated with
program m at ically declar ing and instant iat ing objects or you just feel
uncom fortable with coding the objects, consider adding the objects at design
t im e. Creat ing objects at design t im e can also benefit Web applicat ions by
reducing the program m ing in the Page_Load event procedure. This reduct ion can
cause pages to load faster. To create a data set after you have a SqlDataAdapter
already on a Web page is st raight forward. Select the SqlDataAdapter in the

system t ray. I n the Propert ies window, click the Generate Dataset hyper link
below the list of SqlDataAdapter propert ies. Select the New radio but ton in t he
Generate Dataset dialog box if it isn’t already selected. Then type a nam e for the
data set . Click OK to com plete the creat ion of t he data set .

Figure 1 1 -1 8 . A Design view of W ebForm 1 .aspx in the NavText Boxes
project . Not ice that it show s a data set object (Ds1) as w ell as tw o other

ADO.NET objects (SqlDataAdapter1 and SqlConnect ion1) .

Note

Creat ing a data set graphically displays it in the system t ray
for the Design view of a Web page. However, the data set
isn’t populated with values. You must programmat ically fill
the data set just as if you had created it in a program.
The operat ion of this sam ple is st raight forward. Figure 11-19 shows the Web
page layout . The page has three text boxes, one for each of the colum n values
from the Products table that the page shows. Recall that t he SqlDataAdapter
obj ect for t he pr ior sam ple uses a SQL statem ent that ext racts selected colum ns
from the Products table in the Northwind database, including the three that
appear in Figure 11-19. The four but tons below the text boxes enable navigat ion.
From left t o r ight , the but tons m ove to t he first row, t he previous row, the next
row, and the last row. When the page opens init ially, it shows the first row in the
Products table. The Product I D colum n contains values 1 through 77, which run
successively from the first row to t he last row. I navigated to t he 74th row by
click ing the last row but ton and then click ing the previous row but ton three t im es.

Figure 1 1 - 1 9 . W ebForm 1 .aspx in the NavTextBoxes project after opening
the page, clicking the last row but ton (> |) , and then clicking the previous

row but ton (<) three t im es.

I didn’t set the ReadOnly property for t he text boxes to True. (The default set t ing
is False.) As a consequence, users can edit the value in a text box. However, t he
change doesn’t persist between round-t r ips to the Web server, for at least a
couple of reasons. First , the text boxes don’t bind to the values that t hey show.
The text box cont rols work as cont rols on an unbound form . Therefore, a change
to a value in a t ext box is just that . The value in the text box doesn’t t ie direct ly
to an under lying source of rows. Even if the text boxes did bind to t he data set on
the Web page, t here is a second reason why the changes won’t persist between
round- t r ips to t he server. The Web server refreshes the data set on each round-
t rip. This unbound characterist ic of t ext boxes and the volat ile nature of a data
set on Web pages is an im portant difference between text boxes on Windows
form s and text boxes on Web pages. Recall from Chapter 10 that on Windows
form s it is com m on to bind text boxes to a local, persistent data set .
The code behind WebForm 1.aspx in the NavTextBoxes proj ect appears next . You
can see that t he Page_Load event procedure starts by filling the Ds1 data set .
This repopulates the Products data table in t he Ds1 data set on each round- t r ip to
the server. Therefore, users get a fresh look at any changes to t he Products table
in the Northwind database m ade by other users or a cent ral updat ing program .
Next t he Page_Load event procedure checks to see whether the page is loading
init ially . For t he f irst - t im e load of the Web page in a session, the event procedure
sets Session(“ MyRowI D”) = 0 and calls t he MoveToRow sub procedure. The
MyRowI D Session var iable m aintains the state for the last row viewed in t he
Products DataTable. I nit ially , this row should be 0 for t he f irst row in the Products
DataTable.
The call to t he MoveToRow procedure populates the text boxes with values from
the row specified by the MyRowID Session variable. First t he procedure declares
and instant iates a DataRow obj ect (MyRow) based on the row in t he Products
DataTable specified by the MyRowI D Session variable. Next t he procedure selects
and converts, if appropr iate, a colum n value from MyRow for each of t he text
boxes on the Web page.

The Click event procedures for But ton1 through But ton4 enable navigat ion
through the rows of t he Products data table. But ton1 corresponds to t he leftm ost
but ton on the Web page, and But ton2 through But ton4 m atch each successive
but ton on the page. Each Click event procedure calls t he MoveToRow procedure
but f irst updates the value of the MyRowI D Session var iable according to the
funct ion of the but ton clicked, as described here:

• But ton1 , which navigates to the f irst row, sets t he MyRowI D Session
variable to 0.

• But ton2 m oves to t he previous row in t he Products DataTable. The event
procedure for t his but ton checks to see whether the current value of the
MyRowI D Session var iable is greater than 0. I f so, the procedure reduces
the MyRowI D Session variable value by 1. Otherwise, t he procedure leaves
the MyRowI D Session variable at t he value 0, which corresponds to t he
first row in the Products DataTable.

• But ton3 , which m oves to the next row, checks to see whether the current
value of t he MyRowI D Session variable corresponds to less than the last
row in the Products DataTable. I f the current value is less, the procedure
adds 1. Otherwise, t he procedure leaves the MyRowI D Session variable
point ing to the last row in the Products DataTable.

• But ton4 sets the MyRowI D Session var iable to point t o t he last row in the
Products DataTable.

• Private Sub Page_Load(ByVal sender As System.Object, _

• ByVal e As System.EventArgs) Handles MyBase.Load
•

• ’Fill Ds1 Products data table in Ds1.
• SqlDataAdapter1.Fill(Ds1, “Products”)

•
• ’On initial page load move to first row and

• ’populate text boxes.
• If Not Me.IsPostBack Then

• Session(“MyRowID”) = 0

• MoveToRow()
• End If

•
• End Sub

•
•
• Sub MoveToRow()
• ’Specify selected row based on Session(“MyRowID”).

• Dim MyRow As DataRow
• MyRow = Ds1.Tables(“Products”).Rows(Session(“MyRowID”))

•
• ’Assign value from selected row to TextBox1.

• Dim str1 As String = CStr(MyRow(0))
• TextBox1.Text = str1

•
• ’Assign value from selected row to TextBox2.
• str1 = MyRow(1)
• TextBox2.Text = str1

•

• ’Assign value from selected row to TextBox3.
• str1 = CStr(MyRow(6))
• TextBox3.Text = str1

•
• End Sub

•
•

• Private Sub Button1_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) Handles Button1.Click

•
• ’Move to first row and populate text boxes.
• Session(“MyRowID”) = 0
• MoveToRow()

•
• End Sub

•
• Private Sub Button2_Click(ByVal sender As System.Object, _

• ByVal e As System.EventArgs) Handles Button2.Click

•
• ’Move to previous row and populate text boxes.

• If Session(“MyRowID”) > 0 Then
• Session(“MyRowID”) -= 1

• End If
• MoveToRow()

•
• End Sub

•
•

• Private Sub Button3_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) Handles Button3.Click

•
• ’Move to next row and populate text boxes.
• If Session(“MyRowID”) < _
• Ds1.Tables(“Products”).Rows.Count - 1 Then

• Session(“MyRowID”) += 1

• End If
• MoveToRow()
•
• End Sub

•
•

• Private Sub Button4_Click(ByVal sender As System.Object, _
• ByVal e As System.EventArgs) Handles Button4.Click

•
• ’Move to last row and populate text boxes.

• Session(“MyRowID”) = Ds1.Tables(“Products”).Rows.Count - 1
• MoveToRow()
•
• End Sub

•

Creat ing Database Objects from W eb Pages

Your applicat ions will som et im es need the availabilit y of custom database objects.
For exam ple, stored procedures, which store precom piled, opt im ized SQL code,
are great for m anaging data m anipulat ion tasks, such as insert ing new records

into a table, and data def init ion tasks, such as dynam ically creat ing a new table.
I f you happen to create a custom table for your applicat ion, your applicat ion can
probably also benefit from one or m ore stored procedures perform ing data
m anipulat ion tasks for t he table. For exam ple, your applicat ion can pass the
stored procedure param eters specify ing the colum n values for a new row, and the
stored procedure can execute the I NSERT I NTO statem ent . I f your applicat ion
needs the value for a colum n with an I dent it y property created on the SQL Server
instance, t he stored procedure can return it as an output param eter.
The sam ple for t his sect ion dem onst rates the creat ion of a table and a stored
procedure. The sam ple is the setup program for the next sect ion that
dem onst rates how to program data m anipulat ion tasks. Specifically , you will learn
how to create a table and a stored procedure on a SQL Server instance from an
ASP.NET applicat ion. Figure 11-20 shows the Web page for the sam ple. The
page’s nam e is WebFrom 1.aspx, and it resides in the SetupForWebUpdateSam ple
proj ect . The page includes two but tons and a hyper link. The but tons have Text
property set t ings reflect ing the text t hey show. The but ton I D propert y set t ings
are But ton1 for t he top but ton and But ton2 for the one below it . The hyper link
cont rol has two design-t im e property set t ings. First , it s Text propert y specifies
the m essage to display when rendered on a Web page. Second, t he NavigateUrl
property designates the URL of t he page to which to pass cont rol when a user
clicks the hyper link. I f you are running the applicat ion against another Web
server besides the local one on your workstat ion, you will need to update the
NavigateUrl property for the hyper link cont rol.

Figure 1 1 - 2 0 . W ebForm 1 .aspx in the SetupForW ebUpdateSam ple project .

The sam ple’s new table is essent ially a scratch copy of t he Shippers table in the
Northwind database. By creat ing a scratch copy of t he table, you will be able t o
m ake changes against t he new sam ple table without dest roying the or iginal data
in the sam ple database. The But ton1_Click event procedure perform s three
subtasks as it creates a new table nam ed ASPNETShippers. First it rem oves the
ASPNETShippers table if it already exists in the database. Next it creates the
ASPNETShippers table. Third it populates the rows of t he ASPNETShippers table
with rows from the Shippers table.

The list ing that follows starts by declar ing and instant iat ing a SqlConnect ion
obj ect (cnn1) and a SqlCom m and object (cm d1) . By declaring the objects at the
m odule level, I can use them in event procedures for each but ton in Figure 11-
20. The But ton1_Click event procedure start s by specifying the connect ion st r ing
for cnn1 and opening the object . Next t he procedure assigns cnn1 t o t he
Connect ion property for cm d1 , the SqlCom m and obj ect . After these prelim inary
steps, the procedure successively repeats two statem ents for assigning a
Com m andText propert y to cm d1 and then invoking the ExecuteNonQuery m ethod
for cm d1 . Apply t he ExecuteNonQuery m ethod of a SqlCom m and object when the
object ’s Com m andText property doesn’t return a result set . The three
Com m andText propert y set t ings rem ove any pr ior version of t he ASPNETShippers
table, create a new ASPNETShippers table, and populate the ASPNETShippers
table with rows from the Shippers table in the Northwind database. The
But ton1_Click event procedure concludes by closing cnn1 .
The logic for the But ton2_Click event procedure follows the sam e basic design as
that in the But ton1_Click event procedure. The overall process is: (1) m ake a
connect ion, (2) run one or m ore SQL statem ents with a SqlCom m and obj ect , and
(3) close the connect ion. The object ive of t he But ton2_Click event procedure is to
create a new stored procedure nam ed udpI nsertANewASPNETShipper. The event
procedure executes two SQL statem ents to achieve this object ive. First it runs
one statem ent to rem ove any pr ior version of the connect ion in the Northwind
database. Second it runs a procedure to create a new version of the
udpI nsertANewASPNETShipper stored procedure. We discussed the logic for t his
stored procedure in Chapter 10. That chapter dem onst rated how to create the
stored procedure in Query Analyzer and discussed the logic that t he SQL
statem ents express. This chapter extends the earlier t reatm ent of the topic by
dem onst rat ing how to create the stored procedure program m at ically from within
ASP.NET.

Note

For data definit ion SQL statements to funct ion proper ly , such
as those in the But ton1_Click and Button2_Click event
procedures, you must run them from a login with appropr iate
perm ission to create database objects on the SQL Server
instance to which you connect . See Chapter 7 for detailed
coverage of SQL Server secur ity, including logins and
perm issions. Alternat ively, you can use the SQL Server sa
login. However, this is poor applicat ion design because it
allows users unrestr icted authority on a SQL Server.
Dim cnn1 As New SqlClient.SqlConnection()Dim cmd1 As New SqlClient.Sq
lCommand()

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Make connection to northwind database.
 cnn1.ConnectionString = “Data Source=(local);” & _
 “Initial Catalog=northwind;” & _
 “Integrated Security=SSPI"
 cnn1.Open()

 ’Assign connection to cmd1.
 cmd1.Connection = cnn1

 ’Execute query to drop prior version of table.

 cmd1.CommandText = “IF EXISTS (“ & _
 “SELECT * FROM INFORMATION_SCHEMA.TABLES “ & _
 “WHERE TABLE_NAME = ’ASPNETShippers’) “ & _
 “DROP TABLE dbo.ASPNETShippers"
 cmd1.ExecuteNonQuery()

 ’Execute query to create new version of table.
 cmd1.CommandText = “CREATE TABLE dbo.ASPNETShippers “ & _
 “(“ & _
 “ShipperID int IDENTITY (1, 1) NOT NULL, “ & _
 “CompanyName nvarchar (40) NOT NULL, “ & _
 “Phone nvarchar (24) NULL, “ & _
 “CONSTRAINT PK_ASPNETShippers “ & _
 “PRIMARY KEY CLUSTERED (ShipperID)” & _
 “)"
 cmd1.ExecuteNonQuery()

 ’Populate table based on Shippers.
 cmd1.CommandText = _
 “SET IDENTITY_INSERT dbo.ASPNETShippers ON “ & _
 “INSERT INTO ASPNETShippers “ & _
 “(ShipperID, CompanyName, Phone) “ & _
 “SELECT * FROM Shippers “ & _
 “SET IDENTITY_INSERT dbo.ASPNETShippers OFF"
 cmd1.ExecuteNonQuery()

 cnn1.Close()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Make connection to northwind database.
 cnn1.ConnectionString = “Data Source=(local);” & _
 “Initial Catalog=northwind;” & _
 “Integrated Security=SSPI"
 cnn1.Open()

 ’Assign connection to cmd1.
 cmd1.Connection = cnn1

 ’Drop any prior version of udpInsertANewASPNETShipper.
 cmd1.CommandText = “IF EXISTS (“ & _
 “SELECT ROUTINE_NAME “ & _
 “FROM INFORMATION_SCHEMA.ROUTINES “ & _
 “WHERE ROUTINE_TYPE = ’PROCEDURE’ AND “ & _
 “ROUTINE_NAME = ’udpInsertANewASPNETShipper’) “ & _
 “DROP PROCEDURE dbo.udpInsertANewASPNETShipper"
 cmd1.ExecuteNonQuery()

 ’Create a new version of udpInsertANewASPNETShipper.
 cmd1.CommandText = _
 “CREATE PROCEDURE udpInsertANewASPNETShipper “ & _
 “@CompanyName nchar(40), “ & _
 “@Phone nvarchar (24), “ & _
 “@Identity int OUT “ & _
 “AS “ & _
 “INSERT INTO ASPNETShippers “ & _
 “(CompanyName, Phone) “ & _

 “VALUES(@CompanyName, @Phone) “ & _
 “SET @Identity = SCOPE_IDENTITY()"
 cmd1.ExecuteNonQuery()

 cnn1.Close()

End Sub

Data Manipulat ion from ASP.NET

After running the applicat ion in t he preceding sect ion, you will have a new copy of
the ASPNETShippers table in the Northwind database as well as a stored
procedure, udpI nsertANewASPNETShipper , to facilitate insert ing new rows into
the ASPNETShippers table. The sam ple applicat ion in t his sect ion illust rates how
to m odify, insert , and delete rows in the ASPNETShippers table from an ASP.NET
applicat ion. The applicat ion builds on the browsing sam ple illust rated by the
WebForm 1.aspx page in the NavTextBoxes proj ect . The addit ion of data
m anipulat ion to t hat earlier applicat ion is part icular ly interest ing because that
applicat ion used an unbound form to display colum n values from the Shippers
table. I n other words, t he form f ield values don’t bind to any data source.
Therefore, all data m anipulat ion tasks m ust be perform ed in code. The sam ple in
this sect ion is im portant for another reason. The applicat ion enables users to
update a SQL Server database over the Web.

Note

As with the sample in the preceding sect ion, users of this
applicat ion must have perm ission to perform a task before
the applicat ion automat ing that task will work. In this
sect ion, the tasks are the classic three data manipulat ion
ones of m odify ing, insert ing, and delet ing records.

W eb Page Layout and Operat ion

Figure 11-21 shows the Web page layout for this applicat ion. The page’s nam e is
WebForm 1.aspx in t he UpdateWithWebForm project . Except for four new but tons
at the bot tom of t he page, t he page layout looks sim ilar to t he one in Figure 11-
18 for browsing records with t ext box cont rols. The four new but tons facilitate
changes to t he row current ly appear ing on the Web page, delete t he row
current ly appear ing, and clear t he fields and insert a new row into t he database
based on new form f ield values. The Web page in Figure 11-21 connects to t he
ASPNETShippers, instead of t he Shippers, table in the Northwind database. This
dist inct ion enables applicat ion users of t he sam ple in this sect ion to m anipulate
the data appearing on the Web page without changing the original data in t he
sam ple database. By cont rast ing the Design v iews of t he two pages, you will also
not ice that t he new Web page has no ADO.NET objects created at design t im e.
You can tell t his because the system t ray doesn’t appear in Figure 11-21.

Figure 1 1 - 2 1 . W ebForm 1 .aspx in the UpdateW ithW ebForm project .

The ent ire reason for this sam ple is to dem onst rate that you can enable data
m anipulat ion tasks from a Web page with ASP.NET. Figure 11-22 starts to
dem onst rate this capabilit y by showing two v iews of t he Web page in operat ion.
The top window shows the Web page after a click of the Clear but ton (it s nam e is
cm dClear) and then the addit ion of new text in two of t he text boxes. The
cm dClear but ton clears the form on the Web page so the user can enter a new
row of data. I n t his top window, you can see that the Com panyNam e and Phone
values for a new shipper have been entered but that t he top text box for
ShipperI D is em pty. That ’s because the SQL Server instance assigns a value to
this f ield. Click ing the I nsert but ton (it s nam e is cm dI nsert) changes the browser
to look like the window in t he bot tom port ion of Figure 11-22. Not ice that the
Com panyNam e and Phone text boxes are the sam e. However, you now have a
ShipperI D text box value. SQL Server generated this value on the server, and the
UpdateWithWebForm applicat ion ret r ieved the value by captur ing the return
param eter value from the udpI nsertANewASPNETShipper stored procedure.

Figure 1 1 - 2 2 . W ebForm 1 .aspx in the UpdateW ithW ebForm project before
and after com m it t ing an insert to the ASPNETShippers table.

Figure 11-23 shows the row entered in the preceding sam ple in the process of
being m odified. Not ice that t he user changed the last digit in t he telephone
num ber from 7 to 8. The applicat ion doesn’t com m it t his change unt il t he user
clicks the Modify but ton. (I t s nam e is cm dModify .) After t he user clicks
cm dModify , t he applicat ion conveys the new value to t he SQL Server instance and
refreshes the local copy of t he data set on the Web page with t he table of values
from the SQL Server instance.

Figure 1 1 -2 3 . W ebForm 1 .aspx in the UpdateW ithW ebForm project just
before a m odificat ion to the telephone num ber for the row added in

Figure 1 1 - 2 2 .

Figure 11-24 shows the Delete but ton (it s nam e is cm dDelete) in operat ion. I n
the top window, you can see the new row with it s edited Phone value. The cursor
rests on the cm dDelete but ton. Click ing this but ton rem oves the row appearing
on the Web page from the ASPNETShippers table in the SQL Server instance and
updates the data set on the Web page to ref lect this result . Because the click t o
the cm dDelete but ton rem oved the form er last row in the Shippers data set , the
Web page shows the new last row with a ShipperID colum n value of 3. The Click
event procedure behind the cm dDelete but ton m anages the display of which row
appears on the page after the rem oval of a row. For exam ple, if a user rem oved
the first row (with a ShipperI D colum n value of 1) , t he row appear ing on the Web
page would be the new first row in the data set with a ShipperI D value of 2.

Figure 1 1 -2 4 . W ebForm 1 .aspx in the UpdateW ithW ebForm project just
before and just after the rem oval of the row that had its Phone value

edited in Figure 1 1 -2 3 .

Code Behind the W eb Page

The code for perform ing data m anipulat ion on a Web page parallels t hat for
perform ing data m anipulat ion in a Windows form . However, one im portant
difference is t hat in a Windows form , your code has to create m ost of t he
ADO.NET objects, such as a SqlDataAdapter and a data set , j ust once. I n the case
of a Web applicat ion, your code will t ypically have to re-create these objects each
t im e a Web page does a round- t r ip between a browser and a Web server— for
exam ple, every t im e the user clicks a but ton on the Web page. As m ent ioned
previously, you should keep the size of t he data set on a Web page sm all for this
reason. I n our case, t he ASPNETShippers table is already a sm all table of j ust
three original rows. I f your or iginal data source is large, consider pulling down
just a sm all port ion of it on successive round-t r ips by using a stored procedure or
a user-defined funct ion that returns a custom izable result set based on input that
you pass it t hrough a param eter.
The following list ing includes those parts of the code behind the Web page that
pertain direct ly to t he data m anipulat ion part of the sam ple. The data display and
navigat ion code closely follow the code appear ing in the sect ion t it led “Navigat ing
Text Boxes Through a Data Set ”. I n order t o conserve space in t his book for fresh
inform at ion, I direct you to t he code sam ples for this book, where the com plete
list ing is available for the code behind the Web page.
The list ing starts by declar ing and instant iat ing at the m odule level four ADO.NET
objects: a SqlConnect ion object (cnn1) , a SqlCom m and obj ect (cm d1) , a
SqlDataAdapter object (dap1) , and a DataSet object (das1) . The Page_Load
event procedure uses each of these objects, and the obj ects find select ive use in
other event procedures throughout the code behind the page.
After m aking a connect ion to t he Northwind database, the Page_Load event
procedure declares the dap1 data adapter dependent on all the colum ns from all
the rows of the ASPNETShippers table. Next the procedure defines the
UpdateCom m and property for the data adapter. A SQL UPDATE statem ent with
param eters specif ies the item s to update. After the SQL statem ent for the
UpdateCom m and property, two addit ional statem ents add param eters to the
com m and for t he UpdateCom m and property. These param eters allow the Web
page to pass values from the ent r ies in it s text boxes. The next param eter is for
the text box holding a ShipperI D value on the Web page. Whereas the param eter
t ies to the ShipperI D value in t he data set behind the Web page, it uses the row
current ly appear ing in t he f irst text box on the Web page.
The next several lines of code in t he Page_Load event procedure define the
I nsertCom m and propert y for t he dap1 data adapter and it s associated
param eters. I n this case, t he procedure designates the perform ance of the insert
via the udpI nsertANewASPNETShipper stored procedure. Recall t hat t he
preceding sect ion dem onst rated how to create this stored procedure in the code
behind a separate stand-alone Web page. The statem ents adding param eters
illust rate t he syntax for passing param eters to a stored procedure and capturing a
return value from a stored procedure. Not ice that you designate a Direct ion
property for prm 2 w it h t he Param eterDirect ion.Output enum erat ion value. This
param eter (prm 2) returns the I dent it y value for the inserted row by the SQL
Server instance.
The next block of code in t he Page_Load event procedure defines the
DeleteCom m and property and its param eter for the dap1 obj ect . This block of
code uses a SQL DELETE statem ent t o designate which row to drop from the
ASPNETShippers table along with t he row’s copy in t he data set behind the Web
page. Because the ShipperI D value is the pr im ary key of t he ASPNETShippers
table, t he code uniquely ident if ies a row to rem ove from the table by specify ing a
value for this colum n.
After def ining the dap1 data adapter and it s data m anipulat ion propert ies, the
Page_Load event procedure perform s two m ore essent ial tasks. First the

procedure fills t he das1 data set with t he values from the ASPNETShippers table.
Second the procedure populates the text boxes on the page with values from the
first row of t he das1 data set .
Users m ake a change by m odify ing the Com panyNam e or Phone text box values
on the Web page and then clicking the cm dModify but ton. I n t he Click event for
this but ton, t he procedure declares and instant iates a data v iew (dav1) based on
the ASPNETShippers DataTable in t he das1 data set . The procedure defines a sort
key for dav1 based on the ShipperID colum n. Then the procedure uses the data
view’s Find m ethod to return the rowindex for t he row with a ShipperI D colum n
value m atching the current ShipperI D value displayed on the Web page. Defining
the sort key is a necessary step for using the Find m ethod (because the
ASPNETShippers DataTable in das1 doesn’t have a pr im ary key const raint) . With
the index reflect ing the row displayed on the Web page, t he procedure creates a
DataRow based on the data table’s schem a and data that points to t he row from
the data table displayed on the Web page. Then the procedure updates the row’s
colum n values with t hose from the Web page. This m odifies the data table. Finally
the procedure closes by invoking the Update m ethod for the dap1 data adapter.
This m ethod t ransfers the changes from the local table to the m atching one on
the SQL Server instance.
The cm dClear and cm dI nsert but tons work together. I n general, a user should
click t he cm dClear but ton before click ing the cm dI nsert but ton. The cm dClear
but ton’s Click event procedure blanks the text box cont rols on the Web page.
Next t he user should insert values in those blank cont rols. The Click event
procedure for t he cm dI nsert but ton declares a new row to add to t he
ASPNETShippers data table and then populates the row with values from text
boxes on the Web page. At t his point , updat ing the local data table is as easy as
invoking the Add m ethod. This step appends the new row to t he end of the
ASPNETShippers data table. Next the procedure invokes the Update m ethod to
upload the new row to t he ASPNETShippers table in the SQL Server instance and
to download the ShipperI D value created on the SQL Server instance. The output
param eter statem ents for t he dap1 I nsertCom m and property in the Page_Load
event procedure autom at ically assure the proper handling of the return value
from the udpI nsertANewASPNETShipper stored procedure. Finally the procedure
updates the MyRowI D Session variable to point to the last row in t he data table
and shows this row (where ADO.NET perform s the insert) on the Web page.

Note

The cmdModify but ton Click event procedure doesn’t update
the MyRowI D Session variable or the values on the Web
page. At the end of the modify update, the correct row
already appears on the Web page. Therefore, there is no
need to show another record.
The cm dDelete_Click event procedure borrows from the logic of t he two preceding
event procedures and adds a new wrinkle or two. First the procedure defines a
data view to find an index value for t he row displayed on the Web page, which is
the row a user wants to delete. The second step is new. I n t his step, t he
procedure invokes the Delete m ethod for the row in t he data table t hat m atches
the row displayed on the Web page. This m ethod doesn’t physically rem ove the
row from the local data table. I nstead, it m arks the row for delet ion. When the
procedure invokes the Update m ethod in the third step, it f inds all rows m arked
for delet ion and rem oves them from the SQL Server version of t he
ASPNETShippers table. I n this applicat ion, t here will always be j ust one such row.
After rem oving the row on the server, the Update m ethod autom at ically rem oves
the row locally. This t im e the procedure physically rem oves the row from the local
data table. After com plet ing the delet ion, t he procedure displays on the Web page

the previous row before the one j ust deleted. I f that row (the one j ust deleted)
was the first row, the procedure shows the old second row, which is t he new first
row.
Dim cnn1 As New SqlClient.SqlConnection()Dim cmd1 As New SqlClient.Sq
lCommand()
Dim dap1 As New SqlClient.SqlDataAdapter()
Dim das1 As New DataSet()

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Make connection to northwind database and
 ’point data adapter (dap1) at it
 cnn1.ConnectionString = “Data Source=(local);” & _
 “Initial Catalog=northwind;” & _
 “Integrated Security=SSPI"
 dap1 = _
 New SqlClient.SqlDataAdapter(_
 “SELECT * FROM ASPNETShippers", cnn1)

 ’Set the UpdateCommand property for dap1.
 dap1.UpdateCommand = _
 New SqlClient.SqlCommand _
 (“UPDATE ASPNETShippers “ & _
 “SET CompanyName = @CompanyName, “ & _
 “Phone = @Phone “ & _
 “WHERE ShipperID = @ShipperID", _
 cnn1)

 ’Add two parameters that take source columns
 ’from the ASPNETShippers table in the dataset for the
 ’dap1 adapter and feed the parameters in the SQL
 ’string for the UpdateCommand property.
 dap1.UpdateCommand.Parameters.Add _
 (“@CompanyName", SqlDbType.NVarChar, 40, _
 “CompanyName”)
 dap1.UpdateCommand.Parameters.Add _
 (“@Phone", SqlDbType.NVarChar, 24, _
 “Phone”)

 ’Specify matching criterion values based on the
 ’original version of the ShipperID column in the
 ’local ASPNETShippers table.
 Dim prm1 As SqlClient.SqlParameter = _
 dap1.UpdateCommand.Parameters.Add _
 (“@ShipperID", SqlDbType.Int)
 prm1.SourceColumn = “ShipperID"
 prm1.SourceVersion = DataRowVersion.Original

 ’Point InsertCommand at a SQL Server stored procedure;
 ’you must have the stored procedure on the server.
 dap1.InsertCommand = New _
 SqlClient.SqlCommand(“udpInsertANewASPNETShipper", cnn1)
 dap1.InsertCommand.CommandType = CommandType.StoredProcedure

 ’Specify input parameters for the stored procedure.
 dap1.InsertCommand.Parameters.Add _
 (“@CompanyName", SqlDbType.NVarChar, 40, _
 “CompanyName”)
 dap1.InsertCommand.Parameters.Add _
 (“@Phone", SqlDbType.NVarChar, 24, _

 “Phone”)

 ’Designate an output parameter for the identity
 ’value assigned within SQL Server so that your
 ’local ASPNETShippers table can have a matching
 ’ShipperID column value.
 Dim prm2 As SqlClient.SqlParameter = _
 dap1.InsertCommand.Parameters.Add _
 (“@Identity", SqlDbType.Int, 0, “ShipperID”)
 prm2.Direction = ParameterDirection.Output

 ’Specify the SQL string for the DeleteCommand
 ’property of dap1.
 dap1.DeleteCommand = _
 New SqlClient.SqlCommand(“DELETE “ & _
 “FROM ASPNETShippers “ & _
 “WHERE ShipperID = @ShipperID", cnn1)

 ’Specify matching criterion values based on the
 ’original version of the ShipperID column in the
 ’local ASPNETShippers table.
 Dim prm3 As SqlClient.SqlParameter = _
 dap1.DeleteCommand.Parameters.Add _
 (“@ShipperID", SqlDbType.Int)
 prm3.SourceColumn = “ShipperID"
 prm3.SourceVersion = DataRowVersion.Original

 ’Fill dataset.
 das1 = New DataSet()
 dap1.Fill(das1, “ASPNETShippers”)

 ’On initial page load move to first row and
 ’populate text boxes; this code segment must
 ’appear after you create the local ASPNETShippers
 ’table.
 If Not Me.IsPostBack Then
 Session(“MyRowID”) = 0
 MoveToRow()
 End If

End Sub

Private Sub cmdModify_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdModify.Click

 ’Use dav1 to find the row in ASPNETShippers
 ’that appears in the text boxes from the local
 ’ASPNETShippers table.
 Dim dav1 As DataView = _
 New DataView(das1.Tables(“ASPNETShippers”))
 dav1.Sort = “ShipperID"
 Dim rowindex As Integer = _
 dav1.Find(TextBox1.Text)

 ’Create a DataRow object pointing at the row
 ’to update in the local table.
 Dim IndexedRow As DataRow = _
 das1.Tables(“ASPNETShippers”).Rows(rowindex)

 ’Update the local table with the text boxes.

 IndexedRow(“CompanyName”) = TextBox2.Text
 IndexedRow(“Phone”) = TextBox3.Text

 ’Invoke Update method for dap1 to synchronize
 ’the local table with the one in northwind.
 dap1.Update(das1, “ASPNETShippers”)

End Sub

Private Sub cmdClear_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdClear.Click

 ’Clear text boxes for data entry.
 TextBox1.Text = “"
 TextBox2.Text = “"
 TextBox3.Text = “"

End Sub

Private Sub cmdInsert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdInsert.Click

 ’Add text box values to new row in dataset Shippers table.
 Dim newRow As DataRow = das1.Tables(“ASPNETShippers”).NewRow()
 newRow(“CompanyName”) = TextBox2.Text
 newRow(“Phone”) = TextBox3.Text
 das1.Tables(“ASPNETShippers”).Rows.Add(newRow)

 ’Update method synchronizes inserted local row
 ’with its copy in northwind and returns the identity
 ’column value added by the northwind database.
 dap1.Update(das1, “ASPNETShippers”)

 ’Move to last row and populate text boxes.
 Session(“MyRowID”) = das1.Tables(“ASPNETShippers”).Rows.Count - 1
 MoveToRow()

End Sub

Private Sub cmdDelete_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdDelete.Click

 ’Create a dataview based on the ASPNETShippers table
 ’in the dataset and find the row index that matches
 ’the current ShipperID.
 Dim dav1 As DataView = _
 New DataView(das1.Tables(“ASPNETShippers”))
 dav1.Sort = “ShipperID"
 Dim rowIndex As Integer = _
 dav1.Find(TextBox1.Text)

 ’Mark the row for deletion in the dataset.
 das1.Tables(“ASPNETShippers”).Rows(rowIndex).Delete()

 ’Invoke the Update method to complete the deletion
 ’in both the SQL Server and dataset Shippers tables.
 dap1.Update(das1, “ASPNETShippers”)

 ’Move to previous row and populate textboxes.
 If Session(“MyRowID”) > 0 Then
 Session(“MyRowID”) -= 1
 End If
 MoveToRow()

End Sub

Validat ing the Data on a W eb Page

ASP.NET int roduces som e powerful cont rols for facilitat ing validat ion of the data
in cont rols on Web pages. You can use these powerful cont rols graphically or both
graphically and program m at ically . This sect ion int roduces you to t he cont rols
overall and then presents a series of t hree sam ples to dem onst rate how to apply
validator cont rols in your Web applicat ions.

Built - I n Data Validat ion Tools

ASP.NET offers five special Web server cont rols to facilitate validat ing the data
users enter into other cont rols on a Web page. You can use these special Web
server cont rols without any program m ing, or you can use the Page object m odel
for program m at ically responding to t he validat ion cont rols indiv idually or
collect ively. I n addit ion, the five validat ion cont rols enable you to dictate how to
display errors. Basically , there are two display opt ions with som e var iat ions in
between. First , you can show error m essages indiv idually near t he cont rols t o
which the m essages apply. Second, you can choose to display error m essages
collect ively in a cent ral area.
You can drag to a Web page any of t he five t ypes of validator Web server cont rols
from the Web Form s tab on the Toolbar. For each cont rol, you m ust specify the
Cont rolToValidate property, which designates the cont rol to which the Web server
validator cont rol applies. You can opt ionally specify a custom error m essage or
accept the default error m essage associated with t he validator cont rol, and
selected validator cont rols m ay have other m andatory or opt ional propert ies to
set . Br ief sum m aries of the five types of validator cont rols appear below.

• The RequiredFieldValidator cont rol detects a m issing value for a validated
cont rol. This is the only validator cont rol t hat checks for em pty cont rols,
and you m ight therefore want t o use RequiredFieldValidator cont rols with
other Web server validator cont rols.

• The Com pareValidator cont rol uses a com par ison operator, such as less
than, equal to, or greater than, t o determ ine how a property for a target
cont rol com pares with another value. You can also use Com pareValidator
to check the data type of an ent ry.

• The RangeValidator cont rol can check to ensure that a target cont rol’s
property is in a specified range. This validator cont rol lets you set lower
and upper boundary values for validat ing a cont rol.

• The RegularExpressionValidator cont rol enables you to check that ent r ies
follow a pat tern, such as for t elephone num bers or social secur ity
num bers. The Validat ionExpression property in t he Propert ies window for
this validator cont rol offers a select ion of prespecified regular expressions
for such ent r ies as phone num ber, postal code, e-m ail address, and social
secur ity num ber. I n addit ion, you can program custom regular
expressions.

• With the Custom Validator cont rol, you can develop custom checks for data
that aren’t covered by the preceding cont rols.

You have several display opt ions for showing error m essages associated with t he
Web server validator cont rols. Assign a st ring to the ErrorMessage property for a
validator cont rol t o specify a custom error m essage, such as “Enter a com pany,”
instead of a default m essage, which happens to be “RequiredFieldValidator,“ the
sam e text as the nam e of t he cont rol t ype. The error m essages associated with a
validator cont rol w ill always appear where you place the cont rol on a Web page
unless you also add a Validat ionSum m ary cont rol to t he page. With a
Validat ionSum m ary cont rol on a page, you can have error m essages appear
collect ively in the Validat ionSum m ary cont rol by assigning an HTML character,
such as an aster isk, t o t he Text propert y for a validator cont rol. I n t his scenar io,
the HTML character appears where you have the validator cont rol and the error
m essage appears in t he Validat ionSum m ary cont rol. By set t ing the Display
property for t he validator cont rol t o None, you can cause no error indicator to
appear where the validator cont rol is on a page. The only indicat ion of an error
for the validator will be the m essage in the Validat ionSum m ary cont rol. I f you
prefer to have the error m essage for a validator cont rol appear at the cont rol and
in the Validat ionSum m ary cont rol, leave the Text property for the validator
cont rol em pty.
With I nternet Explorer 4 and later browsers, the validat ion cont rols verify the
data on the client workstat ion and at t he server unless you explicit ly specify
otherwise. I n cases in which you want t o send an im proper ly validated Web page
to a Web server, client -side validat ion can cause a problem . Som e validator
cont rols m ight be on a Web page to encourage com pliance with data ent ry form s,
but you m ight not want to decline a form from a user just because they fail t o
com ply with all the validator cont rols on a Web page. This is especially the case in
e-com m erce applicat ions or any situat ion in which the user is doing your
organizat ion a favor by returning the form . I n such sit uat ions, you can explicit ly
disable client -side scr ipt validat ion by set t ing the EnableClientScr ipt property for
the validator cont rol to False.
One of t he great features of validator cont rols is that t hey provide a lot of
funct ionalit y without any program m ing. However, you can also program the
validator cont rols and der ive even m ore funct ionalit y from them . I f the data for
any validator cont rol on a page doesn’t sat isfy t he validator, t he page’s I sValid
property becom es False. As a consequence, you can use the page’s I sValid
property to execute blocks of code condit ionally. I n addit ion, ASP.NET supports a
ValidatorCollect ion object for each page. With t his object , you can it erate through
the validator cont rols on a page and check each m em ber’s I sValid property. This
capabilit y enables you to respond select ively t o errors from indiv idual validator
cont rols on a page.

Using Validator Controls on W eb Pages

Adding validator cont rols to a Web page is a sim ple m at ter of dragging them to a
Web page in Design v iew from the Web Form s tab of t he Toolbox. Figure 11-25
shows a Web page with three validator cont rols. The basic Web page design is an
adaptat ion of t he one used in t he preceding sam ple. Aside from the validator
cont rols, the m ain dist inct ion is the om ission of the but ton for m odify ing text box
values. The Web page is WebForm 1.aspx in the ValidatorUI Sam ple project .
Figure 11-25 shows a selected validator cont rol next t o the Com panyNam e text
box. The r ight panel in Figure 11-25 displays the Propert ies window for the
selected cont rol. The Propert ies window for t he selected validator cont rol shows
the default ID nam e RequiredFieldValidator1. The Cont rolToValidate property
reads TextBox2. You m ust always set the Cont rolToValidate property for a

validator cont rol because the sole purpose of a validator cont rol is to check the
validity of another cont rol. The validator cont rol I D and Cont rolToValidate set t ings
indicate that t he form isn’t valid without an ent ry for t he Com panyNam e text box,
which is TextBox2 . I nstead of t he default error m essage returned by the
RequiredFieldValidator cont rol, the Propert ies window shows the set t ing “Enter a
com pany nam e” for t he ErrorMessage property.

Figure 1 1 - 2 5 . See the validator control indicators (*) and the
Validat ionSum m ary cont rol in Design view for the W ebForm 1 .aspx page

in the ValidatorUI Sam ple project .

Turn your at t ent ion again to the Design v iew of the Web page. You can see two
addit ional validator cont rols next to t he text box for Phone text box values. One
of t hese, a RequiredFieldValidator, necessitates a Phone text box ent ry, and the
other, a RegularExpressionValidator, specifies a form at for t he telephone num ber.
By using both of t hese validator cont rols together, the applicat ion specifies not
only that the user input a phone num ber but t hat he input it in a designated
form at . I f you specified a form at for the phone num ber by using a
RegularExpressionValidator cont rol w it hout also designat ing a
RequiredFieldValidator , users could subm it a valid form without enter ing anything
in the Phone text box. I specif ied a designated form at by using the
ValidatedExpression property in the Propert ies window for the
RegularExpressionValidator cont rol. Click ing the Build but ton for t his property
opens a window of prespecified regular expressions, from which I chose U.S.
Phone Num ber. The regular expression for this designat ion accepts num bers in
these two form ats: (123) 123-1234 and 123-1234.
A Validat ionSum m ary cont rol appears below the but tons on the Web page.
Because the Text property set t ings for all the validator cont rols equal * , all the
error m essages appear in the Validat ionSum m ary cont rol. The only indicator of an
error next to the cont rol is an * at t he locat ion where the validator cont rol
appears on the page. The default form at for list ing error m essages in a
Validat ionSum m ary cont rol is with bullets. You can select from eit her of two other

prespecified form ats or program your own custom layout for showing error
m essages in the Validat ionSum m ary cont rol.
Figure 11-26 shows the validator cont rols depicted in Figure 11-25 operat ing for
som e sam ple input . Not ice that t he Com panyNam e text box is blank and that t he
Phone text box has an im proper value for a phone num ber. (I t ends in t he let t er r
instead of a num ber.) The Validat ionSum m ary cont rol area of the Web page
proper ly reports both errors, and aster isks next to the text boxes further signal
the need to fix t he ent r ies for t he text boxes.

Figure 1 1 - 2 6 . Error m essages and indicators from the W ebForm 1 .aspx
page in the ValidatorUI Sam ple project based on im proper input in the

Com panyNam e and Phone text boxes.

Note

There’s a second problem with the Web page shown in Figure
11-26 besides the fact that the text box ent r ies are invalid.
We’ll highlight this second issue in the next sect ion when we
refer back to the figure.

Program m ing the Page I sValid Property

Validator cont rols will pass a Web page to t he browser if you set the
EnableClientScr ipt property to False, even if one or m ore cont rols on a page m ake
the page invalid. The sam e act ion also takes place if the client workstat ion

disables client -side script ing or if the client -side script ing capabilit y for a browser
is incom pat ible with ECMAScr ipt 1.2, a subset of Microsoft JScr ipt . Alt hough the
validator cont rols do operate on a Web server when client -side validat ion doesn’t
take place, event procedures for t he page also operate. The operat ion of t hese
event procedures, such as for a procedure to insert a new row in a table, can
enter invalid data in a database.
Despite the issues highlighted in t he preceding paragraph, using server-side
validat ion is cleaner t han client -side validat ion because it doesn’t depend on the
capabilit ies of a browser (or even whether client -side script ing is disabled in a
browser t hat has the capabilit y) . However, t o t ake advantage of server-side
validat ion, you need the Web server to be able t o detect whether a page has valid
cont rols and then condit ionally execute data m anipulat ion or data access tasks
based on the validity of the cont rols.

Note

I f you use server-side validat ion without making data
manipulat ion tasks, such as inserts and updates, condit ional
on the validity of the cont rols on a page, you run the r isk of
enter ing invalid data in your database. When you combine
server-side validat ion with invalid data, a related problem
emerges. The error messages for data will be one row out of
synchrony with the invalid data. As a result , error messages
will appear on pages with valid data, and pages with invalid
data will appear without error messages.
You can use the I sValid property for a Page obj ect to detect on a Web server
whether the page to which a Page obj ect points has any invalid cont rols before
com m it t ing an insert or an update to a database. I f any cont rols are invalid, you
can bypass the code to insert a new row or update an exist ing row with the data
from the invalid cont rols. WebForm 1.aspx in t he I sValidSam ple project
dem onst rates the syntax for using the I sValid property for a Page obj ect . The
I sValidSam ple project is ident ical to the ValidatorUI Sam ple project in t he
preceding sect ion except for the following Visual Basic code to im plem ent the
cm dI nsert_Click event procedure. Both proj ects assign False to the
EnableClientScr ipt property for all validator cont rols, which forces server-side
validat ion. The ValidatorUI Sam ple project uses the logic from the “Data
Manipulat ion from ASP.NET” sect ion to im plem ent the cm dI nsert_Click event
procedure.
The I sValidSam ple proj ect inserts a new row with the following adaptat ion of the
code from the ValidatorUI Sam ple project . Not ice the use of the Me nam e to point
to the current page. I f any cont rol on the page is invalid, t he I sValid property is
False, and the procedure doesn’t invoke the Update m ethod. I nstead, t he page
returns to the browser with t he error m essage or m essages showing. I f the
page’s I sValid property is True, the procedure executes the Update m ethod and
the browser shows the last row in t he local ASPNETShippers DataTable, which
contains the m ost recent ly inserted row.
Private Sub cmdInsert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdInsert.Click

 ’Add text box values to new row in dataset Shippers table.
 Dim newRow As DataRow = das1.Tables(“ASPNETShippers”).NewRow()
 newRow(“CompanyName”) = TextBox2.Text
 newRow(“Phone”) = TextBox3.Text
 das1.Tables(“ASPNETShippers”).Rows.Add(newRow)

 ’Update method synchronizes inserted local row
 ’with its copy in northwind and returns the identity
 ’column value added by the northwind database.
 If Me.IsValid Then
 dap1.Update(das1, “ASPNETShippers”)
 ’Move to last row and populate text boxes
 Session(“MyRowID”) = _
 das1.Tables(“ASPNETShippers”).Rows.Count - 1
 MoveToRow()
 End If

End Sub

Figures 11-27 and 11-28 show the WebForm 1.aspx page from the I sValidSam ple
proj ect in operat ion. Figure 11-27 shows the result from an at tem pt to insert a
new row with an invalid Phone f ield value. (I t ends with t he let t er r instead of a
num ber.) Not ice that the error m essage at the bot tom of t he screen and the
asterisk highlight t he problem and inst ruct the user what to do (fix t he error and
reinsert) . Also, not ice that the ShipperI D text box is em pty. This is because the
procedure didn’t at t em pt to execute the I nsert statem ent with invalid data
according to the Web page validator cont rols. Figure 11-28 shows the Web page
returned by the Web server after the user changes the last character in the Phone
text box from r to 4 . Not ice that this version includes a ShipperI D value,
indicat ing that t he Web server subm it t ed the new row to the SQL Server instance
and received a new colum n value as an output param eter value from the stored
procedure that perform ed the insert .

Figure 1 1 - 2 7 . W ebForm 1 .aspx from the I sValidSam ple project w ith an
invalid value in the Phone text box.

Figure 1 1 - 2 8 . W ebForm 1 .aspx from the I sValidSam ple project after its
fix .

Now’s a good t im e to focus on the second problem with Figure 11-26. Not ice that
it com m it ted the row with invalid Com panyNam e and Phone colum n values to the
ASPNETShippers table. The reason you can tell is that t he Web page shows a
ShipperI D value, which SQL Server assigns only after it inserts a record into a
table. Unless the user deletes the faulty row, the error m essages can com e out of
sync with t he data showing on a Web page. The user can get r id of t he faulty row
by clicking the Delete but ton on the Web page. However, this act ion requires the
user to start entering the new row over again from scratch. I f the Web page had
a Modify but ton, which I rem oved to sim plify t he sam ple, the user could use that
but ton to fix t he page. However, t he real problem with WebForm 1.aspx in the
ValidatorUI Sam ple project is that the Web page inserts the new row
uncondit ionally (whether or not the data on the page is invalid) . I t is this problem
that the I sValidSam ple project correct s.

Dynam ically Disabling a Validator Cont rol

Som et im es you m ay want the opt ion to disable a validator cont rol dynam ically .
This sit uat ion can arise in cases in which a user can’t f igure out the r ight form at
for all the f ields but she has filled out enough of the form on a Web page for your
organizat ion to contact her and resolve any inconsistent data. For exam ple, if you
have a valid phone num ber, you m ay be willing to accept an invalid e-m ail
address or URL. To be able to perform a task like this, you need the abilit y t o
reference program m at ically t he indiv idual validators on a form . The sam ple in this
sect ion dem onst rates how to disable a validator cont rol at run t im e.
Figures 11-29 and 11-30 show a pair of windows that illust rates the disabling of a
validator cont rol at run t im e. Figure 11-29 shows WebForm 1.aspx in t he
ValidatorCollect ionSam ple project aft er an at tem pt to insert a new row into the

ASPNETShippers table with a faulty Phone value. (I t ends with an r instead of a
num ber.) Businesses use validators to obtain clean data. On the other hand,
som e t ransact ions m ay benefit a business m ore if they accept part ially faulty
data. This exam ple offers the user a but ton for enter ing a row even if t he Phone
value is in t he wrong form at . Figure 11-30 shows the Web page after a click of
the I nsert Bad Phone but ton. Not ice that t he record enters the table (because it
shows a ShipperI D value) , even though the record has invalid data in t he Phone
text box.
While the sam ple shown in Figures 11-29 and 11-30 isn’t very com pelling,
selected high-pr ior it y Web applicat ions, such as e-com m erce and gathering
contact data, can benefit from accept ing part ially faulty data m ore than losing a
site v isitor or potent ial custom er because they get frust rated by the data
validat ion process. For exam ple, your code m ight give v isit ors one or two
at tem pts to enter an e-m ail address in a valid form at and then accept the row so
long as the phone num ber and URL values are in a valid form at .

Figure 1 1 - 2 9 . The RegularExpressionValidator cont rol for Phone values
blocking the ent ry of a row .

Figure 1 1 - 3 0 . The RegularExpressionValidator cont rol disabled so that
the sam e row can enter a table in a SQL Server database.

The following list ing shows the Click event procedure behind the but ton (it s nam e
is cm dI nsertAnyway) that allows the insert ion of a row with an invalidly form at ted
Phone value. Recall that the object ive of t his applicat ion is to disable a selected
validator cont rol. Therefore, you need to be able to address the validator cont rols
indiv idually . Happily, t he Validators property in the Page obj ect contains objects
point ing to all the validator cont rols on a page. ASP.NET perm its the declarat ion
of an object based on the ValidatorCollect ion class that contains the it em s in the
Page.Validators property. A Dim statem ent toward the top of t he program list ing
illust rates the syntax for declar ing an object pointer, m yCollect ion , for t he
validators on the page. You can reference the objects within m yCollect ion by an
index value. The com m ented code block im m ediately aft er the Dim statem ent for
m yCollect ion shows one approach to enum erat ing the m em bers of t he collect ion.
I t displays the item num ber, which serves as an index value, and the
ErrorMessage property for t he objects in the m yCollect ion obj ect . From running
code like this, I was able to determ ine that the RegularExpressionValidator for t he
Phone value was m yCollect ion(0) .
After adding a row to t he local data table with t he text box values and declaring
the m yCollect ion obj ect , the procedure opens an I f…Then…ElseI f statem ent . The
procedure takes the Then clause if t he user successfully f ixed the Phone value on
the Web page. I f t he Phone value isn’t in the correct form at , t he procedure st ill
enters t he record in the ElseI f clause. The condit ion for t he ElseI f clause is True
when the I sValid property for m yCollect ion(0) is False, but the other two
m em bers of the m yCollect ion object have I sValid property values of True. This
syntax shows how to disable t em porar ily just t he RegularExpressionValidator
cont rol for the Phone text box. The next t im e the user t r ies to enter a new row,
the validator for the Phone text box will operate (unless the user disables it
again) .

Private Sub cmdInsertAnyway_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdInsertAnyway.Click

 ’Add text box values to new row in dataset Shippers table.
 Dim newRow As DataRow = das1.Tables(“ASPNETShippers”).NewRow()
 newRow(“CompanyName”) = TextBox2.Text
 newRow(“Phone”) = TextBox3.Text
 das1.Tables(“ASPNETShippers”).Rows.Add(newRow)

 ’ Get ’Validators’ of the page to myCollection.
 Dim myCollection As ValidatorCollection = Page.Validators

 ’Uncomment from next Dim to the Next statement
 ’in the For loop to match ValidatorCollection index
 ’numbers to validator controls.
 ’Dim int1 As Integer
 ’Dim str1 As String
 ’For int1 = 0 To myCollection.Count - 1
 ’str1 = CStr(int1) & “, “ & _
 ’ myCollection.Item(int1).ErrorMessage & “
"
 ’Response.Write(str1)
 ’Next

 ’Update method synchronizes inserted local row
 ’with its copy in northwind and returns the identity
 ’column value added by the northwind database.
 If Me.IsValid Then
 ’Do normal Insert if Phone OK
 dap1.Update(das1, “ASPNETShippers”)
 ’Move to last row and populate text boxes
 Session(“MyRowID”) = _
 das1.Tables(“ASPNETShippers”).Rows.Count - 1
 MoveToRow()
 ElseIf (Not (myCollection.Item(0).IsValid) _
 And (myCollection.Item(1).IsValid)) _
 And (myCollection.Item(2).IsValid) Then
 ’Do insert anyway if just phone format bad
 dap1.Update(das1, “ASPNETShippers”)
 ’Move to last row and populate text boxes
 Session(“MyRowID”) = _
 das1.Tables(“ASPNETShippers”).Rows.Count - 1
 MoveToRow()
 End If

End Sub

Chapter 1 2 . Managing XML w ith Visual
Basic .NET
The m ain object ive of t his chapter is to convey an understanding of XML
docum ents for use with Visual Basic .NET. This chapter assum es a basic grasp of
XML data form ats, schem as, and related technologies, such as XPath (XML Path
Language) and XSLT (Extensible Sty lesheet Language Transform at ion) . I f you
have basic quest ions about any of t hese topics, now is a great t im e to review
Chapter 6; t hat chapter includes m ater ial on XML docum ent form at t ing, sam ples
illust rat ing the use of XML docum ents for Web developm ent , and references for
addit ional research.
Two other features characterize this chapter ’s XML coverage. The second m ajor
feature is the special em phasis on using XML with SQL Server 2000 databases.
Although som e of the techniques dem onst rated in this chapter, part icularly t hose
involv ing ADO.NET data sets, are appropriate for other database sources, all
sam ples are tested and evaluated for t heir specific usefulness with SQL Server
2000. The third feature characterizing this chapter is t he focus on SQL Server
2000 Web releases. Chapter 6 included coverage of Web releases 1 and 2, but
this chapter posit ions Web Release 3 relat ive to the two ear lier releases. I n
addit ion, I dr ill down on two innovat ions (SQLXML m anaged classes and
Dif fGram s) int roduced with Web Release 2 that have a special relevance for .NET
developers. Microsoft ’s stated policy is to keep SQL Server 2000 current with t he
latest XML developm ents through a sequence of Web releases. I nnovat ions
int roduced with t he Web releases m ater ially affect your abilit y to use Visual Basic
.NET to process SQL Server data sources with XML.
After overviews of the Web releases and the XML technologies in t he .NET
Fram ework, this chapter presents a ser ies of sam ples in four sect ions. The first
set of sam ples targets creat ing XML docum ents with SQL quer ies and annotated
XML schem as. The second set of sam ples expands the funct ionalit y available with
the first set of sam ples by im part ing the abilit y to generate XML docum ents based
on run- t im e input . I n addit ion, t his second sect ion dem onst rates the use of XPath
quer ies to return XML docum ents and reveals alternat ive m eans to produce
equivalent results with SQL queries. The third sect ion part icular ly exam ines the
interplay between ADO.NET data sets and XML docum ents. I t also exam ines ways
of perform ing advanced XPath quer ies. A couple of sam ples in this sect ion
dem onst rate how to process XML docum ents with hierarchical data sets as well as
how to m anage changes to a rem ote SQL Server database. The chapter ’s closing
sect ion dr ills down on how to use XSLT to prepare Web pages with HTML tables
based on XML docum ents that you create with Visual Basic .NET from a SQL
Server data source.
All except one of the sam ples for t his chapter reside in Module1 of t he
XMLSam ples solut ion. These sam ples highlight t he Visual Basic .NET code for
m anaging XML docum ents when working with SQL Server data sources. Exam ine
other chapters for m ore general coverage of Visual Basic .NET developm ent . (For
exam ple, see Chapter 9 for coverage of Windows form s and cont rols.) You can
invoke this chapter ’s sam ples by rem oving the com m ent character from the m ain
procedure line that specif ies the procedure to run. I n several cases, you need to
rem ove the com m ent character from m ore than one line. The text describing
these sam ples explicit ly specifies t he lines that need to have their com m ent
m arkers rem oved. The one sam ple not in the XMLSam ples solut ion folder has the
nam e XMLWebSam ple. This ASP.NET proj ect has two folders, one for the
wwwroot folder within t he I netpub directory on your Web server, and a second
one for inclusion in t he norm al place where you hold your Visual Basic .NET

solut ion folders. Both folders for t he ASP.NET solut ion have the nam e
XMLWebSam ple.

SQL Server W eb Releases

I f you’re going to use XML with SQL Server 2000, you should def init ely evaluate
the m ost recent Web release. As I wr it e this chapter, that release is Web Release
3. Microsoft cont inues to fully support all Web releases. This sect ion builds on
your pr ior exposure to Web releases and general XML funct ionalit y availabilit y
from SQL Server 2000. (See Chapter 6.) I n addit ion, this sect ion int roduces Web
Release 3, which wasn’t discussed in Chapter 6. I also present in this sect ion two
im portant XML technologies for .NET developm ent (SQLXML m anaged classes and
Dif fGram s) that were int roduced with Web Release 2 but haven’t gained focus in
the book to t his point .

Overview of First and Second W eb Releases

Review Chapter 6 for a m ore thorough descript ion of the first and second Web
releases for SQL Server 2000. The first Web release for SQL Server 2000, which
shipped February 15, 2001, featured the int roduct ion of Updategram s. This XML-
based technology enables developers to m anipulate a SQL Server database
program m at ically t hrough HTTP protocol v ia a Web connect ion. Alt hough data
m anipulat ion is possible v ia a Web connect ion, the capabilit y is st ill subject to
standard securit y adm inist rat ion rules. I n addit ion, Web Release 1 int roduced the
capabilit y t o bulk- load XML docum ents into a SQL Server database.
Web Release 2 shipped on October 15, 2001. This update to SQL Server 2000
added m ore general XML features, such as client -side form at t ing, as well as a
couple of capabilit ies that explicit ly targeted .NET developers— SQLXML Managed
Classes and DiffGram s. With SQLXML Managed Classes, developers can take
advantage of Web release features direct ly from the .NET environm ent . You use
these classes instead of selected ADO.NET classes. For exam ple, replace the
SqlDataAdapter ADO.NET class with t he SqlXm lAdapter SQLXML Managed Class.
I n addit ion to offer ing m ore funct ionalit y , t he syntax for SQLXML Managed
Classes is easier t o m aster. The second new feature with special interest for .NET
developers is the DiffGram . This XML docum ent type facilitates the updat ing of a
SQL Server database direct ly from within t he .NET Fram ework. See Chapter 6 for
coverage of the full set of enhancem ents int roduced with Web Release 2.

Overview of W eb Release 3

Web Release 3 is part of the Microsoft SQL Server 2000 Web Services Toolk it .
Web Release 3 becam e available as a stand-alone product on February 9, 2002.
The toolk it shipped slight ly later (February 14, 2002) . The headline capabilit y of
the Microsoft SQL Server 2000 Web Services Toolk it is it s abilit y to expose SQL
Server stored procedures as XML Web services. Chapter 1 3 w ill explore this
aspect of the toolk it because that chapter covers how to program XML Web
services. There are two URLs for downloading Web Release 3. I f you want the
core capabilit ies of Web Release 3 without t he special features int roduced by the
Microsoft SQL Server 2000 Web Services Toolk it , you can download them from
ht tp: / / m sdn.m icrosoft .com / downloads/ default .asp?URL= / downloads/
sam ple.asp?ur l= / MSDN-FI LES/ 027/ 001/ 824/ m sdncom positedoc.xm l.
I f you want the full features of the toolkit , you can go to t he Web sit e at the
following URL. This sit e offers a m uch larger f ile for download than the basic Web

Release 3 (12.3 MB vs. 2.7 MB) as well as a link for t he Microsoft SOAP Toolk it ,
which you will need in order to publish an XML Web service. The sit e also includes
links for Webcasts and white papers that you m ay find of value:
ht tp: / / m sdn.m icrosoft .com / downloads/ default .asp?url= / downloads/ sam ple.asp?u
rl= / MSDN-FI LES/ 027/ 001/ 872/ m sdncom positedoc.xm l&fram e= t rue.

Note

I developed the sam ples in this chapter with the release
containing the full features of the toolk it . Although you are
downloading this version of Web Release 3, I urge you to
download the Microsoft SOAP Toolk it 2.0, which is available
from a link on the same page for the download of Web
Release 3. Sam ples in Chapter 1 3 require SOAP (so you
m ight as well clean up your act now) .
Aside from the capabilit y of publishing XML Web services, Web Release 3 features
the sam e m ajor capabilit ies of earlier Web releases with a var iety of subt le
im provem ents and bug fixes. For exam ple, Web Release 3 int roduces the
parent I D annotat ion for DiffGram s. The SqlXm lAdapter m anaged class uses this
annotat ion as it perform s data m anipulat ion tasks for a SQL Server database from
a Visual Basic .NET solut ion. Many of t he enhancem ents are available through the
I I S v irt ual directory for SQL Server. Web Release 3 includes the capabilit y of
upgrading v irtual directories created with prior Web releases.
I recom m end you deploy Web Release 3 if you don’t have any solut ions running
with eit her of the pr ior two Web releases. This is because Web Release 3 includes
the ear lier two Web releases (along with t he im provem ents int roduced by Web
Release 3) . As is typical of new software, Web Release 3 isn’t fully backward
com pat ible with pr ior Web releases because of m inor funct ional enhancem ents
and bug f ixes. Therefore, if you do have solut ions running with ear lier Web
releases, you should test these solut ions before deploying Web Release 3. One
at t ract ive opt ion for t hose with solut ions built for ear lier Web releases is the
abilit y to run Web Release 3 in a side-by-side m ode with t hese earlier Web
releases. This feature is possible because installing Web Release 3 (referred to as
SQLXML 3.0) doesn’t wr it e over t he files for pr ior Web releases. See caveats and
special issues in t he “Understanding the Side-by-Side I nstallat ion I ssues” sect ion
(and the three subsequent ones) in t he “About This Release” t opic for t he Web
Release 3 docum entat ion. You can open this docum entat ion from the SQLXML 3.0
program group from the Windows Start m enu.

Note

I f you have only test solut ions running, you may care to
upgrade I IS v ir tual director ies from Web Release 1 and Web
Release 2 through the I I S Virtual Directory Management For
SQLXML 3.0 ut ility . Double click the root of the old v ir tual
directory in the I IS Vir tual Directory Management For
SQLXML 3.0 ut ility . Then select the Version 3 tab and click
Upgrade To Version 3. Complete the upgrade by choosing
Yes and then OK.

SQLXML Managed Classes

SQLXML Managed Classes enable you wr it e Visual Basic .NET program s to tap the
features from the second and third Web releases. There are three SQLXML
m anaged classes. Their nam es are SqlXm lCom m and, SqlXm lParam eter , and
SqlXm lAdapter . You use these classes within Visual Basic .NET procedures to
create objects and then gain program m at ic cont rol of t heir propert ies and
m ethods. The SQLXML Managed Classes propagate no events.
Although you use the SQLXML Managed Classes from within .NET Fram ework
program s, there is no docum entat ion on the classes available from within eit her
Visual Studio .NET Help or Visual Basic .NET Help. Web Release 3 Help details the
propert ies and m ethods exposed by the SQLXML Managed Classes. I n addit ion,
this Help system includes several code sam ples that you are likely t o find useful.
One of t he white papers (t it led “SQLXML Managed Classes”) available as part of
the Microsoft SQL Server 2000 Web Services Toolk it includes m ore background
that I found helpful in understanding how to use these valuable classes.

Note

All the sources of help for the SQLXML Managed Classes
ment ioned previously explicit ly specify how to use the
classes with C# programs and include code samples for using
them with C# . Because the .NET Framework Help generally
provides code samples in Visual Basic .NET as well C# , you
may be m isled to believe that the SQLXML Managed Classes
work only with C# . You can t ranslate all the C# sam ples into
Visual Basic .NET syntax. This chapter includes several Visual
Basic .NET samples that you can use as a guide for
t ranslat ing C# sam ples.

SqlXm lCom m and Class

You instant iate a SqlXm lCom m and obj ect by designat ing the connect ion st r ing for
the object as part of an expression with t he New operator . There is no explicit
connect ion class in the SQLXML Managed Classes. The connect ion st r ing m ust
designate the sqloledb data provider as well as the classic ADO and ADO.NET
features of a server, database, and securit y ident if icat ion. For exam ple,
Dim cmd1 As SqlXmlCommand = New SqlXmlCommand(provider=sqloledb; _
 server=servername;database=databasename;user id=userlogin; _
 password=userpassword)

Before you can use (or instant iate) any SQLXML m anaged class, your Visual Basic
.NET m odule m ust have a reference to the Microsoft .Data.SqlXm l nam espace. You
can add this reference from within Visual Studio .NET by opening the Code Editor
and choosing Add Reference from the Project m enu. On the .NET tab of the Add
Reference dialog box, choose Microsoft .Data.SqlXm l from the Com ponent Nam e
colum n. I f your workstat ion has both Web Release 2 and Web Release 3, select
the appropr iate version of Microsoft .Data.Sql.Xm l for t he Web release you’re
using. Web Release 3 has the version num ber of 3.0.1523.0; t he version num ber
for Web Release 2 is 2.0.1125.0. After adding the reference to a solut ion, you
need to specify an I m port s statem ent in any m odule you’ ll be using the m anaged
class in unless you want to precede indiv idual references to class ent it ies with the
Microsoft .Data.SqlXm l nam espace ident if ier.

Note

I t should be obvious by this point in the book that I don’t
r igidly adhere to programming convent ions. This is because I
believe specific contexts— both technical and business—
should have st rong bearing on programming convent ions.
For example, the demands for code samples designed to
illust rate design features aren’t necessarily the same as
those for product ion software, which are also different from
those for prototype software. Nevertheless, many readers
may want a start ing point for guidelines on whether to use
namespace prefixes or I mports statements. Consider using
namespace prefixes when you want to draw explicit at tent ion
to the namespace source for a part icular object .

SqlXm lCom m and Methods

As its nam e im plies, a SqlXm lCom m and obj ect can perform a SQL statem ent
against a database on a SQL Server and return the result set in XML form at . For
exam ple, t he ExecuteSt ream m ethod generates the result set for a SQL
statem ent and creates a new St ream obj ect for the result set in XML form at . A
Stream obj ect represents a byte sequence, such as the byte sequence for an XML
docum ent . Before you can work with t he contents of a Stream object , you will
t ypically pass it to a reader and the reader will pass it s output to an XML
docum ent t hat you can view or process as text characters. There are several
variet ies of Stream objects. The sam ples within this chapter dem onst rate how to
work with FileSt ream and Mem orySt ream objects, which are both def ined in t he
Sytem .I O nam espace. A FileSt ream object points to a file in your f ile system . A
Mem orySt ream obj ect is a m em ory variable t hat you can reference as long as it
has scope. The ExecuteToSt ream m ethod for a SqlXm lCom m and obj ect passes it s
result set to an exist ing Stream object instead of creat ing a new St ream obj ect .
You can use a SqlXm lCom m and object to pass back an Xm lReader object with t he
ExecuteXm lReader m ethod. An Xm lReader obj ect is an elem ent in the
System .Xm l nam espace. Procedures using Xm lReader objects gain fast , non-
cached, forward-only access to a st ream containing XML. One com m on reason for
generat ing an Xm lReader object is to select a subset of t he nodes in t he XML
docum ent associated with the Xm lReader obj ect . A node can correspond to a row
in the data that an XML docum ent com prises. I n this context , select ing a subset
of t he nodes is equivalent to using a WHERE clause in a SELECT statem ent to
specify a subset of t he rows in a table or a v iew.
You can also invoke the CreateParam eter and ClearParam eters m ethods with
instances of the SqlXm lCom m and class. The CreateParam eter m ethod lets you
add a param eter t o a SqlXm lCom m and obj ect so that you can specify values at
run t im e. This capabilit y enables your procedures to dynam ically set values for
com m ands based on user input or other aspects of the operat ing environm ent . I f
you want to reuse a SqlXm lCom m and obj ect with other param eters or no
param eters, invoke the ClearParam eters m ethod to rem ove any exist ing
param eters.
One last m ethod com pletes the funct ionalit y offered by the SqlXm lCom m and
class. The ExecuteNonQuery m ethod is suitable for com m ands that don’t return a
result set , such as DiffGram s.

SqlXm lCom m and Propert ies

The possible set t ings for the Com m andType property of a SqlXm lCom m and object
point t o t he special k ind of roles that a SqlXm lCom m and obj ect can play. The

following enum erat ion of Com m andType set t ings designates all the possible
sources for a SqlXm lCom m and object .

• SqlXm lCom m andType.Sql indicates that t he com m and specifies a SQL
source, such as a SELECT statem ent with a FOR XML clause, for the
com m and.

• SqlXm lCom m andType.XPath is appropr iate when you designate a query
com m and with an XPath expression.

• SqlXm lCom m andType.Tem plateFile perm its the execut ion of a tem plate
file, containing either SQL or XPath syntax, in a path nam ed by the
Com m andText propert y. The Com m andText property points specifically to
the tem plate file. These tem plate files have the sam e design as those
reviewed in Chapter 6, but they don’t have to reside in an I I S virt ual
directory.

• SqlXm lCom m andType.Tem plate enables the com m and to execute the
contents of a t em plate file, containing either SQL or XPath syntax, in a
path specified by the Com m andSt ream property. The Com m andSt ream
property designates the param eters for opening a file st ream object with
the tem plate. The SqlXm lCom m andType.Tem plateFile param eter m erely
points to t he path and filenam e for t he tem plate file— not it s actual
contents.

• SqlXm lCom m andType.UpdateGram specifies an Updategram object for a
com m and to execute.

• SqlXm lCom m andType.Diffgram designates a DiffGram as the com m and’s
argum ent .

Use the Com m andText property to designate the source for a SqlXm lCom m and
obj ect . For exam ple, a Com m andType set t ing of
SqlXm lCom m andType.Tem plateFile enables you to use the Com m andText
property to point to t he path and filenam e for t he tem plate file. I n Visual Basic
.NET applicat ions, you don’t have the sam e need to shield the text for a query
statem ent as with Web applicat ions and I I S virt ual director ies; t his is because
users run Visual Basic .NET solut ions from com piled .exe files. You will t ypically
use either SQL or XPath syntax to specify t he Com m andText property with a
m atching Com m andType property set t ing.
Selected other SqlXm lCom m and propert ies appear in t he sam ples throughout this
chapter. When your result set doesn’t include a single top- level or root elem ent ,
you can designate one with t he RootTag property. I f you use an XPath query, you
can specify the path for the m apping schem a file associated with a query through
the SqlXm lCom m and object ’s Schem aPath property. A m apping schem a can
denote with special annotat ions correspondences between the elem ents and
at t ributes of a schem a represent ing an XML docum ent and a SQL Server data
source. The XslPath property enables you to designate the filenam e and path for
a file t hat t ransform s the raw XML output specified by a Com m andText property
into another form at , such as an HTML table. See the “SqlXm lCom m and Object ”
topic in the Web Release 3 docum entat ion for sum m aries of a few
SqlXm lCom m and propert ies t hat this chapter doesn’t cover.

SqlXm lParam eter Class

SqlXm lCom m and obj ects can have hierarchically dependent param eters
represented by SqlXm lParam eter obj ects. Use the CreateParam eter m ethod for a
SqlXm lCom m and obj ect to instant iate a param eter object . After it s instant iat ion,
you can assign values to the param eter’s Nam e and Value propert ies. The Nam e
property gives you a convenient handle for referencing the param eter object , and
the Value property enables you to assign a value to a param eter at run t im e.

SqlXm lAdapter Class

SqlXm lAdapter obj ects serve a purpose that generally corresponds to t hat for the
SqlDataAdapter object in t he System .Data.SqlClient nam espace. After declar ing a
variable as a SqlXm lAdapter object , you can instant iate t he var iable with an
expression containing the New operator for t he SqlXm lAdapter class. The
SqlXm lAdapter obj ect can take a variable point ing to a SqlXm lCom m and object as
it s argum ent . The syntax for t his const ruct ion appears here, where cm d1
represents a previously instant iated SqlXm lCom m and obj ect . The cm d1 argum ent
designates the data source to which a SqlXm lAdapter connects.
Dim dap1 as SqlXmlAdapter
Dap1 = New SqlXmlAdapter (cmd1)

SqlXm lAdapter obj ects have two m ethods, Fill and Update. Use the Fill m ethod to
populate a data set . I nvoke the Update m ethod to insert , m odify, or delete rows
in the data source to which a SqlXm lAdapter obj ect points. For eit her m ethod, all
you have to do is specify a data set as the argum ent . There is no need to
designate a specific table within the data set . I like t he SqlXm lAdapter object
because of t he easy way in which it perm its m e to specify data m anipulat ion
tasks relat ive to t he SqlDataAdapter obj ect in t he System .Data.SqlClient
nam espace. A pair of sam ples later in t his chapter dem onst rates the new syntax
that elim inates the need for an UpdateCom m and property (and, by extension,
I nsertCom m and and DeleteCom m and propert ies) .

DiffGram s Let You Modify Data

A DiffGram is an XML form at for represent ing the data values in a data set . The
.NET Fram ework autom at ically uses this XML form at for passing data between a
client and a SQL Server database. I n addit ion, you can use the DiffGram form at
direct ly with SQL Server databases sim ilar ly t o t he way that you use
Updategram s. See Chapter 6 for exam ples of how to use Updategram s for data
m anipulat ion tasks with a SQL Server 2000 database as a guideline for the k inds
of ways in which you can use DiffGram s in Web applicat ions with SQL Server.
The following code shows the general layout for a DiffGram . Not ice that it starts
with a declarat ion stat ing that it is an XML docum ent . Then it references several
nam espaces. For data m anipulat ion tasks, the core of the docum ent is the
DataI nstance and before sect ions. The DataI nstance sect ion denotes the current
value of all rows in a data source. For exam ple, this sect ion contains any rows
with m odified colum n values, any inserted rows, and any unm odified rows that
aren’t deleted from the data source. The before sect ion conveys the before values
for m odified rows. Deleted rows also appear in the before sect ion but not in t he
DataI nstance sect ion. The errors sect ion is opt ional; it contains error m essages
for rows from the DataI nstance sect ion. A collect ion of at t r ibutes facilit ate
selected object ives, such as m atching rows in t he DataI nstance sect ion with
corresponding rows in t he before and errors sect ions as well as highlight ing rows
part icipat ing in insert , update, and delete tasks.
<?xml version="1.0"?>
<diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <DataInstance>
 </DataInstance>

 <diffgr:before>
 </diffgr:before>

 <diffgr:errors>
 </diffgr:errors>

</diffgr:diffgram>

I f you are a Visual Basic developer m igrat ing to the .NET Fram ework, it m ay
please you to learn that you can benefit from DiffGram s without really learning
their form at . For exam ple, Chapter 10 and Chapter 11 illust rate how to perform
data m anipulat ion tasks with Windows Form s and ASP.NET pages. I n both cases,
ADO.NET uses DiffGram s in the background. I f ind that understanding the form at
and layout of DiffGram s helps m e to understand the reason for the syntax to
designate data m anipulat ion tasks in the .NET Fram ework. I have two favorite
resources for developing the understanding.

• The “DiffGram s” topic in the Visual Studio .NET docum entat ion; you can
get to t his docum entat ion from the Windows Start m enu.

• The “Using DiffGram s to Modify Data” topic in t he Web Release 3
docum entat ion; t his ships and installs with t he standard version of Web
Release 3, and you can get to t he docum entat ion from the Windows Start
m enu.

This chapter includes a couple of sam ples m anipulat ing ADO.NET data sets with
SQLXML m anaged classes. One of these sam ples highlights how the .NET
Fram ework uses DiffGram s dur ing data m anipulat ion tasks. The second sam ple
illust rates how easy it is to convert t his ADO.NET applicat ion for a Windows
applicat ion to an ASP.NET applicat ion. Both sam ples confirm that you can perform
data m anipulat ion tasks that take advantage of DiffGram s without m anipulat ing
them in your code.
The fact that you can use Dif fGram s without actually coding them raises an
interest ing quest ion about the general role of XML for typical .NET developers.
There is no doubt that for interm ediate and advanced .NET developers a firm
grasp of XML will be m andatory. However, it rem ains to be seen to what degree
typical developers will need to m aster all (or even m ost of) the details of all XML
program m ing languages. (See the next sect ion for an overview of som e of t hese
languages.) For exam ple, it m ay be that m uch of t he XML syntax is unnecessary
because you can indirect ly m anipulate XML with Visual Basic .NET or with SELECT
statem ents containing a FOR XML clause. I f this t rend cont inues, XML could
underlie a broad range of funct ions, but typical developers will be able to use
another, m ore fam iliar, language to m anipulate XML const ructs. This is sim ilar to
the way Visual Basic developers used to em ploy ADO as a way to program OLE
DB data providers. On the other hand, XML m ay em erge as the m ust -know
syntax for all “ real” developers. I ndeed, if you m easure the am ount of space
devoted to XML in com puter publicat ions, you could easily com e to this
conclusion. I am not sure where you will end up on this cont inuum . However, it is
clear that not learning XML is a r isky way to m anage your future as a developer.

Overview of XML Technologies

There’s a lot m ore to XML than the basic design of an XML docum ent that
contains data. This sect ion is designed to work in concert with t he coverage of
XML docum ent form ats and related technologies int roduced in Chapter 6. I n
addit ion, t he sect ion provides an overview of t he k inds of XML- related tasks that
you can perform from the .NET Fram ework.

XML Data Form ats

There are several dist inguishing features of XML form ats.

• Tags can be custom ized for part icular docum ents.
• You can represent data with eit her elem ents or at t r ibutes.
• All XML docum ents start wit h a declarat ion stat ing the version of XML in

the docum ent .

These and other syntax features are discussed in Chapter 6 at a level sufficient
for grasping the m ater ial in t his chapter. Scan the sect ions on XML form ats and
schem as to m ake sure that you have an adequate background for the m ater ial in
this chapter. Visit t he World Wide Web Consort ium sit e (ht tp: / / www.w3c.org or
ht tp: / / www.w3.org) for definit ive inform at ion on the latest XML standards in the
public dom ain.

XML Docum ents

The XML data form at wins praise for m any reasons. One of the m ost prom inent
for database developers is the abilit y of XML data to represent hierarchical
relat ionships. The sty le for represent ing hierarchical relat ionships in XML
docum ents is a dist inct departure from relat ional data m odels t hat depict
hierarchical relat ionships with a join between two or m ore tables. For exam ple, an
XML docum ent can port ray a collect ion of orders with the line it em s, or order
details, physically within each order. I n t he hierarchical representat ion popular in
XML form ats, each row from the Orders table appears once no m at ter how m any
line it em s are within an order. A relat ional m odel port rays the collect ion of orders
as a single flat virt ual t able with data from the Order Details table m atching
corresponding data from the Orders table. I n t he relat ional representat ion,
ident ical colum n values from the Orders table repeat in the virt ual table for each
line it em within an order.
Another very im portant character ist ic of XML form at t ing is t hat it represents data
as text . This m eans you (and other hum ans) can read it w ithout any special
t ranslat ions. Prior data form ats typically used som e kind of binary form at that
m ade the data in the docum ent less im m ediately accessible and also less
t ransportable t hrough corporate firewalls. Alt hough a r ich program m ing m odel is
available for processing XML data docum ents, it is im portant t o understand that
an XML docum ent is just text . Therefore, it is possible to devise t radit ional text
parsing techniques to ext ract selected data it em s from an XML docum ent . I will
dem onst rate a custom parsing technique later in t his chapter.

XML Schem as

I n addit ion to data in XML docum ents, you will often work with schem as for XML
docum ents. Schem as for XML docum ents serve sim ilar roles to schem as for
databases. Nam ely, a schem a describes data elem ents and relat ionships between
collect ions of data elem ents. You can use the .NET Fram ework both to help you
const ruct new schem as and to writ e schem as for exist ing docum ents. This
chapter focuses exclusively on schem as in XSD form at . XSD is the current
standard for represent ing the st ructure of a docum ent . When Microsoft first
shipped SQL Server 2000, it adopted an XDR form at for designat ing the st ructure
of docum ents. This is because when the XDR form at was specified, t here was no
universally adopted standard, such as XSD, for represent ing the st ructure of an
XML docum ent . Microsoft published an XSLT sty le sheet for t ransform ing sch-
em as in XDR form at to corresponding XSD schem as. You can find this style sheet
at

ht tp: / / m sdn.m icrosoft .com / downloads/ default .asp?url= / downloads/ sam ple.asp?u
rl= / MSDN-FI LES/ 027/ 001/ 539/ m sdncom positedoc.xm l.
As a .NET developer working with SQL Server, you will m ost oft en base your XML
docum ents on SQL Server data sources. I n t his case, the .NET Fram ework can
infer a schem a for an XML docum ent from the schem a for t he SQL Server data
source supply ing values to t he XML docum ent . I ndeed, you can m anipulate
ADO.NET objects and build indirect ly a DiffGram or XSD schem a from within the
.NET Fram ework.
One reason for m anually creat ing your own schem a is to create a st rongly t yped
data set . This k ind of data set can act as a custom class except that it inherits the
propert ies, m ethods, and events for an ADO.NET data set . You designate a
schem a at design t im e for t he class that def ines the st ructure for the st rongly
typed data set . Then you can instant iate an instance of t he data set at any t im e
with t he sam e New operator t hat you use for instant iat ing other objects. You can
populate the t yped data set instance with a SqlDataAdapter obj ect . St rongly
typed data sets offer dist inct advantages over standard data sets that .NET builds
for you. For exam ple, you can explicit ly refer t o colum ns by nam e instead of by
their colum n posit ion within a data table in a data set . See the “Working with a
Typed DataSet ” topic and its links in t he Visual Studio .NET docum entat ion for
m ore detail on this type of data set , inst ruct ions on how to create one, and a
code sam ple for using one.
Annotated schem as are a special t ype of schem a for designat ing the st ructure of
an XML docum ent while you concurrent ly specify an external source for the
st ructure. I nstead of having the .NET Fram ework im plicit ly build a schem a, you
can explicit ly create one. The “Using Annotat ions in XSD Schem as” topic in the
docum entat ion for Web Release 3 includes m any helpful links for dr illing down
further on m anual t echniques that you can use to build annotated schem as. A
general grasp of t his m ater ial com bined with num erous sam ples throughout t he
.NET Fram ework docum entat ion and in this book can help you read annotated
schem as and adapt t hem for custom extensions in your work. Two com m on uses
for annotated schem as in t he .NET Fram ework include basing an XML docum ent
on a database and facilitat ing the nam ing of colum n nam es different ly in an XML
docum ent from its underly ing data source.

XPath Queries

XPath is a language that perm its you to address the parts of an XML docum ent .
You can use XPath to query an XML docum ent m uch as you use SQL to query a
database. An XPath query expression can select on docum ent parts, or types,
such as the docum ent ’s elem ents, at t r ibutes, and text . You can select nodes for
ancestors, descendants, and siblings of a specified docum ent type. An ancestor is
a type that contains the current type. For exam ple, an order is the ancestor of an
order detail it em . Conversely, a descendant is contained within t he current type.
Each type that you use for select ion in an XPath query can return a set of nodes.
These nodes correspond generally t o t he rows in the result set from a SQL
statem ent , but the syntax for designat ing XML docum ent types with an XPath
query is ent irely different from t radit ional SQL syntax.
You can use SQLXML Managed Classes to form ulate and execute XPath queries.
You can even m ake the query statem ents dynam ic at run t im e. The set of nodes
returned by an XPath query is contained in an Xm lNodeList object . The .NET
Fram ework enables Visual Basic developers to it erate t hrough the nodes within a
node list to exam ine the result from an XPath query expression. Several sam ples
throughout the balance of this chapter dem onst rate t he syntax for perform ing
this k ind of task. See Chapter 6 for addit ional coverage of t he XPath language
and addit ional resources for learning m ore about it .

XSLT Form at t ing

XSLT perm its the program m at ic t ransform at ion of f iles in XML form at to var ious
other form ats. XSLT has m any potent ial applicat ions, but t his book dr ills down on
the capabilit y of XSLT to t ransform raw XML files into HTML tables on Web pages.
You can specify an XSLT t ransform at ion with SQLXML Managed Classes from
within a .NET applicat ion. The .xslt f ile exists as a separate file, and the .NET
applicat ion can refer to the .xslt f ile as a property set t ing for the SqlXm lCom m and
obj ect .
An .xslt f ile can contain style sheet elem ents, HTML code, and processing
inst ruct ions for ext ract ing content from an XML docum ent . An .xslt f ile is the k ind
of f ile t hat a Web developer is m ore likely to const ruct than a typical Visual Basic
developer. With sufficient forethought and collaborat ion, the Web developer can
prepare a set of standard .xslt f iles for reuse by Visual Basic developers. Given
the existence of an .xslt f ile, a Visual Basic developer can readily reference it t o
form at data for a Web page. That is, a Visual Basic program can direct ly create
an HTML file with t he help of an .xslt f ile. A Visual Basic developer can use the
SqlXm lCom m and class to ext ract rows in XML form at from a SQL Server data
source and then assign a property set t ing to t he SqlXm lCom m and class instance
that enables the form at t ing of rows for display on a Web page as an HTML table.
The Web page will be stat ic. However, by let t ing users invoke the program to
create the stat ic page, t he .NET Fram ework can perm it the creat ion of content in
Web form at on dem and.

Generat ing XML Docum ents w ith the .NET Fram ew ork

This sect ion dem onst rates techniques for creat ing and persist ing XML docum ents
based on SQL Server data sources. Master ing the concepts for achieving this k ind
of task int roduces you to techniques for working with XML content within a Visual
Basic .NET applicat ion. Because XML is im portant for so m any purposes, including
publishing content as HTML, it is im portant for you to learn these techniques.
For m any of t he sam ples throughout t his chapter, you will need to add a
reference to t he Microsoft .Data.SqlXm l nam espace. See the sect ion t it led
“SQLXML Managed Classes” for detailed inst ruct ions on adding a reference to the
Microsoft .Data.SqlXm l nam espace. I n addit ion, som e sam ples also assum e an
Im ports statem ent for t his nam espace and selected other nam espaces. I
developed all the sam ples in t his chapter, except one, with the following I m ports
statem ents above the start of t he m odule. I issue special inst ruct ions for set t ing
up the environm ent for the except ion as I describe it .
Imports Microsoft.Data.SqlXml
Imports System.Data.SqlClient
Imports System.Xml
Imports System.IO

Creat ing an XML Docum ent w ith T- SQL

One of t he m ost natural ways for a SQL Server developer t o create an XML
docum ent is with a SQL statem ent . Recall from Chapter 6 that SQL will generate
XML fragm ents with the FOR XML clause (if the result set includes m ore than a
single row) . Actually, t he fragm ents are near ly com plete XML docum ents except
for a root - level elem ent . Therefore, one approach to creat ing a result set as an
XML docum ent is to execute a SQL statem ent with a FOR XML clause and to

declare a root - level elem ent . Because a SQL statem ent is a com m and to a SQL
Server instance, you can use a SqlXm lCom m and object to execute the com m and
and return an XML docum ent .
The SqlXm lCom m and object has several features that m ake it part icularly
appropriate for connect ing to a SQL Server data source and returning an XML
docum ent . The const ructor for a SqlXm lCom m and obj ect takes a connect ion
st r ing direct ly. This m eans there is no need to instant iate a separate connect ion
object when all you want to do is execute a com m and. Next , t he RootTag
property for a SqlXm lCom m and object lets you specify a root - level elem ent to
t ransform the XML fragm ent returned by a SQL statem ent with the FOR XML
clause into a com plete XML docum ent . Two m ore propert ies let you com plete the
SQL specificat ion for t he SqlXm lCom m and obj ect . Designate
SqlXm lCom m andType.Sql as the Com m andType property to indicate that your
com m and is to execute a SQL statem ent . Then assign the SQL statem ent to the
Com m andText propert y. Finally , the ExecuteToSt ream m ethod for a
SqlXm lCom m and obj ect can return the XML docum ent as a sequence of bytes.
The SaveDBQueryAsXm lToFile procedure that follows illust rates the syntax for
creat ing a file containing an XML docum ent based on a SQL statem ent . The
procedure begins by specifying a connect ion st ring for a SqlXm lCom m and object .
Because this object is an instance of t he SQLXML Managed Class with the sam e
nam e, t he connect ion st r ing m ust specify t he SQLOLEDB data provider. The
const ructor for the SqlXm lCom m and object then references this connect ion st r ing
to instant iate t he object . The next block of code in t he sam ple sets the
SqlXm lCom m and obj ect propert ies for returning an XML docum ent . I n part icular,
the Com m andText property indicates that the docum ent will contain all rows from
the Shippers table. The RootTag property designates the st r ing “Shippers” to
serve as a root - level elem ent for t he docum ent .
As you can see, t ransferr ing the output to the SqlXm lCom m and obj ect to a file is
a m ult istep process. Before invoking the ExecuteToSt ream m ethod for t he
SqlXm lCom m and obj ect , you need to specify a nam e and a path for the file t hat
will hold the XML docum ent generated by the SqlXm lCom m and obj ect . The
procedure com pletes this requirem ent with an assignm ent statem ent for a st r ing
nam ed m yXMLfile; the assigned value is the path and f ilenam e for the docum ent .
(You should specify a different path to the f ile if that path doesn’t exist on your
com puter.) Next the procedure instant iates a FileSt ream object to store the XML
docum ent . The const ructor takes two argum ents. One is the st r ing var iable,
m yXMLfile, denot ing the nam e and path for the file. The second argum ent
indicates that the file should always be created— even if a f ile already exists with
the nam e and path specified. Finally the ExecuteToSt ream m ethod takes the
FileSt ream obj ect as an argum ent so that t he SqlXm lCom m and obj ect knows
where to deposit t he XML docum ent t hat it generates. The procedure concludes
by closing the FileSt ream object . This step returns cont rol to the applicat ion from
the file.
Sub SaveDBQueryAsXmlToFile()
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _
 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object.
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Designate data source for cmd1.
 cmd1.RootTag = "Shippers"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.CommandText = "SELECT * FROM Shippers " & _

 "FOR XML AUTO"

 ’Name the path and file for the XML result set, then
 ’instantiate a Stream object for the file’s contents.
 Dim myXMLfile As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myShippersFromFORXML.xml"
 Dim myFileStream As New System.IO.FileStream _
 (myXMLfile, System.IO.FileMode.Create)

 ’Execute cmd1 and store the result set in the stream.
 cmd1.ExecuteToStream(myFileStream)

 ’Close the file stream to recover the resource.
 myFileStream.Close()

End Sub

Figure 12-1 shows the XML docum ent generated by the SaveDBQueryAsXm lToFile
procedure. I navigated to the file designated by the value assigned to m yXMLfile
and opened it from Windows Explorer. I t s root - level elem ent is Shippers, t he
value assigned to t he RootTag property for t he SqlXm lCom m and obj ect . The row
values from the Shippers table appear as at t r ibutes with each row corresponding
to the elem ent . Each row has the sam e elem ent nam e because of t he way the
FOR XML clause form ats the result set ; t he elem ent ’s nam e is the nam e of t he
row source for t he SELECT statem ent— nam ely, Shippers for t he Shippers table.

Note

Although it is good pract ice to nam e the root - level element
different ly from other elements within an XML document , you
can see from the SaveDBQueryAsXmlToFile procedure and its
output in Figure 12-1 that SqlXmlComm and perm its you to
generate an XML document with the root tag nam e matching
the nam e of other elements.

Figure 1 2 -1 . The output from the SaveDBQueryAsXm lToFile procedure
opened in a brow ser from W indow s Explorer .

Creat ing an XML Docum ent w ith an Annotated Schem a

Annotated schem as m ake it possible for you to specify t he form at for a result set .
With t he t ypical way of specify ing a FOR XML clause in a SELECT statem ent , the
colum n values in a result set always appear as at t r ibutes.

The following XML scr ipt shows an annotated schem a for the Shippers table. The
schem a is nam ed Shippers1.xsd and is located in t he root folder for t he
XMLSam ples solut ion. After the init ial XML docum ent declarat ion (rem em ber, an
XSD schem a is an XML docum ent) , t he list ing specifies two nam espaces for
def ining the term s in the schem a. The first nam espace points to the World Wide
Web Consort ium sit e for the XML schem a specificat ion. The second nam espace
points to a Microsoft universal resource nam e (urn) for m apping or annotated
schem as.
The body of t he schem a starts by declar ing an elem ent nam ed Shipper . This
elem ent has the annotat ion at t r ibute sql: relat ion, which t ies it to a data source
nam ed Shippers. When an applicat ion with a connect ion to the Northwind
database references this schem a, the applicat ion can ext ract rows from the
Shippers table according to t he form at of t he schem a. This schem a specifies the
form at t ing of ShipperID colum n values as an at t r ibute and Com panyNam e and
Phone as elem ents. The use of the sequence elem ent specifies that t he
Com panyNam e elem ent m ust appear before the Phone elem ent for each shipper.
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xs:element name="Shipper" sql:relation="Shippers">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CompanyName" type="xs:string" />
 <xs:element name="Phone" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="ShipperID" type="xs:int" />
 </xs:complexType>
 </xs:element>
</xs:schema>

You can use an annotated schem a along with a SqlXm lCom m and obj ect to return
a result set from the Shippers table in t he Northwind database, and you can
persist t hat result set locally by saving the XML docum ent as a file. When you use
an annotated schem a to form at t he XML docum ent returned by a
SqlXm lCom m and, you m ust specify the locat ion of t he schem a file as one of t he
SqlXm lCom m and propert ies. Designate the path to t he schem a with t he
Schem aPath property. You can specify t he path either as an absolute address or
as a relat ive address. I f you use a relat ive address, the address is relat ive to t he
.exe file for t he .NET solut ion, which resides in t he Bin subfolder of a solut ion’s
root folder. Therefore, if you save your schem a in t he root folder for a solut ion,
the Schem aPath propert y should be . . / Schem anam e.xsd. The . . / designates the
folder one up from the Bin subfolder, which is t he root folder for a solut ion.
When you use a Schem aPath propert y, you m ust specify the Com m andText
property for a SqlXm lCom m and w it h an XPath expression. When you want to
return a single table and the schem a denotes j ust one table, the XPath expression
is very sim ple. Just list the outerm ost elem ent in t he schem a, which in this case
is Shipper .
The RunAnnotatedSchem aXPathQuery procedure shows the syntax for generat ing
an XML docum ent based on the Shippers1.xsd annotated schem a. Despite m any
sim ilar it ies with the preceding sam ple, t his one dif fers in several respects. The
m ost im portant differences appear in bold type. Not ice that t he SqlXm lCom m and
obj ect in t his sam ple has a Schem aPath propert y. You assign the property a
st r ing value that points to the locat ion of the annotated schem a. Next , the
Com m andType propert y designates an XPath query. The Com m andText property
specifies the query as an XPath expression.
Aside from these differences, all t he other changes are cosm et ic or at least not
essent ial. The m ost im portant of t hese m inor changes is the path and filenam e
for persist ing the XML docum ent created by the SqlXm lCom m and object . For this

sam ple, the file’s nam e is m yShippersFROMANNOTATEDSCHEMA.xm l. By using a
different nam e from the preceding sam ple, you can m ore readily cont rast the
output from the two sam ples.
Sub RunAnnotatedSchemaXPathQuery()
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _
 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object.
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Specify root tag for XML file.
 cmd1.RootTag = "Shippers"

 ’Designate an XPath query based on an
 ’annotated schema using the Shipper element
 ’in the Shippers1.xsd schema one directory
 ’above .exe file for application.
 cmd1.SchemaPath = ("..\Shippers1.xsd")
 cmd1.CommandType = SqlXmlCommandType.XPath
 cmd1.CommandText = "Shipper"

 ’Name the file for the XML result set, then
 ’instantiate a Stream object for the file’s contents.
 Dim myXMLfile As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myShippersFROMANNOTATEDSCHEMA.xml"
 Dim myFileStream As New System.IO.FileStream _
 (myXMLfile, System.IO.FileMode.Create)

 ’Execute cmd1 and store the result set in the stream
 ’before closing the stream file.
 cmd1.ExecuteToStream(myFileStream)
 myFileStream.Close()

End Sub

Figure 12-2 shows the XML docum ent saved by the
RunAnnotatedSchem aXPathQuery procedure. Not ice that t his docum ent has a
different form at from the one based on the SELECT statem ent with a FOR XML
clause. I n fact , t he docum ent in Figure 12-2 has the form at specified by the
preceding annotated schem a. You can adjust the schem a to show j ust a subset of
colum n values or arrange the elem ents different ly or switch the colum n values
that appear as elem ents vs. at t r ibutes. Therefore, using an XPath query with an
annotated schem a enables you to specify t he form at for the XML docum ent .

Figure 1 2 - 2 . The output from the RunAnnotatedSchem aXPathQuery
procedure opened in a brow ser from W indow s Explorer .

Designing Annotated Schem as

Now that you see how flexible annotated schem as are, you m ay be wonder ing if
there is any easy way to create them from within Visual Studio .NET. Developers
have their choice of at least a couple of t echniques for building annotated
schem as and incorporat ing them into their solut ions.

Creat ing a Schem a w ith Code

Let ’s say you already have a schem a, such as Shippers1.xsd, already developed
in another t ext editor. You m ay want t o copy the text for the annotated schem a
to Visual Studio .NET for m ore fine- tuning and saving within t he solut ion’s folder.
Visual Studio .NET offers the XML Designer for t his purpose. To open a new
window in the XML Designer, choose Add New I tem from the Project m enu in
Visual Studio .NET, select the XML Schem a tem plate from the Add New I tem
dialog, and then either accept the default nam e or specify a new nam e such as
Shippers2. By default , t he designer autom at ically appends the .xsd extension and
saves the schem a file in the root folder for the current solut ion. You can overr ide
these defaults if your prefer.

Note

Stor ing an annotated schema file, and other resource files,
within a solut ion’s folder simplifies deploym ent . This is
because all the files reside within a single folder that you can
deploy to another computer.
The XML Designer offers two views of a schem a— a graphical one in it s Schem a
view and a text -based one in it s XML view. You can select a v iew by select ing
tabs at the bot tom of the window. To enter a new schem a from scratch, switch to
the XML view. The tem plate autom at ically enters a docum ent type declarat ion as
well as several other nam espace and related set t ings. You can am end or edit
these as your needs dictate. For exam ple, you can add a declarat ion for a custom
nam espace to define special at t r ibute or elem ent nam es. Start t yping the new
schem a after t he last nam espace declarat ion and before the ending schem a tag
(< / xs: schem a>) .

I f you want to copy the text of a previously exist ing schem a into the designer,
copy that t ext t o t he Windows Clipboard, and then switch to Visual Studio .NET.
Show the XML view of a new designer window. Depending on the source of t he
original schem a, you m ay need to edit t he copied schem a. For exam ple, opening
and closing angle brackets (< and >) m ay appear with the special XML escape
representat ions < ; and > ; . I not iced this requirem ent for schem as copied from
the Visual Studio .NET docum entat ion. You can use the Edit , Find And Replace,
Replace m enu opt ion in Visual Studio .NET to change all t he escape
representat ions to < and > . Figure 12-3 shows an XML view of a copied schem a
with an edit in progress.

Figure 1 2 - 3 . The XML view of a copied schem a just before the edit ing of
the & lt ; escape representat ion to < .

Creat ing a Schem a Graphically

Som e m ay welcom e the fact that Visual Studio .NET can build annotated schem as
with graphical techniques. Again, you’ ll start w ith a new tem plate. Unless you
def ine a custom nam e, the first schem a you create in a proj ect will have the
nam e XMLSchem a1.xsd. The num ber will increm ent by one for each subsequent
schem a you add to t he project with the default nam ing convent ions.
With your new XML Designer window open in Schem a view, choose Server
Explorer from the View m enu. From the Server Explorer window, expand Servers
and the server you are using, t hen SQL Servers and the SQL Server instance you
want , and then a database on that server instance. To use the Tables collect ion
within the database as the source for a schem a, expand Tables. Then drag one or
m ore tables from the Server Explorer window to the Schem a view of your new
schem a, XMLSchem a1.xsd. Figure 12-4 shows the XMLSchem a1.xsd schem a just
after dragging the Shippers table from the Northwind database on a SQL Server
instance nam ed CCS1. The graphical v iew shows the definit ion of a Shippers
ent it y within a docum ent . The pr im ary key definit ion com es across— not ice the
key icon next t o t he ShipperI D elem ent in the Shippers ent it y def init ion.
Although close to what you need, this graphically created schem a requires a lit t le
fine- tuning for use with the SqlXm lCom m and object . You can perform the final
edit ing in XML view. The following list ing is the schem a from Figure 12-4 in XML
view. The elem ent lines for ShipperI D, Com panyNam e, and Phone wrap onto a

second line. Within the designer, each of these elem ents appears as one long
line. The lines shown here in bold require rem oval; t he lines to rem ove don’t
appear as bold within t he XML view of t he designer. Delet ing the lines with bold
text and saving the schem a as XMLSchem a1.xsd creates a schem a that you can
use j ust like t he Shippers1.xsd schem a that was created m anually . This schem a
edit ing plan rem oves the Docum ent box and the pr im ary key designat ion from
ShipperI D in Schem a view of XMLSchem a1.xsd.

Figure 1 2 -4 . The init ia l graphical view of the Shippers table dragged from
the Northw ind database to XMLSchem a1 .xsd.

Note

The graphically generated schema doesn’t use any special
SQLXML XSD annotat ion at t r ibutes, such as sql: relat ion. This
is because graphically generated annotated schemas can
make their connect ion through the SqlXmlCommand object
connect ion and synchronize their elem ent and at t r ibute
names with those in a source database object . For example,
the element name Shippers corresponds to the Shippers
table in the Northwind database. Sim ilar ly, the element
names ShipperI D, CompanyNam e, and Phone correspond to
colum n names in the Shippers table.
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1" targetNamespace="http://tempuri.org/XMLSch
ema1.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema1.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="Document">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Shippers">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ShipperID" msdata:ReadOnly=
"true"_
 msdata:AutoIncrement="true" type="xs:int" />
 <xs:element name="CompanyName" type="xs:strin
g" />
 <xs:element name="Phone"_
 type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="DocumentKey1" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:Shippers" />
 <xs:field xpath="mstns:ShipperID" />
 </xs:unique>
</xs:element>
</xs:schema>

I created a procedure nam ed RunNETGeneratedSchem aXPathQuery for
generat ing an XML docum ent based on the content in t he Shippers table within
the Northwind database. This procedure is ident ical to t he
RunAnnotatedSchem aXPathQuery schem a shown previously except for two lines.
The two replacem ent lines appear here. Not ice that t he new sam ple uses a
different schem a than in t he ear lier case. Also, the Com m andText property
changes from Shipper t o Shippers. This is because the XMLSchem a1.xsd schem a
uses Shippers to denote the elem ent nam e for a shipper, while the Shipper1.xsd
schem a used the nam e Shipper . I f we didn’t change the Com m andText property
for the SqlXm lCom m and propert y, t he XPath query in t he sam ple would fail.
 cmd1.SchemaPath = ("..\XMLSchema1.xsd")
 cmd1.CommandText = "Shippers"

For your convenience, a com plete list ing for t he
RunNETGeneratedSchem aXPathQuery procedure is available am ong this book’s
sam ple files.

Dynam ically Set t ing an XML Result Set

The preceding sect ion focused on creat ing XML results from a fixed source, such
as all the rows and colum ns from the Shippers t able. This general approach has
the advantage of persist ing rem ote database resources locally. The sam ples in
this sect ion enhance the funct ionalit y provided by those in t he preceding sect ion
to work with data sources defined dynam ically at run t im e. You can query a local

XML docum ent t hat you create eit her on the f ly with t he current procedure or
previously with another procedure. The first sam ple in this sect ion creates a
specific XML docum ent and saves it locally before querying it w ith a specific XPath
expression. The second sam ple in t his sect ion illust rates creat ing any XML
docum ent on the fly and then querying it any way that you choose.
Using an XML docum ent as the source for your queries relieves you of depending
on a connect ion to a database server. However, there are t im es when your
applicat ions require t he m ost recent data (and therefore, a local XML docum ent
won’t be appropr iate) . The closing sam ples in t his sect ion dem onst rate two
progressively m ore flex ible approaches to querying a rem ote SQL Server
database and displaying the results as XML.

Running an XPath Query for a Specific XML Docum ent

I n addit ion to just saving a result set as an XML docum ent , you can use the
docum ent and query the docum ent direct ly. When working with an XML
docum ent , you cannot query the docum ent with a SQL statem ent . I n this
situat ion, XPath is the ideal solut ion for deriv ing a result set t hat m eets som e
criter ion.
The sam ple procedure in t his sect ion,
RunXPathQueryWithArgum entForALocalDocum ent , quer ies a local docum ent . The
procedure creates the docum ent based on the Products table in t he Northwind
database. Then the procedure ext racts docum ent nodes that have a Discont inued
at t ribute value equal to 1. This value signals that the corresponding product is no
longer available for sale.
The procedure starts by using a SELECT statem ent with a FOR XML clause to
ext ract all rows from the Products table in the Northwind database. I nstead of
using an ExecuteToSt ream m ethod as in t he sam ples from the preceding sect ion,
this sam ple invokes the SqlXm lCom m and obj ect ’s ExecuteXm lReader m ethod.
Recall t hat this m ethod returns an XMLReader obj ect (xrd1) , which provides a
fast forward-only non-cached st ream containing XML. I nstead of stor ing it s XML
docum ent in a FileSt ream object as in t he sam ples from the preceding sect ion,
this sam ple m akes the XML available t hrough a reader. The next step is to create
an XML docum ent based on the contents of t he reader. The procedure does this in
two steps. First it declares an XMLDocum ent obj ect , xdc1 . Second the procedure
invokes the Load m ethod for t he docum ent with the XMLReader object as an
argum ent . After f illing the XML docum ent t hrough the XMLReader object , the
procedure im m ediately closes the reader to recover it s resource as soon as
possible.
Loading the XML docum ent through the XMLReader object m akes the XML from
the SELECT statem ent available in m em ory. I f the currency of the data were an
issue (because the data doesn’t change often or at all) , we could have loaded the
xdc1 object with a previously saved copy of an XML docum ent . (A subsequent
sam ple dem onst rates the syntax to accom plish this.) The sam ples in t he
preceding sect ion dem onst rate how to persist XML locally from a rem ote server.
With t he aid of an XPath expression, t he procedure generates an Xm lNodeList
obj ect (xnl1) , which you will recall is a collect ion of nodes from a docum ent . The
collect ion in t his case sat isfies the XPath expression in the
RunXPathQueryWithArgum entForALocalDocum ent procedure. A node is an XPath
item in a docum ent . These item s can include elem ents, at t r ibutes, and other
features of an XML docum ent . Recall t hat the XML docum ent in t his case is the
result set from the SELECT statem ent with a FOR XML clause in the procedure.
The XPath expression returns any elem ent that contains a Discont inued at t r ibute
value of 1. The XPath expression applies to all nodes in the XML docum ent
because it selects nodes from the Docum entElem ent property, which contains the
root elem ent of an XML docum ent . After creat ing the Xm lNodeList obj ect , the

procedure reports on the list of nodes in two ways. First it reports the num ber of
nodes in xnl1 . Second the procedure enum erates the XML for the indiv idual nodes
within xnl1 .
Sub RunXPathQueryWithArgumentForALocalDocument()
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _
 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object.
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Designate data source for cmd1 with result set
 ’in XML format.
 cmd1.RootTag = "Products"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.CommandText = "SELECT * FROM Products FOR XML AUTO"

 ’Pass the cmd1 result set to an XmlReader, and load
 ’an XmlDocument with the contents of the XmlReader.
 Dim xrd1 As System.Xml.XmlReader = cmd1.ExecuteXmlReader()
 Dim xdc1 As New System.Xml.XmlDocument()
 xdc1.Load(xrd1)

 ’Close the reader.
 xrd1.Close()

 ’Specify an XPath query for nodes from the xdc1
 ’XmlDocument with a Discontinued value of 1.
 Dim xnl1 As System.Xml.XmlNodeList = _
 xdc1.DocumentElement.SelectNodes _
 ("//Products[@Discontinued=1]")

 ’Declare a node and a string.
 Dim xnd1 As System.Xml.XmlNode
 Dim str1 As String

 ’For each node display a message with the contents,
 ’including the XML tags.
 Debug.WriteLine(_
 "The record count for the result set is " & _
 xnl1.Count.ToString & ".")
 For Each xnd1 In xnl1
 str1 = xnd1.OuterXml
 Debug.WriteLine(str1)
 Next

End Sub

Figure 12-5 shows an excerpt from the Output window with results generated by
the RunXPathQueryWithArgum entForALocalDocum ent procedure. I t shows there
are 8 products in t he XML docum ent based on the Products table with a
Discont inued value of 1. The Product I D colum n values for discont inued products
are 5, 9, 17, 24, 28, 29, 42, and 53. Not ice the Product I D colum n values appear
as XML at t r ibute values. This is because the procedure invokes the OuterXML
m ethod to return the actual XML for each indiv idual node within xnl1 .

Figure 1 2 - 5 . The RunXPathQueryW ithArgum entForALocalDocum ent
procedure returns XML content for discont inued products.

Running an XPath Query for Any XML Docum ent

The preceding sam ple is interest ing because it shows a pract ical use for an XML
docum ent based on a database object . Nam ely, you can process database
contents through a local copy in an XML docum ent . However, t he preceding
sect ion’s sam ple works for just one XML docum ent . To m ake the sam ple work for
another XML docum ent , you need to get into t he internals of t he procedure and
change specific lines of code. This is awkward. I t would be m uch bet ter if you
could pass param eters t hat define the XML docum ent and query and then have a
procedure generate an appropriate result set . The sam ple in this sect ion
dem onst rates how to code such a solut ion.
I developed two code blocks to call t he sam ple procedure for t his sect ion. The
first code block executes the sam e XPath query against the sam e XML docum ent
as in the preceding sam ple. What ’s different is t hat t his sam ple passes the SQL
for defining the docum ent and the XPath query for t he docum ent as argum ents.
Unsurpr isingly, this invocat ion of t he procedure for this sect ion generates the
sam e results as for the sam ple in t he preceding sect ion. The second code block
uses the sam e procedure to generate a different XPath query against a different
XML docum ent . Alt hough it is clear ly not surpr ising that we obtain a different
result from the sam e procedure, t he sam ple is interest ing because it
dem onst rates how easy it is to accom plish this feat with an XPath query and an
XML docum ent— both of which are unfam iliar to typical Visual Basic developers.
The first code block contains three lines of code. The first line assigns a value to
the st rSQL st r ing var iable. This m em ory var iable contains the SQL st r ing for a
result set that t he RunXPathQueryWithArgum entForAnyLocalDocum ent procedure
uses to populate an XML docum ent . The second line of code assigns a value to
the st rXPath st r ing variable, which stores an XPath query for t he XML docum ent
generated by the procedure. I t is the applicat ion of t he XPath query to the XML
docum ent t hat generates a result set , such as the one in Figure 12-5. The final
line of code in t he first code block passes the st rSQL and st rXPath variables to the
RunXPathQueryWithArgum entForAnyLocalDocum ent procedure. The procedure, in
turn, executes the SQL query and populates an XML docum ent with t he result set .
I n the end, the procedure lists a set of nodes in the Output window.
 Dim strSQL As String = "SELECT * FROM Products FOR XML AUTO"
 Dim strXPath As String = "//Products[@Discontinued=1]"
 RunXPathQueryWithArgumentForAnyLocalDocument(strSQL, strXPath)

The second block of code for invoking the
RunXPathQueryWithArgum entForAnyLocalDocum ent procedure appears next .
Because this block uses the sam e var iable nam es as the preceding block, you
should always com m ent out at least one of t hese blocks in order t o avoid a
com pilat ion error for declar ing the sam e var iable m ore than once; t his com m ent

assum es both code blocks reside within t he sam e procedure as they do in the
m ain procedure for Module1 of the XMLSam ples solut ion. This second block
def ines a different XML docum ent t hrough its SQL st r ing than the first code block.
The XML docum ent from the f irst block contains a list of products, but the second
block’s XML docum ent is a list of em ployees. I n addit ion, the XPath query
changes to ext ract a specific subset of em ployees. The m ain point of t he second
block is t hat you can use any SQL st r ing to generate an XML docum ent and then
query it w ith an appropriate XPath query. You achieve this f lex ibilit y without
having to m odify any internal code in the
RunXPathQueryWithArgum entForAnyLocalDocum ent procedure. You could readily
extend this applicat ion by offering a list of previously form ulated SQL query
statem ents with m atching XPath query statem ents. I n this way, you can
dram at ically sim plify t he task of generat ing and using XML docum ents for t hose
just gaining fam iliar it y with t he topic.
 Dim strSQL As String = "SELECT * FROM Employees FOR XML AUTO"
 Dim strXPath As String = "//Employees[@EmployeeID>4]"
 RunXPathQueryWithArgumentForAnyLocalDocument(strSQL, strXPath
)

Despite it s substant ially enhanced generalit y, the procedure in this sect ion is
near ly ident ical to the one in the preceding sect ion. The m ajor m odificat ion is the
using of t he two passed st r ing var iables— st rSQL and st rXPath. I n addit ion, this
procedure changes the assignm ent for the RootTag so that it isn’t t ied to a list of
products but rather t o a list of any type of ent it y. The applicat ion always uses a
connect ion to the Northwind database, but you can param eter ize the connect ion
st r ing as well t o obtain even greater generalit y. At t he very least , you will want t o
change the connect ion st r ing so that it refers to a database in your applicat ion.
Sub RunXPathQueryWithArgumentForAnyLocalDocument(_
 ByVal strSQL As String, ByVal strXPath As String)
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _
 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object.
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Designate data source for cmd1 with result set
 ’in XML format.
 cmd1.RootTag = "MyRoot"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.CommandText = strSQL
 ’Pass the cmd1 result set to an XmlReader, and load
 ’an XmlDocument with the contents of the XmlReader.
 Dim xrd1 As System.Xml.XmlReader = cmd1.ExecuteXmlReader()
 Dim xdc1 As New System.Xml.XmlDocument()
 xdc1.Load(xrd1)

 ’Close the reader.
 xrd1.Close()

 ’Specify an XPath query based on the strXPath argument
 ’for nodes from the xdc1 XmlDocument.
 Dim xnl1 As System.Xml.XmlNodeList = _
 xdc1.DocumentElement. _
 SelectNodes(strXPath)

 ’Declare a node and a string.

 Dim xnd1 As System.Xml.XmlNode
 Dim str1 As String

 ’For each node display a message with the contents,
 ’including the XML tags.
 Debug.WriteLine(_
 "The record count for the result set is " & _
 xnl1.Count.ToString & ".")
 For Each xnd1 In xnl1
 str1 = xnd1.OuterXml
 Debug.WriteLine(str1)
 Next

End Sub

Running Param eter ized SQL Server Queries

Som et im es your applicat ions won’t be able t o use an XML docum ent as a data
source because of a need for t he m ost recent data. I n this case, you can run a
param eterized SQL Server query. The param eter in t he query statem ent will st ill
enable your users to specify a result set for a specific query at run t im e. The
SQLXML Managed Classes in Web Release 2 and Web Release 3 facilitate this k ind
of query. The sam ple in this sect ion dem onst rates the applicat ion of the
SqlXm lParam eter class. Using a param eter with a SQL statem ent is useful for
protot yping the SQL code for a stored procedure or for cases in which you don’t
have a stored procedure available with the param eter you need to perform a
task. Two other features of the sam ple for t his sect ion are that it rem inds you of
a technique for specify ing param eters in SQL statem ents, and it illust rates how to
use a St ream Reader obj ect to capture the result set from a query.
The sam ple, RunSQLParam eterQuery , begins by specify ing a connect ion st r ing
and instant iat ing a SqlXm lCom m and object based on the st r ing. Next t he sam ple
assigns selected SqlXm lCom m and propert ies for defining a query to execute. For
exam ple, t he Com m andText property is a SQL st r ing that designates a param eter
with a quest ion m ark (?) . Users can execute the SqlXm lCom m and obj ect to
return the inform at ion denoted in the list for t he SELECT statem ent . The value for
the Count ry param eter designates for which count ry the SqlXm lCom m and returns
results. I n t he list ing, the procedure hard codes the value Brazil for the Count ry
param eter. The syntax for t he param eter assignm ent requires the declarat ion of a
SqlXm lParam eter obj ect , the invocat ion of the CreateParam eter m ethod for t he
SqlXm lCom m and obj ect , and the assignm ent statem ent for the Value property of
the SqlXm lCom m and object ’s param eter.
This sam ple dem onst rates yet another way of capturing the XML that a
SqlXm lCom m and obj ect can return. I n this case, the sam ple ult im ately passes the
result set from the query for t he SqlXm lCom m and object to a m essage box for
display. The ExecuteSt ream m ethod for t he SqlXm lCom m and object creates a
Mem orySt ream obj ect with t he XML created by the query specified in the
Com m andText propert y. Using this Mem orySt ream object as the argum ent for
instant iat ing a St ream Reader object enables the procedure to capture the XML
generated by the SqlXm lCom m and obj ect as a st r ing. The ReadToEnd m ethod for
the St ream Reader obj ect returns a st r ing with all t he XML created by the
SqlXm lCom m and obj ect . By using srd1.ReadToEnd as the argum ent for a MsgBox
funct ion, the procedure displays the XML the SqlXm lCom m and object creates.
Sub RunSQLParameterQuery()
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _

 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object.
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Designate data source for cmd1 with a parameter.
 cmd1.RootTag = "Customers"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.CommandText = "SELECT ContactName, " & _
 "CompanyName, City " & _
 "FROM Customers " & _
 "WHERE Country = ? For XML Auto"

 ’Create a parameter for cmd1 and assign it a value.
 Dim prm1 As SqlXmlParameter
 prm1 = (cmd1.CreateParameter())
 prm1.Value = "Brazil"

 ’Declare and instantiate a stream in memory and
 ’populate it with the XML result set from cmd1.
 Dim stm1 As New System.IO.MemoryStream()
 stm1 = cmd1.ExecuteStream()

 ’Copy result set in stream to a stream reader
 ’to display stream contents in a message box.
 Dim srd1 As New System.IO.StreamReader(stm1)
 MsgBox(srd1.ReadToEnd)
 srd1.Close()

End Sub

Param eter izing Any SQL Query

Just as you can param eter ize which XML docum ent you process, you can also
extend the preceding sam ple to param eter ize any query instead of just one
specific query. The t r ick to t his task is to pass both the query and the param eter
value to the procedure that perform s the query. I n turn, the procedure
perform ing the query m ust be adapted from the preceding sam ple to accept these
param eters and use them to generate a st ring for t he m essage box that displays
results at t he procedure’s conclusion.
The following code block shows the setup code that ’s required before calling the
procedure to run the query and display it s results in a m essage box. Not ice that
the setup code designates a different query t han the sam ple in the preceding
sect ion. The query for this sect ion is for t he Shippers table, but the one in t he
preceding sect ion is for the Custom ers table. Nevertheless, the code to execute
the query is nearly the sam e in both sect ions. More im portant , you can execute a
query for any table or com binat ion of tables without changing the
RunSQLParam eterQueryWithPassedParam s procedure. All your applicat ion needs
to do is t o m ake two assignm ents— one for t he st r ing variable designat ing the
query (st rSQL) and the other for t he st r ing designat ing a param eter value
(st rPrm 1Value) .
Dim strSQL As String = "SELECT * FROM Shippers " & _
 "WHERE ShipperID = ? For XML Auto"
Dim strPrm1Value As String = "1"
RunSQLParameterQueryWithPassedParams(_
 strSQL, strPrm1Value)

The following shows the code for the RunSQLParam eterQueryWithPassedParam s
procedure. The lines that change from the RunSQLParam eterQuery procedure in
the preceding sect ion appear in bold. Not ice j ust four lines change. These are
m ost ly for receiving and using the passed st r ing variables that specify t he query
syntax and the param eter value. The RootTag property assignm ent changes to
m ake it appropr iate for any SQL query st r ing. Aside from these m inor changes,
there is nothing m ore to updat ing the ear lier procedure so that it can
accom m odate any SQL query st r ing.
Sub RunSQLParameterQueryWithPassedParams(_
 ByVal strSQL As String, _
 ByVal strPrm1Value As String)
 ’Specify connection string for SqlXmlCommand.
 Dim cnn1String As String = _
 "Provider=SQLOLEDB;Server=(local);" & _
 "database=Northwind;" & _
 "Integrated Security=SSPI"

 ’Specify connection for cmd1 SqlXmlCommand object
 Dim cmd1 As SqlXmlCommand = _
 New Microsoft.Data.SqlXml.SqlXmlCommand(cnn1String)

 ’Designate data source for cmd1 with a parameter.
 cmd1.RootTag = "MyRoot"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.CommandText = strSQL
 ’Create a parameter for cmd1 and assign it a value.
 Dim prm1 As SqlXmlParameter
 prm1 = (cmd1.CreateParameter())
 prm1.Value = strPrm1Value
 ’Declare and instantiate a stream in memory and
 ’populate it with the XML result set from cmd1.
 Dim stm1 As New System.IO.MemoryStream()
 stm1 = cmd1.ExecuteStream()

 ’Copy result set in stream to a stream reader
 ’to display stream contents in a message box.
 Dim srd1 As New System.IO.StreamReader(stm1)
 MsgBox(srd1.ReadToEnd)
 srd1.Close()

End Sub

The I nterplay Betw een XML and Data Sets

XML docum ents and ADO.NET data sets interact with one another in m ult iple
ways. Understanding these interact ions and knowing how to put t hem to use can
help you query and m anipulate data both locally on a client ’s workstat ion and on
a database server. This sect ion provides a select ion of sam ples to show how to
use XML docum ents with data sets for these purposes. As with m any topics
addressed by this book, the presentat ion isn’t m eant to provide exhaust ive
coverage of every possible feature on a topic. I nstead, t he sect ion aim s to
provide a f irm foundat ion that will equip you to go on and learn m ore in whatever
direct ions your needs dictate.

Creat ing Hierarchical XML Docum ents

One of t he really valuable aspects of t he DataSet object in ADO.NET is t hat it is
XML-based. What t his m eans is that you can m anipulate t he elem ents within a
data set and indirect ly m odify XML st ructures. This feature is part icular ly
beneficial when working with m ult itable row sources that have parent -child
relat ionships because it relieves developers from represent ing these com plex
relat ionships in XSD schem as. Although ADO.NET and XML are relat ively new to
m any Visual Basic developers, the object m odel for data sets in ADO.NET m akes
it relat ively m ore fam iliar to those with any background in m anipulat ing objects.
See Chapter 10 for a general review of ADO.NET objects. Figure 10-1 provides an
overview of the DataSet object m odel, and num erous code sam ples throughout
Chapter 10 dem onst rate ADO.NET program m ing topics, including the DataSet
obj ect and it s hierarchically dependent objects.
A DataSet obj ect and it s associated XML docum ent are like two sides of t he sam e
coin. With t he WriteXm l m ethod for a DataSet obj ect , you can persist both the
contents of an XML docum ent and the under ly ing schem a for t he docum ent . I n
addit ion, when a data set has changes not com m it ted to a rem ote database, you
can generate v ia t he WriteXm l m ethod the DiffGram represent ing the data set
with it s uncom m it ted changes. Recall that a DiffGram contains current values as
well as previous values. The DiffGram is readily available because ADO.NET
conveys changes from a client to a SQL Server instance v ia DiffGram s.
The sam ple in t his sect ion dem onst rates how to create a three- t iered data set
based on three tables from the Northwind database. These tables are the
Custom ers, Orders, and Order Details tables. I ndiv idual custom ers are parents of
indiv idual orders, and orders, in turn, are parents of order details, or line item s
within an order. This pair of nested relat ions is t he k ind of st ructure that XML
docum ents represent especially well because the docum ent shows the actual
nest ing instead of a single flat rowset .
The sam ple relies on two procedures. The f irst procedure,
SaveThreeTierDasAsXm lDocum ent , calls a second procedure that generates a
data set and then persists the data set as an XML docum ent . By using the
WriteXm l m ethod, t he SaveThreeTierDasAsXm lDocum ent procedure avoids a
reliance on SQLXML Managed Classes. This m eans the techniques dem onst rated
in this chapter are relat ively robust in that they can work with any data source to
which ADO.NET can connect . I n addit ion, the procedures dem onst rated for the
DataSet obj ect don’t require t he installat ion of either Web Release 2 or Web
Release 3, as is necessary for t he use of Managed Classes. The second procedure,
CreateThreeTierDataSet , is a funct ion procedure that returns a DataSet object to
the procedure that calls it . I t is this returned data set that t he f irst procedure
persists as an XML docum ent in a file.
The SaveThreeTierDasAsXm lDocum ent procedure starts by instant iat ing a
DataSet obj ect and populat ing it wit h t he data set returned by the Create-
ThreeTierDataSet funct ion procedure. After populat ing the data set , the
procedure prepares to persist it as a file with Unicode characters. These act ions
take several steps. The procedure starts the process by assigning the nam e of t he
XML docum ent t o a st r ing var iable (st r1) . Next the procedure instant iates a
FileSt ream obj ect (fst1) to hold t he file containing the XML docum ent . Then the
procedure instant iates an Xm lTextWrit er object (t xw1) t o copy the XML within the
data set to t he FileSt ream object . The WriteXm l m ethod uses t xw1 as one of it s
two argum ents for copying the XML from the data set t o t he file. The other
argum ent , which is Xm lWriteMode.Writ eSchem a in t his case, determ ines how the
WriteXm l m ethod conveys content from the data set to t he file. The
Xm lWriteMode.Writ eSchem a argum ent directs the WriteXm l m ethod to start by
copying the schem a for the docum ent and then follow the schem a with the
contents of the XML docum ent . After wr it ing the docum ent , the procedure frees
resources and returns cont rol t o t he procedure by closing both the Xm lTextWrit er
and FileSt ream obj ects.

The CreateThreeTierDataSet procedure starts by instant iat ing a connect ion object
and opening it so that t he connect ion points to the Northwind database. The
procedure next instant iates a DataSet object (das1) and uses the connect ion
object to connect a SqlDataAdapter obj ect (dap1) wit h t he Custom ers table in the
Northwind database. Then the procedure copies the Custom ers table rows into a
data table nam ed Custom ers w it hin das1 by invoking the Fill m ethod for the dap1
obj ect . After adding the Custom ers table from the Northwind database to the
das1 data set , the procedure points dap1 to the Orders table in the Northwind
database. Then it adds the Orders table t o das1 . I t repeats the process a third
and final t im e to create an OrderDetails data table in das1 wit h t he colum n values
from the Order Details t able in the Northwind database.
At t he end of t hese three invocat ions of the Fill m ethod, t he das1 data set
contains three unrelated tables. However, we need DataRelat ion objects t o
specify t he hierarchical relat ionship between tables. I n fact , das1 needs two
DataRelat ion obj ects. One DataRelat ion object expresses the relat ionship between
the Custom ers and Orders data tables. A second DataRelat ion obj ect represents
the relat ionship between the Orders and OrderDetails data tables. The procedure
builds t he first DataRelat ion object by invoking the Add m ethod for the Relat ions
collect ion of t he das1 data set . The first argum ent , which is a st r ing with the
value “CustOrders”, nam es the DataRelat ion object . The next two argum ents
ident ify the colum ns used to j oin the two data tables. By set t ing the Nested
property for t he DataRelat ion object to True, you cause the XML docum ent to
show orders nested within custom ers. The default value for t he Nested property is
False. I n this case, t he WriteXm l m ethod shows two sets of colum n values
without any nest ing of colum n values from one data table within t hose of another
data table. By invoking the Add m ethod a second t im e for the Relat ions collect ion
in the das1 data set , the procedure creates a second data relat ionship expressing
the parent -child st ructure between the Orders and OrderDetails data tables.
Finally the CreateThreeTierDataSet procedure concludes by invoking the Return
statem ent t o pass the das1 data set back to the procedure that called it .
Sub SaveThreeTierDasAsXmlDocument()
 ’Declare and instantiate the das1 data set and
 ’populate it with the return data set from
 ’the CreateThreeTierDataSet function procedure.
 Dim das1 As New DataSet()
 das1 = CreateThreeTierDataSet()

 ’Declare string for filename to hold file stream
 ’based on XmlTextWriter with contents of das1 data set.
 Dim str1 As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myCustomersSchema.xml"
 Dim fst1 As New System.IO.FileStream _
 (str1, System.IO.FileMode.Create)
 Dim txw1 As New System.Xml.XmlTextWriter _
 (fst1, System.Text.Encoding.Unicode)

 ’Write from das1 the XML along with schema.
 das1.WriteXml(txw1, XmlWriteMode.WriteSchema)

 ’Close TextWriter and FileStream.
 txw1.Close()
 fst1.Close()

End Sub

Function CreateThreeTierDataSet()

 ’Open connection to northwind database.

 Dim cnn1 As SqlConnection = _
 New SqlConnection(_
 "Data Source=localhost;" & _
 "Initial Catalog=northwind;" & _
 "Integrated Security=SSPI")
 cnn1.Open()

 ’Declare and instantiate a data set (das1)
 Dim das1 As DataSet = New DataSet("CustomerOrders")

 ’Declare and instantiate a data adapter (dap1) to fill
 ’the Customers data table in das1.
 Dim dap1 As SqlDataAdapter = _
 New SqlDataAdapter(_
 "SELECT CustomerID, CompanyName, ContactName, Phone " & _
 "FROM Customers", cnn1)
 dap1.Fill(das1, "Customers")

 ’Re-use dap1 to fill the Orders data table in das1.
 dap1.SelectCommand.CommandText = _
 "SELECT OrderID, OrderDate, CustomerID FROM Orders"
 dap1.Fill(das1, "Orders")

 ’Re-use dap1 to fill the OrderDetails data table in das1.
 dap1.SelectCommand.CommandText = _
 "SELECT * FROM [Order Details]"
 dap1.Fill(das1, "OrderDetails")

 ’Close the connection.
 cnn1.Close()

 ’Specify a relationship between Customers and Orders
 ’data tables with orders elements nesting within
 ’customers elements.
 das1.Relations.Add("CustOrders", _
 das1.Tables("Customers").Columns("CustomerID"), _
 das1.Tables("Orders").Columns("CustomerID")). _
 Nested = True

 ’Specify a relationship between Orders and
 ’OrderDetails data tables with OrderDetails elements
 ’nesting within orders elements.
 das1.Relations.Add("OrderDetail", _
 das1.Tables("Orders").Columns("OrderID"), _
 das1.Tables("OrderDetails").Columns("OrderID"), _
 False).Nested = True

 Return das1

End Function

When the SaveThreeTierDasAsXm lDocum ent procedure invokes the WrileXxm l
m ethod with it s second argum ent equal t o Xm lWriteMode.Writ eSchem a, the
m ethod actually wr it es two docum ents in one. The XSD schem a for the XML
argum ent appears before the actual data. The .NET docum entat ion refers to t his
kind of schem a as an inline schem a because it appears in line with t he XML data
that follows it . The schem a for t he XML docum ent corresponding to das1 is
reasonably com plex because it specifies colum ns from three tables, two data
relat ionship specificat ions, and support ing elem ents, such as const raint s to
enable the DataRelat ion objects. Figures 12-6 and 12-7 show port ions of t he

schem a in browser windows; t he schem a is t oo long to f it in one window. This
schem a appears at the beginning of the XML docum ent nam ed in the Save-
ThreeTierDasAsXm lDocum ent procedure. The XML docum ent ’s f ilenam e is
m yCustom ersSchem a.xm l in t he c: \ SQL Server Developm ent with
VBDotNet \ Chapter12 folder. I n test ing the applicat ion on your system , you m ay
care to change the dest inat ion folder for t he XML docum ent to a folder t hat you
already have on your workstat ion.

Figure 1 2 - 6 . The first part of the inline schem a for the XML docum ent in
the m yCustom ersSchem a.xm l file .

Figure 1 2 -7 . The second part of the inline schem a for the XML docum ent
in the m yCustom ersSchem a.xm l file .

As you can see from the schem a’s length and com plexity, it is of value to be able
to wr it e the schem a autom at ically. Creat ing a data set in code should be fair ly
st raight forward by this point in t he book. I n any event , if you are building
solut ions with ADO.NET, it is highly likely that you will gain a com fort level wit h
building data sets program m at ically . Therefore, using a program m at ically created
data set as the basis for a schem a m ay be a useful process if you aren’t handy at
specify ing XSD schem as from scratch. I n fact , writ ing out the schem as and
correlat ing them with the design of your data sets m ay be a way to have Visual
Basic .NET teach you XSD syntax so that you can eventually wr it e your own
com plex schem as from scratch. Figure 12-8 shows an excerpt from the beginning
of t he XML data in m yCustom ersSchem a.xm l. You can see all of t he first order
(OrderI D 10643) and the beginning of the second order (OrderI D 10692) for the
custom er with a Custom erI D value of ALFKI . Not ice how orders nest within
custom ers. Also, the line item s, or order details, for an order nest within an
order.

Figure 1 2 -8 . An excerpt from the beginning of the XML data in the
m yCustom ersSchem a.xm l file .

Querying Descendants in a Data Set w ith XPath

The hierarchical design of t he das1 data set in t he preceding sam ple provides a
source that is suitable for dem onst rat ing how to query descendants with XPath
query syntax. Recall that the data set has order details that are the children of
orders t hat in turn are the children of custom ers. I n Figure 12-8, t he first
UnitPr ice value of 45.6 is a descendant of the first order with an OrderI D value of
10643. This OrderI D is a child of the custom er with t he Custom erI D value ALFKI .
XPath query syntax perm its you to create a result set of custom ers based on any
of t heir descendant values, such as UnitPrice. The sam ple in this sect ion
illust rates how to const ruct such an XPath query, and the sam ple also reveals
how to enum erate the nodes of t he result set . Although XPath quer ies return a
collect ion of nodes in an Xm lNodeList obj ect , the enum erat ion reports indiv idual
values without t he clut t er of the XML tags that delim it values in an XML
docum ent .
The RunXPathQueryForThreeTierXm lDocum ent procedure, which im plem ents t he
sam ple for t his sect ion, starts by instant iat ing a new data set nam ed das1 and
then populat ing it w it h t he three- t iered data set created by the
CreateThreeTierDataSet funct ion. (See the preceding sect ion for the list ing with
this funct ion procedure.) Because ADO.NET autom at ically creates an XML

docum ent behind each data set , you can query either the data set or it s
underly ing XML docum ent and obtain ident ical result sets.
The RunXPathQueryForThreeTierXm lDocum ent procedure presents one approach
to processing the XML docum ent behind a data set . After populat ing the data set ,
the procedure instant iates a new Xm lDataDocum ent object (xdc1) based on the
das1 data set . The Xm lDataDocum ent class is an extension of t he Xm lDocum ent
class that enables .NET applicat ions to load the XML behind a data set into an
XML docum ent . Xm lDataDocum ent objects perm it t he applicat ion W3C processing
techniques for XML docum ents, such as XPath quer ies. The procedure
dem onst rates this capabilit y by specify ing an XPath query that selects all
custom er nodes that contain any descendants with a UnitPrice value of m ore than
100.
The XPath expression creates an Xm lNodeList obj ect (xnl1) based on the
st ructure of t he associated data set for t he Xm lDataDocum ent object that it
quer ies. The associat ion between the Xm lDataDocum ent obj ect and the das1 data
set m akes it possible to select indiv idual values from each node in t he Xm l-
NodeList object as colum n values in a DataRow obj ect from the DataSet object
m odel. The procedure prepares to im plem ent this approach by declar ing a
DataRow obj ect (m yRow) . Before start ing a loop, the procedure returns a count
of t he num ber of nodes within the xnl1 node list . The loop uses a For Each
statem ent t o successively pass through each node within xnl1 . The
GetRowFrom Elem ent m ethod t ransfers individual values from the current node to
the m yRow DataRow object . The m ethod t ransfers values st r ipped of any XML
tags. Once the values of a node are available as colum n values within t he m yRow
obj ect , the procedure const ructs a st r ing for the first four colum n values. The
schem a in Figure 12-6 confirm s that these colum ns correspond to Custom erI D,
Com panyNam e, ContactNam e, and Phone. The last statem ent within the loop
prints the four colum n values to the Output window.
Sub RunXPathQueryForThreeTierXmlDocument()
 ’Declare and instantiate the das1 data set and
 ’populate it with the return data set from
 ’the CreateThreeTierDataSet function procedure.
 Dim das1 As New DataSet()
 das1 = CreateThreeTierDataSet()

 ’Declare and instantiate an XmlDataDocument based
 ’on the contents of das1.
 Dim xdc1 As System.Xml.XmlDataDocument = _
 New XmlDataDocument(das1)

 ’Generate a result set with all Customers ordering
 ’products with a UnitPrice greater than 100.
 Dim xnl1 As XmlNodeList = _
 xdc1.DocumentElement.SelectNodes(_
 "descendant::Customers" & _
 "[Orders/OrderDetails/UnitPrice>100]")

 ’Declare objects for a loop through result set.
 Dim myRow As DataRow
 Dim xnd1 As XmlNode
 Dim str1 As String

 ’Loop through result set and print values
 ’in Output window.
 Debug.WriteLine("There are " & _
 xnl1.Count.ToString & " in the result set.")
 For Each xnd1 In xnl1
 myRow = xdc1.GetRowFromElement(CType(xnd1, XmlElement))
 str1 = myRow(0) & ", " & myRow(1) & _

 ", " & myRow(2) & ", " & myRow(3)
 Debug.WriteLine(str1)
 Next

End Sub

Figure 12-9 presents an excerpt from the Output window showing values
generated by the RunXPathQueryForThreeTierXm lDocum ent procedure. The f irst
line in t he excerpt reports the num ber of custom ers purchasing any item with a
UnitPr ice value of m ore than 100. Then the window shows a list of t he indiv idual
custom ers m eet ing this criter ion. For each custom er, the list shows the
associated Custom erI D, Com panyNam e, ContactNam e, and Phone values.

Figure 1 2 - 9 . An excerpt displaying the in it ia l output from the
RunXPathQueryForThreeTierXm lDocum ent procedure.

Querying Descendants in an XML Docum ent w ith XPath

The sam ple in t he preceding sect ion created a fresh data set by calling the
CreateThreeTierDataSet procedure to generate a new data set . For applicat ions in
which the data changes slowly or at regular intervals, you m ay be able t o
im prove perform ance by using a previously saved copy of the XML docum ent
behind a data set . Using a previously saved XML docum ent can reduce the load
on a database server and im prove applicat ion responsiveness. The SaveThree-
TierDasAsXm lDocum ent procedure, descr ibed previously, saves an XML docum ent
based on the sam e three-t ied data st ructure generated by the
CreateThreeTierDataSet procedure. The f ile containing the XML docum ent is
m yCustom ersSchem a.xm l, and it s path is c: \ SQL Server Developm ent with
VBDotNet \ Chapter12. I f you updated eit her t he docum ent ’s f ilenam e or it s path
for test ing on your system , you will need to revise them for the sam ple in t his
sect ion as well.
The sam ple for t his sect ion relies on two procedures. The f irst procedure,
RunXPathQueryForSavedThreeTierXm lDocum ent , processes the saved XML
docum ent in m yCustom ersSchem a.xm l. The second procedure, MyTagValue,
ext racts tag values from a st r ing containing values delim ited by XML tags. The
st r ing values passed to the MyTagValue procedure are the nodes returned from
an XPath query.
The RunXPathQueryForSavedThreeTierXm lDocum ent procedure starts by
instant iat ing an XML docum ent , xdc1 , and then loading the previously saved
m yCustom ersSchem a.xm l. The procedure uses an Xm lTextReader t o connect with
the XML docum ent in m yCustom ersSchem a.xm l, navigate to t he root node, and
load the data from the file into xdc1 .

After loading the previously saved XML docum ent , t he sam ple executes the sam e
XPath query as in the preceding sam ple. Although the syntax for t he XPath query
is ident ical in t his sam ple and the preceding one, the source for the query is
different in a couple of im portant ways. First , the source for t his sam ple doesn’t
require a t r ip t o the database server because it works with a locally saved file
containing an XML docum ent . I f the database server or t he connect ion to it is
down tem porar ily, this local resource can substant ially im prove the robustness of
an applicat ion. Second, there is no data set under ly ing the XML docum ent . This
m eans the XML nodes returned by the XPath query are st r ings with no associated
row st ructure. As a consequence, t his procedure processes elem ents in nodes
different ly t han in the preceding sam ple.
This procedure generates ident ical output t o t hat which appears in Figure 12-9,
but it arr ives at that output v ia a different path than the preceding sam ple. The
alternat ive approach to ext ract ing tag values is necessary because there is no
underly ing row st ructure from a data set t o facilitate t he ext ract ion of values.
Each node in t he XPath query ’s result set for this sam ple is a st r ing. Tags delim it
tag values within each st r ing. From Figure 12-8, you can see that the < Custom er-
ID> and < / Custom erI D> tags bound the ALFKI tag value. Therefore, you can
ext ract any tag value by specifying it s opening and closing tags. With t he Mid
funct ion, you can ext ract the tag value contained within any tag. The
RunXPathQueryForSavedThreeTierXm lDocum ent and MyTagValue procedures
work together to ext ract the f irst four tag values for each successive node in the
XPath query ’s result set . The RunXPathQueryForSavedThreeTierXm lDocum ent
procedure passes the tag nam e for each of t he first four tags in a node, and the
MyTagValue funct ion procedure returns a st r ing with t he corresponding tag’s
value. Then the RunXPathQueryForSavedThreeTierXm lDocum ent procedure
concatenates the tag values and wr it es them to the Output window.
Sub RunXPathQueryForSavedThreeTierXmlDocument()
 ’Procedure works from saved document instead of
 ’re-creating the document from a new data set.

 ’Declare and instantiate an XML document.
 Dim xdc1 As New System.Xml.XmlDocument()

 ’Declare and instantiate reader based on
 ’previously saved XML document; move to root
 ’node of document and load into xdc1.
 Dim xrd1 As XmlTextReader = _
 New XmlTextReader _
 ("c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myCustomersSchema.xml")
 xrd1.MoveToContent()
 xdc1.Load(xrd1)

 ’Close the XmlTextReader.
 xrd1.Close()
 ’Generate a result set with all Customers ordering
 ’products with a UnitPrice greater than 100.
 Dim xnl1 As XmlNodeList = _
 xdc1.DocumentElement.SelectNodes(_
 "descendant::Customers" & _
 "[Orders/OrderDetails/UnitPrice>100]")

 ’Declare objects for a loop through result set.
 Dim xnd1 As XmlNode
 Dim str1, str2 As String

 ’Loop through result set and print values
 ’in Output window.

 Debug.WriteLine("There are " & _
 xnl1.Count.ToString & " in the result set.")
 For Each xnd1 In xnl1

 ’Saver node’s inner XML.
 str1 = xnd1.OuterXml

 ’Get CustomerID tag value.
 str2 = MyTagValue("CustomerID", str1)

 ’Get CompanyName tag value.
 str2 = str2 & ", " & MyTagValue("CompanyName", str1)

 ’Get ContactName tag value.
 str2 = str2 & ", " & MyTagValue("ContactName", str1)

 ’Get Phone tag value.
 str2 = str2 & ", " & MyTagValue("Phone", str1)

 ’Write first four tag values.
 Debug.WriteLine(str2)

 Next

End Sub

Function MyTagValue(ByVal TagName As String, _
 ByVal strXML As String)

 ’Declare and compute constants for this tag.
 Dim str1 = "<" & TagName & ">"
 Dim str2 = "</" & TagName & ">"
 Dim int1, int2 As Integer
 int1 = InStr(strXML, str1) + Len(str1)
 int2 = InStr(strXML, str2)

 ’Compute tag value and return it;
 ’strXML is string with XML to parse,
 ’int1 is start position,
 ’int2 - int1 is number of characters.
 Dim TagValue As String = Mid(strXML, _
 int1, int2 - int1)
 Return TagValue

End Function

Using Data Sets to Update Databases via DiffGram s

By now you should be get t ing the idea that you can perform database operat ions
to obtain ident ical result s with data sets or the XML docum ents associated with
them . This general rule applies to database updates as well. Recall from earlier in
this chapter that ADO.NET updates a database via a DiffGram , which is an XML
docum ent t hat can separately specify current values and prior colum n values in a
data table within a data set . When an ADO.NET applicat ion invokes the Update
m ethod for a data adapter and specifies a data set , t he applicat ion sends the
Dif fGram to t he .NET Fram ework running on a server. The .NET Fram ework, in
turn, at tem pts to perform the update with t he database server and passes back
any necessary feedback to t he client , such as an ident it y value or a m essage that

the database rejects the updates because the prior value changed from the t im e
the data set was init ially populated.
The sam ple in t his sect ion interacts with XML in two dif ferent ways. First , it uses
an annotated schem a to specify which colum n values to return from a rem ote
data source. After ret r ieving values from a rem ote data source, the sam ple fills a
data table in a data set on the client . Second the sam ple updates a colum n value
in the local data table. Then the procedure wr ites the DiffGram that contains the
change before calling the Update m ethod for a data adapter t o send the DiffGram
to a database server. Although it is possible t o work with DiffGram s direct ly, j ust
like Updategram s (see Chapter 6) , Visual Basic developers m ight generally f ind it
m ore convenient to m anipulate t he ADO.NET object m odel t o update values both
locally and on a rem ote server.
The following schem a list ing shows the contents of an
Em ployeesFirstLastNam es.xsd file used by the sam ple within t his sect ion. The f ile
resides in the root folder of t he XMLSam ples solut ion. (The lines for the Fnam e
and LNam e elem ents wrap onto a second line because they are too long to fit on
one line.) After t he nam espace declarat ions for a W3C xsd schem a and Microsoft
m apping at t r ibutes, t he list ing declares Em p as the nam e for t he Em ployees
obj ect in a database connect ion. The sql: relat ion at t r ibute sets the
correspondence between Em p and Em ployees. Because the sam ple connects to
the Northwind database, Em p is the nam e for t he collect ion of ret r ieved values
from the Em ployees table. The schem a designates FNam e and LNam e as
m atching nam es within the local data set for the FirstNam e and LastNam e colum n
values in t he Em ployees table on the database server. The sql: f ield at t r ibute
indicates the server-based colum ns to which the local data set colum ns point .
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
 <xsd:element name="Emp" sql:relation="Employees">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FName" _
 sql:field="FirstName" type="xsd:string" /
>
 <xsd:element name="LName" _
 sql:field="LastName" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="EmployeeID" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The following PopulateModifyUpdateWithDiffGram procedure starts by specify ing a
connect ion st r ing and then using the st r ing to const ruct a SqlXm lCom m and
obj ect . The contents of the st r ing point t o t he Northwind database on the default
local SQL Server instance. Next the procedure creates a local data set (das1) w ith
a data table nam ed Em p based on the Em ployeesFirstLastNam es.xsd schem a file.
This data set com pletes the setup for t he sam ple’s data environm ent .
Sub PopulateModifyUpdateWithDiffGram()
 ’Specify connection for cmd1 SqlXmlCommand object;
 ’connection specification must include
 ’provider designation (sqloledb).
 Dim cmd1 As New SqlXmlCommand("Provider=sqloledb;" & _
 "Data Source=(local);" & _
 "Initial Catalog=northwind;Integrated Security=SSPI")

 ’Specify SQLXmlCommand to return first and last
 ’names based on an XPath query.
 cmd1.RootTag = "ROOT"
 cmd1.CommandText = "Emp"

 cmd1.CommandType = SqlXmlCommandType.XPath
 cmd1.SchemaPath = "..\EmployeesFirstLastNames.xsd"

 ’Instantiate a SqlXmlAdapter object using the
 ’SqlXmlCommand object .
 Dim dap1 As SqlXmlAdapter
 dap1 = New SqlXmlAdapter(cmd1)

 ’Instantiate a new DataSet object (das1) and
 ’fill via dap1.
 Dim das1 As DataSet = New DataSet()
 dap1.Fill(das1)

 ’Edit the value in the first row’s first column
 ’of Emp data table.
 das1.Tables("Emp").Rows(0)(0) = "Nancie"

 ’Write the XML as a DiffGram before committing
 ’change to server.
 Dim str1 As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myDiffGram.xml"
 Dim myFileStream As New System.IO.FileStream _
 (str1, System.IO.FileMode.Create)
 Dim xtw1 As New System.Xml.XmlTextWriter _
 (myFileStream, System.Text.Encoding.Unicode)
 das1.WriteXml(xtw1, XmlWriteMode.DiffGram)

 ’Perform update to server-based data source for
 ’the das1 data set; don’t specify a specific
 'data table within the data set.
 dap1.Update(das1)

End Sub

After set t ing up the data environm ent , the procedure assigns a new value,
“Nancie”, t o the first colum n in the first row of t he Em p data table. The Rows
collect ion for the Em p data table exposes the colum n values for indiv idual rows
within the data table. I n the following line,
das1.Tables("Emp").Rows(0)(0) = "Nancie"

the first num ber in parentheses after Rows designates the row and the second
num ber in parentheses points to a colum n within a row. (The Rows collect ion is
zero-based; the first colum n and row are both num bered 0 .)
Before t ransferr ing the update to t he Northwind database with t he Update
m ethod for a data adapter, the procedure copies the data set in DiffGram form at
to a file nam ed C: \ SQL Server Developm ent With VBDotNet \ Chapter12\ MyDiff-
Gram .xm l on the local com puter ’s C dr ive. Change the nam e and dest inat ion to fit
your com puter environm ent .
Figures 12-10 and 12-11 show the DiffGram created in m yDiffGram .xm l by the
sam ple for t his sect ion. Figure 12-10 is a browser window displaying the top half
of t he DiffGram , and Figure 12-11 presents the bot tom half of the DiffGram in a
browser window. As Figure 12-10 reveals, t he em ployee whose Em ployeeI D value
is 1 has the FNam e tag value Nancie. (See toward the top of t he window.) I n
Figure 12-11, t he before sect ion of t he DiffGram (see toward the bot tom of the
browser window) shows the init ial value for any changes in t he data set
uncom m it ted on the rem ote database source. I n this instance, you can see that
the init ial value for the FNam e tag is Nancy for the em ployee whose Em ployeeI D
value is 1. I m m ediately after invoking the Update m ethod in t he f inal line of t he

PopulateModifyUpdateWithDiffGram procedure, the DiffGram for das1 will change.
I n part icular, the before sect ion will drop because the data set will contain only
current values unt il there is a m odificat ion of t he local Em p data table.

Figure 1 2 - 1 0 . The beginning part of the m yDiffGram .xm l file generated
by the PopulateModifyUpdateW ithDiffGram procedure.

Figure 1 2 -1 1 . The ending part of the m yDiffGram .xm l file generated by
the PopulateModifyUpdateW ithDiffGram procedure.

You probably want t o restore your Em ployees table in the Northwind database so
that the first nam e for Em ployeeI D 1 is Nancy instead of Nancie. You can do that
by changing Nancie to Nancy in t he PopulateModifyUpdateWithDiffGram
procedure and re- running the procedure.

Note

As I ment ioned, many Visual Basic .NET developers m ight
find it more convenient to enable data manipulat ion through
DataSet objects than by direct ly coding DiffGrams or
Updategrams. This book’s sam ple files include an addit ional
sample procedure, ListAndEditWithDataset , to fur ther
illust rate the flexibilit y and ease of this approach. For the
sake of brevity , the procedure’s list ing doesn’t appear in the
book.

Using DiffGram s on the W eb W ithout Vir tual Director ies

One of t he best features about the preceding sam ple is how robust it is. For
exam ple, very near ly the ident ical code works in an ASP.NET applicat ion.
Furtherm ore, t hat ASP.NET applicat ion perm its updates to the Web without t he
necessity of a v irtual directory for a database. This sim plif ies adm inist rat ion of
your Web solut ions.
The following five steps build an ASP.NET Web Applicat ion solut ion nam ed
XMLWebSam ple. These steps adapt the sam ple from the preceding sect ion to run
in an ASP.NET solut ion.

1. Start a new ASP.NET solut ion nam ed XMLWebSam ple, and add a reference
to the Microsoft .Data.SqlXm l nam espace as described ear lier in t his
chapter.

2. Select t he default WebForm 1.aspx file in Design view, and open the
m odule behind the Web page by r ight -clicking the page and choosing View
Code. At t he top of t he m odule for the page, insert I m ports
Microsoft .Data.SqlXm l.

3. Copy the code from the PopulateModifyUpdateWithDiffGram procedure in
the preceding solut ion to the Page_Load event for t he XMLWebSam ple
solut ion.

4. Create in t he root Web folder of t he XMLWebSolut ion a schem a j ust like
Em ployeesFirstLastNam es.xsd. You can use the XML Designer for t his task
as described ear lier in t he chapter. (I t ’s probably easiest to open the
schem a in XML Source view and replace the exist ing XML with t he XML
from the Em ployeesFirstLastNam es.xsd in t his book’s sam ple files.) Nam e
the schem a Em ployeesFirstLastNam es.xsd.

5. Change the set t ing for t he Schem aPath propert y set t ing of t he
SqlXm lCom m and obj ect in t he Page_Load event code from
".. \ Em ployeesFirstLastNam es.xsd" to
MapPath("Em ployeesFirstLastNam es.xsd") .

After com plet ing the above steps, you can r ight -click t he WebForm 1.aspx page in
the Solut ion Explorer window and choose Build And Browse. This process will set
the FirstNam e f ield for t he row in t he Em ployees table with t he Em ployeeI D value
1 to Nancie. You can restore the or iginal f irst nam e by changing Nancie to Nancy
in the Page_Load event procedure and choosing Build And Browse a second t im e.
For your easy reference, the Page_Load event procedure list ing appears here. The
two lines that changed from the PopulateModifyUpdateWithDiffGram procedure
appear in bold. The im portant point t o grasp is that although the following list ing
is for ASP.NET, it works near ly ident ically t o t he prior Windows applicat ion
solut ion. The MapPath funct ion returns the full path to a f ile that serves as it s
argum ent . This Web technique enables developers to reference the path to a file
without explicit ly including it in their applicat ion. I n addit ion, t he MapPath
funct ion im proves your code’s portabilit y because the funct ion dynam ically
com putes the path to t he file even if you change the folder for t he solut ion.
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’Put user code to initialize the page here.

 ’Specify connection for cmd1 SqlXmlCommand object;
 ’connection specification must include
 ’provider designation (sqloledb).
 Dim cmd1 As New SqlXmlCommand("Provider=sqloledb;" & _
 "Data Source=(local);" & _
 "Initial Catalog=northwind;Integrated Security=SSPI")

 ’Specify SQLXmlCommand to return first and last
 ’names based on an XPath query.
 cmd1.RootTag = "ROOT"
 cmd1.CommandText = "Emp"
 cmd1.CommandType = SqlXmlCommandType.XPath
 cmd1.SchemaPath = MapPath("EmployeesFirstLastNames.xsd")
 ’Instantiate a SqlXmlAdapter object using the
 ’SqlXmlCommand object.
 Dim dap1 As SqlXmlAdapter
 dap1 = New SqlXmlAdapter(cmd1)

 ’Instantiate a new DataSet object (das1) and

 ’fill via dap1.
 Dim das1 As DataSet = New DataSet()
 dap1.Fill(das1)

 ’Edit the value in the first row’s first column
 ’of Emp data table.
 das1.Tables("Emp").Rows(0)(0) = "Nancie"

 ’Write the XML as a DiffGram before committing
 ’change to server.
 Dim str1 As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\myDiffGram.xml"
 Dim myFileStream As New System.IO.FileStream _
 (str1, System.IO.FileMode.Create)
 Dim xtw1 As New System.Xml.XmlTextWriter _
 (myFileStream, System.Text.Encoding.Unicode)
 das1.WriteXml(xtw1, XmlWriteMode.DiffGram)

 ’Perform update to server-based data source for
 ’the das1 data set; don’t specify a specific
 'data table within the data set.
 dap1.Update(das1)

End Sub

Creat ing HTML Pages w ith XSLT

As you start to work with Visual Basic .NET, m ost of your Web developm ent work
should focus around ASP.NET. (See Chapter 11.) This t echnology is especially
crafted to m ake Visual Basic developers feel r ight at hom e when building Web
solut ions. As you can see from the preceding pair of sam ples, it ’s easy to adapt
Visual Basic code is to ASP.NET. However, you m ight occasionally want to
generate output for a Web environm ent using XSLT. I n m y exper ience, one of t he
m ost popular uses for XSLT is the t ransform at ion of XML docum ents into t ables
on HTML pages. The chapter up unt il this point aim ed to convey a working
knowledge of how to create and consum e XML docum ents in .NET solut ions. The
rem ainder of this chapter helps you prepare XML docum ents for display on HTML
pages via XSLT.
When you’re using XSLT to t ransform XML docum ents into HTML pages, it ’s useful
to have a working knowledge of HTML form at t ing syntax as well as cascading
style sheets. You, of course, also need som e fam iliar it y with how to select tags
from XML docum ents to display in your HTML pages. Many Visual Basic
developers have lit t le or no HTML program m ing exper ience. I f this is your
situat ion, I recom m end a couple of st rategies. First , use a graphic Web page
designer, such as the one built into .NET or the one in FrontPage. With a graphic
Web page designer, you can graphically create pages and then look at the HTML
behind the code. You can then incorporate that code into your XSLT
t ransform at ion file. Second, if you belong to a project t eam that includes Web
specialists, plan the project so that the Web specialists create general XSLT files
that can fit m any sit uat ions or be easily adapted. Then the Visual Basic
developers can reference the XSLT t ransform at ion files as is or with m inor
edit ing.
The Visual Studio .NET docum entat ion includes several sam ples illust rat ing how
to load XML docum ents and t ransform them with XSLT. (For exam ple, see the

“XslTransform .Load Method (Xm lReader)” topic in the Visual Basic .NET
docum entat ion.) This sect ion in the book includes a couple of sam ples to
com plem ent t hose from the Visual Basic .NET docum entat ion that work with the
SqlXm lCom m and class. Recall t hat you can use this SQLXML Managed Class to
generate XML docum ents from SQL statem ents. The SQLXML Managed Classes
are there to m ake life sim ple for SQL Server developers. For exam ple, t he
Schem aPath property facilitates referencing annotated schem a for f ilter ing the
return set from a database object . Sim ilar ly, t he XslPath property for a
SqlXm lCom m and obj ect references an XSLT file. When you specify this at t r ibute,
your procedures can return HTML pages instead of raw, unform at ted XML tags
and values in a docum ent f ile. The referenced XSLT t ransform f ile m ust
synchronize with t he XML docum ent t hat would have returned from the
SqlXm lCom m and obj ect . Two sam ple XSLT t ransform at ion files illust rate how to
im plem ent t his synchronizat ion.

Form at t ing Tw o Colum ns from the Em ployees Table

When you use the XslPath property with a SqlXm lCom m and object , you don’t get
to see the under ly ing XML docum ent . The internal code in the SqlXm lCom m and
class autom at ically converts it s XML docum ent t o HTML code according to the
inst ruct ions in t he f ile to which the XslPath property points. The following sam ple
t ransform s an XML docum ent based on the Em ployees table in t he Northwind
database. I nstead of just saving the final HTML page, t he procedure first saves
the XML docum ent without set t ing the XslPath property. Then the procedure
assigns a st r ing value to the XslPath property t hat points to an XSLT file and
saves a second docum ent in HTML form at .
The SQLToXMLToHTMLForEm ployees procedure starts creat ing an XML docum ent
with a SqlXm lCom m and obj ect point ing to t he Northwind database. The SQL
st r ing for t he object ext racts the Em ployeeI D, FirstNam e, and LastNam e colum ns
from the Em ployees table by using a SELECT statem ent with a FOR XML clause.
Recall t hat this process returns an XML fragm ent without a unique outer tag for
the docum ent . Therefore, t he procedure assigns a st r ing value (“MyRoot ”) to the
RootTag property for the SqlXm lCom m and obj ect . Next t he procedure sets up to
save the XML docum ent in a file nam ed Unform at tedEm ployees.xm l before
invoking the ExecuteToSt ream m ethod to save the XML docum ent . The setup
process enables the ExecuteToSt ream m ethod to pass the docum ent direct ly from
the SqlXm lCom m and object to a file.
After saving the XML docum ent , t he procedure assigns the XslPath property for
the SqlXm lCom m and object . The propert y point s to the MyXSL.xslt f ile in t he root
folder of t he XMLSam ples solut ion folder. Then, the procedure invokes the
ExecuteSt ream m ethod for the SqlXm lCom m and object to represent t he HTML
page with an in-m em ory st ream object . After captur ing the HTML as a st ream
object , the procedure m oves on to read the st ream and then wr it e it t o an
external f ile nam ed Form at tedEm ployees.htm l.
Sub SQLToXMLToHTMLForEmployees()
 ’Specify SqlXmlCommand.
 Dim cmd1 As New SqlXmlCommand("Provider=sqloledb;" & _
 "Data Source=(local);" & _
 "Initial Catalog=northwind;Integrated Security=SSPI")
 cmd1.CommandText = _
 "SELECT EmployeeID, FirstName, LastName " & _
 "FROM Employees FOR XML AUTO"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.RootTag = "MyRoot"

 ’Name the path and file for the Xml result set, then
 ’instantiate a Stream object for the file’s contents.

 Dim myXMLfile As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\UnFormattedEmployees.xml"
 Dim myFileStream As New System.IO.FileStream _
 (myXMLfile, System.IO.FileMode.Create)

 ’Execute cmd1 and store the result set in the stream.
 cmd1.ExecuteToStream(myFileStream)

 ’Close the file stream to recover the resource.
 myFileStream.Close()

 ’Set the XslPath property to specify the name of
 ’the XSLT style sheet.
 cmd1.XslPath = "..\MyXSL.xslt"

 ’Return the HTML from cmd1 as an in-memory stream
 ’object; then, create a stream reader to read the
 ’contents of the stream.
 Dim stm1 As Stream
 stm1 = cmd1.ExecuteStream
 Dim srd1 As New StreamReader(stm1)

 ’Declare and instantiate a string for the name of
 ’the file pointing at the FileStream with the
 ’HTML content.
 Dim str1 As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\FormattedEmployees.html"
 Dim fst1 As New FileStream(str1, FileMode.OpenOrCreate)

 ’Declare and instantiate a StreamWriter to populate
 ’the file holding the HTML content; then, read the
 ’StreamReader’s contents into a string and write the
 ’string to fst1.
 Dim swt1 As New StreamWriter(fst1)
 Dim str2 As String = srd1.ReadToEnd
 swt1.Write(str2)

 ’Close the file.
 swt1.Close()

End Sub

Figure 12-12 shows the UnForm at tedEm ployees.xm l f ile. Not ice that it contains
nine Em ployees elem ents. Each elem ent has three at t r ibutes with values for
Em ployeeI D, FirstNam e, and LastNam e. The content and layout follow direct ly
from the Com m andText property set t ing for t he SqlXm lCom m and object in t he
SQLToXMLToHTMLForEm ployees procedure. I t is the UnForm at tedEm ployees.xm l
file t hat the MyXSL.xslt f ile t ransform s.

Figure 1 2 -1 2 . The Unform at t edEm ployees.xm l file contents generated by
the SQLToXMLToHTMLForEm ployees procedure.

Figure 12-13 shows the t ransform ed XML docum ent saved as Form at ted-
Em ployees.htm l. The file in Figure 12-13 appears as a table instead of a raw
list ing of elem ents. I n addit ion, t he second colum n displaying last nam e appears
in italics and bold. There’s addit ional form at t ing as well, such as a table header
with a background color . The MyXSL.xslt f ile facilitated all t he layout and
form at t ing changes between Figure 12-12 and Figure 12-13. There’s one m ore
difference between the two figures. Figure 12-13 has only two colum ns, but t he
init ial XML docum ent has three at t r ibutes for every Em ployees elem ent within the
docum ent . This difference results from the fact that the MyXSL.xslt f ile selects
only two of the three at t r ibutes for display.

Figure 1 2 -1 3 . The Form at tedEm ployees.htm l file contents generated by
the SQLToXMLToHTMLForEm ployees procedure.

The list ing for MyXSL.xslt appears next . I t com m ences with it s declarat ion as an
XML docum ent and a reference to t he World Wide Web Consort ium nam espace for
XSLT files. The design of the t ransform has two m ain parts denoted within two
xsl: t em plate elem ents. The first elem ent m atches the Em ployees elem ent in the

source XML docum ent , nam ely Unform at tedEm ployees.xm l. For each Em ployees
elem ent within t he source docum ent , t he t ransform file selects two at t r ibutes—
FirstNam e and LastNam e. The LastNam e select ion is em bedded within tags that
render t he at t r ibute values in bold and italic. This init ial segm ent of t he file also
def ines a row layout for the result w it h beginning and ending < TR> tags. Each
selected value appears within beginning and ending < TD> tags to indicate that
the values occupy different cells within the row.
The second xsl: elem ent wit hin the .xslt f ile defines the overall body for the
docum ent . For exam ple, this elem ent starts with a beginning HTML elem ent and
closes with an ending HTML elem ent . The HEAD block assigns a color in
hexadecim al notat ion to the background-color at t r ibute for t he table heading (th)
elem ent . The BODY block launches a TABLE block and form ats the heading for the
table. The xsl: apply- tem plates elem ent within the TABLE block specifies the
insert ion of the first xsl: elem ent w ithin t he second xsl: elem ent . This insert ion
adds the rows to t he table aft er t he table heading. I t is cr it ical t hat t he xsl: apply-
tem plates elem ent select the MyRoot elem ent within t he XML docum ent . This is
because this elem ent contains all t he Em ployees elem ents within t he source XML
docum ent t o t ransform . I m properly specify ing this select at t r ibute can lead to an
em pty table.

Note

XSLT syntax refers to elem ent and at t r ibute names
different ly . When referr ing to an element , you can use its
name. For example, use Em ployees when referencing an
Employees element . When referr ing to an at t r ibute, prefix
the at t r ibute name with the @ sign. For example, refer to a
FirstNam e at t r ibute value with @FirstName.
<?xml version=’1.0’ encoding=’UTF-8’?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" vers
ion="1.0">

 <xsl:template match = ’Employees’>
 <TR>
 <TD><xsl:value-of select = ’@FirstName’ /></TD>
 <TD><I><xsl:value-of select = ’@LastName’ /></I></TD>
 </TR>
 </xsl:template>
 <xsl:template match = ’/’>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border=’1’ style=’width:300;’>
 <TR><TH colspan=’2’>Employees</TH></TR>
 <TR><TH >First name</TH><TH>Last name</TH></TR>
 <xsl:apply-templates select = ’MyRoot’ />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Form at t ing Three Colum ns from the Shippers Table

This chapter ’s f inal sam ple dem onst rates the preceding approach with another
source XML docum ent . Although an XSLT t ransform at ion applies to an XML
docum ent , you won’t norm ally show the XML docum ent support ing a published
HTML table. I nstead, you’ ll init ially specify t he XslPath property for a SqlXm l-
Com m and object when you apply t he ExecuteSt ream m ethod. Then, you’ ll read
the st ream of HTML to prepare for wr it ing it to a file. This m ore direct approach
doesn’t expose the XML docum ent that serves as the source for the HTML table. I f
you ever f ind it beneficial t o review the XML docum ent , you can always revert t o
the approach in t he preceding sam ple.
The sam ple im plem ented with t he SQLThroughXMLToHTMLForShippers procedure
ext racts colum ns from the Shippers table. The SELECT statem ent for t he
SqlXm lCom m and obj ect ret r ieves each colum n in t he Shippers table, and the
statem ent includes a FOR XML clause to return an XML fragm ent . The RootTag
property for t he SqlXm lCom m and object designates MyRoot as the unique
elem ent that em braces all other elem ents within the XML docum ent . The XslPath
property for t he SqlXm lCom m and object points to t he MyXSLShippers.xslt f ile in
the root of the XMLSam ples folder, which is the folder containing the solut ion.
After instant iat ing the SqlXm lCom m and obj ect and specify ing it s propert ies, t he
procedure invokes the ExecuteSt ream m ethod to return an in-m em ory st ream
variable with the HTML for t he file t hat the procedure ult im ately saves as
Form at tedShippers.htm l.
Sub SQLThroughXMLToHTMLForShippers()
 ’Specify SqlXmlCommand.
 Dim cmd1 As New SqlXmlCommand("Provider=sqloledb;" & _
 "Data Source=(local);" & _
 "Initial Catalog=northwind;Integrated Security=SSPI")
 cmd1.CommandText = _
 "SELECT ShipperID, CompanyName, Phone " & _
 "FROM Shippers FOR XML AUTO"
 cmd1.CommandType = SqlXmlCommandType.Sql
 cmd1.RootTag = "MyRoot"

 ’Set the XslPath property to specify
 ’the name of the XSLT style sheet.
 cmd1.XslPath = "..\MyXSLShippers.xslt"

 ’Return the HTML from cmd1 as an in-memory stream
 ’object; then create a stream reader to read the
 ’contents of the stream.
 Dim stm1 As Stream
 stm1 = cmd1.ExecuteStream
 Dim srd1 As New StreamReader(stm1)

 ’Declare and instantiate a string for the name of
 ’the file pointing at the FileStream with the
 ’HTML content.
 Dim str1 As String = _
 "c:\SQL Server Development with VBDotNet\" & _
 "Chapter12\FormattedShippers.html"
 Dim fst1 As New FileStream(str1, FileMode.OpenOrCreate)

 ’Declare and instantiate a StreamWriter to populate
 ’the file holding the HTML content; then read the
 ’StreamReader’s contents into a string and write the
 ’string to fst1.
 Dim swt1 As New StreamWriter(fst1)
 Dim str2 As String = srd1.ReadToEnd
 swt1.Write(str2)

 ’Close the file.

 swt1.Close()

End Sub

Figure 12-14 reveals the output from the SQLThroughXMLToHTMLForShippers
procedure. The Shippers t it le in t he table’s header spans three colum ns in this
sam ple as opposed to t he two in the preceding sam ple. Of course, the table has
three colum ns, and the contents of the first colum n, list ing ShipperI D values, are
centered horizontally. Aside from these differences, the layout of the table follows
the design of the preceding sam ple.

Figure 1 2 -1 4 . The Form at tedEm ployees.htm l file contents generated by
the SQLThroughXMLToHTMLForShippers procedure.

Although I didn’t display the XML docum ent because you won’t norm ally show it
when prepar ing an HTML table, a good approxim at ion of the XML docum ent is
available for v iewing in Figure 12-1. This f igure presents the XML output from an
earlier sam ple. That sam ple creates an XML docum ent from the sam e SELECT
statem ent as the one in this sam ple. The m ain dist inct ion between the XML for
the two docum ents is im portant but subt le. Figure 12-1 reveals t hat Shippers is
the root tag for t he XML docum ent in t he ear lier sam ple. The sam ple in this
sect ion uses MyRoot as the docum ent ’s root tag. The root tag designat ion is
cr it ical because the .xslt file references the designat ion as it t ransform s the XML
to HTML. I f you specify the root tag incorrect ly , your HTML will be incorrect as
well.
The m inor form at t ing differences between this sam ple and the preceding one will
help t o highlight t he XSLT syntax issues cont rolling the layout and form at t ing of
content on an HTML page. You can cont rast the MyXSLShippers.xslt list ing with
the ear lier MyXSL.xslt list ing used to t ransform the preceding XML docum ent into
an HTML table. As before, t he MyXSLShippers.xslt f ile has two xsl: t em plate
elem ents. However, the first elem ent in t his f ile m atches the Shippers elem ent in
the docum ent . This is because the under ly ing XML docum ent has three separate
lines that each start w it h a Shippers elem ent . This elem ent nam e (Shippers) lets
you reference the collect ion of lines in t he XML docum ent . Also, not ice that t he
first elem ent contains xsl: value-of elem ents. The preceding MyXSL.xslt file
contained only two of t hese— one for each colum n. The form at t ing tags around
colum n values are different in t his sam ple. For exam ple, t he ShipperI D colum n
values have form at t ing that enforces hor izontal centering. I n addit ion, there are

no tags for bold or italic styles. Aside from these m inor differences, t he .xslt f iles
for this sam ple and the preceding one are the sam e. The two sam ples together
reinforce one another in dem onst rat ing com m on XSLT coding techniques for
t ransform ing an XML docum ent into an HTML table.
<?xml version=’1.0’ encoding=’UTF-8’?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" vers
ion="1.0">
 <xsl:template match = ’Shippers’>
 <TR>
 <TD align = ’middle’><xsl:value-
of select = ’@ShipperID’ /></TD>
 <TD><xsl:value-of select = ’@CompanyName’ /></TD>
 <TD><xsl:value-of select = ’@Phone’ /></TD>
 </TR>
 </xsl:template>
 <xsl:template match = ’/’>
 <HTML>
 <HEAD>
 <STYLE>th { background-color: #CCCCCC }</STYLE>
 </HEAD>
 <BODY>
 <TABLE border=’1’ style=’width:300;’>
 <TR><TH colspan=’3’>Shippers</TH></TR>
 <TR><TH >ShipperID</TH><TH>Company Name</TH><TH>Phone</TH>
</TR>
 <xsl:apply-templates select = ’MyRoot’ />
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Chapter 1 3 . Creat ing Solut ions w ith XML
W eb Services
XML Web services offer Visual Basic .NET developers a chance to dram at ically
extend the reach of their solut ions. Alt hough the underpinnings of XML Web
services m ay be unfam iliar to m any Visual Basic developers, Visual Studio .NET
and the SQL Server 2000 Web Services Toolk it provide im plem entat ion
techniques that are sim ple and st raight forward. I f you have m astered the topics
presented in the previous 12 chapters, you can readily learn the content of t his
chapter. However, the payoff from becom ing prof icient with XML Web services
can be vast ly greater than that from learning the content from ear lier chapters.
XML Web services, som et im es called Web services, provide a technology for
rem otely operat ing an applicat ion on another com puter. You will t ypically use
Web services with at least two com puters, but t he technology can t ie together
m any com puters in peer- to-peer relat ionships. At any one t im e, one com puter
can support m ult iple client applicat ions connect ing to it . For a pair of com puters,
one com puter will host a Web service applicat ion and another com puter will host
a client applicat ion. Because a Web service is a peer- to-peer technology, two
com puters can each host a Web service even while t hey are clients of t he Web
service on the other com puter. The com puters part icipat ing in peer- to-peer
relat ionships exchange inform at ion in XML form at . The indust ry m om entum
building around Web services technology prom ises wide interoperabilit y across
com puter plat form s and operat ing system s.
After present ing an overview of core Web services concepts, this chapter presents
a ser ies of sam ples in a hands-on sty le. The idea is to acquaint you with t he
basics of building XML Web services. The chapter conveys step-by-step
inst ruct ions and code sam ples for creat ing solut ions with Web services. The
chapter ’s content extends and com plem ents the inform at ion on Web services that
you can find in t he Visual Studio .NET docum entat ion and the SQL Server 2000
Web Services Toolk it support m ater ials. Separate sect ions drill down on creat ing
Web service and client applicat ions using cont rast ing approaches. For exam ple,
you can build both the Web service and client applicat ions with Visual Studio
.NET. Alt ernat ively, other sect ions show how to build a Web service with t he Web
Services Toolk it and the client applicat ion with Visual Studio .NET. The sam ple
presentat ions describe how to build t he solut ion folders and m ent ion especially
im portant f iles and procedures for each solut ion. The chapter ’s sam ple files
include for your reference the com pleted solut ion as I developed them on m y
system .

Overview of W eb services

XML Web serv ices can revolut ionize the way applicat ions are
delivered to clients in a way that parallels how the I nternet changed
the delivery of content to computer users over a Web. Web services
support a widely adopted set of standards for computers shar ing
informat ion with one another. Although the consumer of a Web
serv ice can be a computer user, it can just as easily be another
applicat ion. In this way, Web serv ices support dist r ibuted
comput ing. Because the Web services standards are so widely

adopted and rest on XML format , you can create Web serv ices
solut ions that have a very far reach in term s of the number of
plat forms that they can support .
This sect ion builds on the init ial int roduct ion to XML Web services in
Chapter 8. I nstead of highlight ing its under ly ing technologies, this
sect ion explores how you can tap these technologies with Visual
Basic .NET and SQL Server 2000. I n addit ion, the sect ion exam ines
potent ial k inds of applicat ions that are especially suitable for Web
serv ices solut ions.

Elem ents of W eb Services Design

An XML Web serv ice is a technology for invoking procedures
rem otely on another computer. A Web service server applicat ion
exposes procedures that are invoked by a Web serv ice client
applicat ion. As indicated in Chapter 8, XML Web serv ices rest on a
m ix of open-architecture technologies. This open technology stance
and the abilit y to interchange data between loosely coupled
computers in XML format make Web services available across
computer manufacturers and software vendors that subscr ibe to the
open standards.
Web services technology is special for a variety of technical and
inst itut ional considerat ions. For example, leading and compet ing
vendors are, in fact , observing the open standards. I t seems highly
likely that XML Web serv ices will revolut ionize how com puters from
different vendors using different operat ing system s work together.
This enhanced interoperabilit y, in turn, prom ises to vast ly expand
the number of software opt ions available for perform ing typical
computer-based tasks, such as custom er resource management.
Because XML Web serv ices are so easy to implement with Visual
Studio .NET and SQL Server 2000, your personal opportunit ies
should advance substant ially as you increase your understanding of
this emerging technology.
Building a Web service is a m ult iple-step process that rests on a
var iety of technologies, such as those discussed in Chapter 8.
Happily, the Visual Studio .NET interface shelters developers from
many of the details of UDDI , WSDL, and SOAP that implem ent the
plum bing for XML Web services. Visual Studio .NET provides
graphical tools for handling som e of the details from which it
doesn’t fully shelter you. A Visual Studio .NET developer can star t
building a Web serv ices solut ion as simply as select ing the ASP.NET
Web Service template when creat ing a project . You choose this
template from the New Project dialog box in the same way that this
book previously descr ibed select ing a template for a Windows
applicat ion or an ASP.NET Web applicat ion. Because Visual Studio
.NET facilitates building Web services solut ions based on ASP.NET,
the New Project dialog will at tempt to set up a project on a Web

server, such as your localhost . For this at tempt to succeed, your
workstat ion m ust have access to a Web server with the .NET
Framework— and your account m ust have author ing perm ission on
the Web server. The Web serv ice applicat ion will have a default
name, such as Serv ice1.asmx. Although Visual Studio .NET uses
ASP.NET to build a new Web service, the extension .asmx especially
marks the project as a Web service applicat ion.
You can implement a Web serv ice with a class object (although
there are other legit imate implementat ions) . Within the class, you
can select ively expose some methods. These exposed m ethods are
called Web methods. Those m ethods that you expose are the ones
that clients of the Web service can invoke remotely. By thinking of
the Web service as an object , you can think of Web methods as the
methods of the object . These exposed methods can return a value
or a collect ion of values.
The whole idea behind a Web serv ice is that another applicat ion
exists that can invoke or consum e the Web methods exposed by the
Web service. This applicat ion can be any client applicat ion that can
connect to and invoke the Web serv ice, such as a browser, a
Windows applicat ion, or another Web serv ice. This client applicat ion
can be loosely coupled to the Web service. I n other words, the
client can have a connect ion to the Web service that isn’t persistent .
In addit ion, the com puters running the client and Web service
applicat ions can be running different operat ing systems (for
example, Windows and UNIX) .
Client applicat ions m ust be able to learn about the availabilit y of
Web services from vendors before using them. I n other words, they
need a way to look up available serv ices. This directory funct ion for
XML Web serv ices is the role of UDDI (Universal Descript ion,
Discovery, and Integrat ion) . You can think of it as a yellow page
directory of XML Web services. One route for register ing and looking
up Web serv ices is ht tp: / / www.uddi.org. The UDDI site also
provides general support features for the UDDI technology, such as
a list ing of companies support ing the technologies. As I write this,
more than 200 companies have agreed to support the UDDI
technology, including Microsoft , IBM, Sun Microsystems, SAP,
Compaq, and Dell.
After surveying a list of prospect ive vendors with XML Web services
of the type you seek, you’ll likely select one for m ore due diligence.
For example, you’ll want to learn about the specific inputs and
outputs associated with a Web service. WSDL (Web serv ices
Descript ion Language) is an XML-based language for descr ibing the
inputs to and outputs from a Web service. The client for a Web
serv ice actually interacts with a local proxy for a Web serv ice. WSDL
can represent the remote Web service through the local proxy. For
typical applicat ions, you don’t have to generate the WSDL. This is

because Visual Studio .NET generates the WSDL code automat ically .
However, because WSDL is XML, you can read it .

Typical XML W eb Service Applicat ions

I n this sect ion, I speculate about what m ight be som e typical Web
serv ice applicat ions. I explicit ly use the term speculate because the
technology and its pract ical applicat ion are st ill in their infancy.
Therefore, you can use this book to build the next (maybe the first)
“killer” Web service. Even if I only get you star ted on the way to
this goal, I will consider this chapter a success. Another outcome for
the chapter is to acquaint you with the k inds of inputs and outputs
that you can expect to use with Web serv ices.
A Web service can typically do one of three possible tasks.

• Perform a calculat ion. For example, a Web serv ice can
amort ize a loan or perform advanced stat ist ical or financial
computat ions. As with any Web service, the important point
will be to supply a resource not easily or cost -effect ively
duplicated or one with wide appeal.

• Look up a result or several results. You m ight develop a
Web service to generate local taxes in different jur isdict ions
given the postal code of a buyer. Essent ially, this is a lookup
operat ion based on the taxing authorit ies for a postal code.
Many small or medium-size businesses may find it more cost
effect ive to pay a small monthly prem ium for accessing this
tax data automat ically than maintain it accurately for their
individual operat ions.

• Execute an operat ion, such as a database insert , delete, or
update operat ion. For example, many small businesses seek a
cost-effect ive solut ion for adjust ing inventory when logging a
new order. The new order can lead to one or more inserts in
two or more tables. The adjustment to inventory can be a
change, specifically a reduct ion, to the current units on hand
for a product .

Web services can exchange data between a client applicat ion and
Web service applicat ion v ia XML docum ents. Because the layout of
XML format ted data is so flexible (recall that you can have any tags
you want) , you can adapt XML Web services for working with m any
different types of business data. For exam ple, suppliers can query
manufacturers for the specifics of work orders, including a
shipment ’s quant ity and due date. Because XML Web services are
accessible from browsers, field employees can enter the t ime and
mater ial charges associated with client v isits without returning to
the head offices. Concurrent ly , clients can look up their charges
based on visits from field representat ives. By securing access to
records based on SQL Server or Windows security, a Web service

can restr ict access to charges for the appropriate client . Other
candidates for Web services solut ions include rem ote access and
updat ing of customer resource management system s and order
processing from order entry through shipping, order status reports
to custom ers, and billing.

W eb Services from Visual Studio .NET

A Web service applicat ion built from the ASP.NET Web Service
template is a class with a special at t r ibute, namely the WebService
at t r ibute. You don’t have to manually add the at t r ibute that declares
the class a Web service, but you will typically want to edit a default
at t r ibute set t ing. The at t r ibute automat ically assigns a nam espace
(nam ely, ht tp: / / tempuri.org) for the class implement ing a Web
serv ice. Microsoft st rongly recomm ends that you change the default
namespace name because clients require unique namespaces for
the Web services that they reference. The WebService at t r ibute for
a class also enables you to assign a name to the Web serv ice.

Note

You will be prompted for your user credent ials as you
at tempt to create a new Web service on a Web server; your
credent ials m ust enable author ing on the server. The
security for creat ing or loading a Web serv ice applicat ion is
more st r ingent than for a standard ASP.NET applicat ion. For
example, I found no difficulty creat ing or loading regular
ASP.NET applicat ions using a free Web site host ing account .
However, I wasn’t able to load an applicat ion based on the
ASP.NET Web Service template. I suspect that in t ime some
fee-based Internet service providers will star t support ing the
creat ion and edit ing of hosted Web services.
Within a Web service applicat ion, you’ll need to designate a
WebMethod at t r ibute for one or more public funct ion procedures
within a Web service. Only funct ion procedures with a WebMethod
at t r ibute are visible to client applicat ions. The method at t r ibute
offers six propert ies. For example, samples in this chapter will
demonstrate the use of the Descript ion property. This property
enables you to assign an extended label to a Web method that may
be longer than you prefer for a funct ion procedure’s name. See the
“Using the WebMethod At t r ibute” topic in the Visual Studio .NET
Help files for a list ing of all six propert ies along with brief
summaries and sam ples illust rat ing the syntax for cont rolling
property values.
After developing an init ial draft of a Web serv ice applicat ion, you
may want to test or debug your applicat ion. One advantage of using
the ASP.NET Web Service template is that it offers a built - in
inter face for test ing a Web service applicat ion. Figure 13-1 shows

the test interface for the init ial sample in this chapter. The following
note br iefly discusses how to open the interface.

Note

You can open the interface for test ing your applicat ion by
r ight- click ing the .asmx file for your Web serv ice in Solut ion
Explorer. Select Build And Browse from the context menu to
launch the inter face. The Build And Browse com mand
compiles the applicat ion, including any changes since the last
compile, and opens a new browser window within Visual
Studio .NET.

Figure 1 3 -1 . The default test in terface for a W eb service exposes links for
launching the W eb m ethods.

I will discuss the design of the sample later. For the moment, let ’s
focus on relat ing Web serv ice design elements to the test ing
inter face. The filenam e for the .asmx file appears along the top of
the test ing Web page. Unless you change the default filename, it
will be Service1.asmx. The Web service descr ipt ion that you specify
with the WebServ ice at t r ibute (“An Nth Root Computer Service.”)
appears below the filename for the .asm x file. I f you like, you can
exam ine the .wsdl file formally describing the Web serv ice
applicat ion by clicking the Service Descript ion link that appears in
the sentence below your personal descript ion for the Web service.
The m ain advantage of the test interface is a bulleted list of links for
the Web methods within the Web serv ice. You can invoke a Web
method by clicking the link with the funct ion’s name for
implement ing the m ethod. An exam ple is the NthRoot link in Figure
13-1. Immediately below the link for a Web method is the
Descript ion property that you assign with the WebMethod at t r ibute:
“Computes Nth Root” in the figure. This space is blank if you don’t
use the WebMethod at t r ibute to assign a st r ing to a Web method’s
Descript ion property . By repeatedly invoking Web methods, you can
use t radit ional techniques for debugging and refining their operat ion
unt il t he m ethods m eet your requirem ents.
After you’ve created a Web service applicat ion, your next step in
creat ing a Web service solut ion will be to create a Web service client

applicat ion. The client applicat ion needs a Web reference that points
to the Web service applicat ion and a proxy variable that instant iates
the Web reference within a client applicat ion. The client applicat ion
can be a Windows applicat ion or any other type of applicat ion that
can link to the Web service.
Visual Studio .NET offers tools to simplify the creat ion of a Web
reference. Choose Add Web Reference from the Project m enu to
open a dialog box for select ing an exist ing Web service. I ’ ll describe
the detailed steps for adding a Web reference later. The important
point to recognize is that you can use the menu command to create
a Web reference. The Web reference within a client applicat ion
includes informat ion for discover ing the locat ion of a Web service as
well as its inputs and outputs. Within the Code Editor for your client
applicat ion, you can declare and instant iate a proxy object for your
Web service. This local proxy object points to the Web service
through the Web reference. After instant iat ing a proxy var iable, you
can use it to pass inputs and gather return values from a Web
serv ice. You can use t radit ional techniques to test and refine the
operat ion of your client applicat ion unt il it meets your requirements.
This capabilit y exists because you can build the client applicat ion
with standard Visual Basic .NET code.
You typically won’t work with the test implem entat ion of your Web
serv ice. I nstead, you’ll deploy the Web service to a vir tual directory
on an I IS server. I ’ ll cover the detailed steps for deploy ing a Web
serv ice in the discussion of the f irst sam ple. The object ive of this
rev iew of Web serv ices is to acquaint you with the broad out line for
creat ing solut ions based on Web services.

W eb Services from the W eb Services Toolkit

With the SQL Server 2000 Web Services Toolkit , developers can
base Web services on stored procedures and user-defined funct ions,
such as those discussed in Chapter 4 and Chapter 5, as well as
templates, such as those reviewed in Chapter 6. This technology
makes it relat ively easy for database adm inist rators and developers
who are conversant with T-SQL to build Web services solut ions on
SQL Server databases. See Chapter 12 for more detail on Web
Release 3 and its associat ion with the Web Services Toolk it . The
URL for downloading the toolkit along with Web Release 3 is:
ht tp: / / msdn.m icrosoft .com / downloads/ default .asp?url= / downloads/
sample.asp?ur l= / MSDN-
FILES/ 027/ 001/ 872/ msdncompositedoc.xm l&frame= t rue
The Web Services Toolkit relies on the setup and configurat ion of an
I IS v ir tual directory to deliver Web services. You can follow the
general guidelines for Web Release 2 when set t ing up an I IS for
Web Release 3, but add some necessary ext ra steps if you plan to
use the directory to deliver Web services from a SQL Server 2000

instance. Of course, one key dist inct ion in the setup of a vir tual
directory is that you m ust use Web Release 3, but both release 2
and release 3 share a generally sim ilar Vir tual Directory
Management ut ilit y. See Chapter 6 for a summary of the steps
necessary for a standard setup of an I IS v ir tual directory with Web
Release 2. The same general techniques apply to Web Release 3. I n
addit ion, this chapter includes a specific set of inst ruct ions for
creat ing a v ir tual directory that hosts a Web serv ice.

Note

A note in Chapter 12 offers instruct ions for upgrading a
vir tual directory created with Web Release 1 or Web Release
2 for use with Web Release 3.
A Web Release 3 vir tual directory offers a new type of object . The
type’s name is soap. You init iate the creat ion of a soap object type
by select ing it from the Type drop-down box on the Virtual Names
tab of the Vir tual Directory Management ut ilit y. You can assign the
soap object any name you want in the Nam e box, but you m ust set
the Path box to the path for your v ir tual directory on the Web
server. After these select ions, clicking Configure will enable you to
specify the Web service that you will offer from the vir tual directory.
However, before configuring a soap object , you may need to add
database objects to the database to which a vir tual directory points
or templates direct ly to the vir tual directory or one of its folders.
Clicking Configure on the Virtual Names tab in the Virtual Directory
Management ut ilit y opens the Soap Virtual Nam e Configurat ion
dialog box. With this dialog box, you can specify a new Web service
and edit an exist ing Web serv ice associated with a vir tual directory.
As indicated previously, you can select from among stored
procedures, user-defined funct ions, and templates as resources for
the Web service. There are three routes for returning data from the
Web service for a vir tual directory. First , you can return data as an
XML document fragment through an XMLElem ent object . When you
use this route, it ’s up to the client applicat ion to process the XML
data. Second, if your source returns two or more result sets or you
want to explicit ly catch returned errors along with result sets, you
can specify a DataSet objects array as the return route. Each result
set occupies a different returned object in the array. I t ’s the client
applicat ion’s job to dist inguish between DataSet and SqlMessage
objects. The third route for returning data with the Web Services
Toolkit is as a single data set . This route works well when you
explicit ly decline to accept error messages from SQL Server as
SqlMessage objects.

Note

When work ing with database objects, namely, stored

procedures and user-defined funct ions, it ’s imperat ive that
the account you specify on the Secur ity tab of the Virtual
Directory Management ut ility have proper perm ission to work
with the object . For example, if your Web serv ice relies on a
stored procedure, the login account for the vir tual directory
must have EXEC perm ission for the stored procedure.
There are two styles for row format t ing the values returned. By
select ing Raw in the Row Formatt ing group in the Soap Virtual
Nam e Configurat ion dialog box, you specify that XML format t ing be
performed on the database server. The second Row Formatt ing
opt ion— Nested— offloads the XML format t ing of data from the
database server to the Web server host ing the vir tual directory. This
select ion can improve the database processing capabilit y of a SQL
Server instance by relieving the database server from perform ing
nondatabase funct ions, such as format t ing a result set with XML
tags.

A W eb Service to Return a Com puted Result

This sect ion dem onst rates how to build a Web service to return a
computed result with Visual Studio .NET. The main point of
present ing the sam ple is to illust rate the process for creat ing and
deploy ing a Web service. The part icular computat ion performed by
the Web service is of interest only because it allows a rev iew of
syntax issues for passing values to and returning a value from a
Web service. I n addit ion, the sect ion headings within this sect ion
ident ify the major tasks in creat ing a solut ion.
One part icular ly interest ing conclusion that you can der ive from this
sample is that Web serv ices breathe new life into desktop Windows
applicat ions. This is because Windows applicat ions can serve as
clients to Web serv ices. Because Web serv ices can run anywhere on
the Web and on m ult iple com put ing plat forms, the Web services
paradigm stretches the capabilit ies of Windows applicat ions
accordingly.

Start ing to Build a W eb Service Applicat ion

You can prepare a Web service applicat ion to accept Visual Basic
code with three steps in Visual Studio .NET. The code does the work
for the service, but the plumbing around the code makes your
applicat ion accessible over the Web, enables clients to discover your
Web service, and allows your Web service to return values to clients
in XML format. The three steps set up the plumbing into which you
can insert the code for your applicat ion.

You can launch a Web serv ice from the Visual Studio .NET Start
Page. Click New Project . Then, in the New Project dialog box, select
the ASP.NET Web Service template. When you do this, Visual Studio
.NET automat ically prepares to save a new project with the name
WebService1. Click OK to complete the first step. Visual Studio will
actually set up two folders for your applicat ion. One of these folders
will reside in the wwwroot folder of the I netpub directory for your
local computer. This folder contains your applicat ion’s code and
related software. You can overr ide both the dest inat ion and the
name for the folder. For example, Figure 13-2 shows the sample for
this sect ion with a new name besides WebService1—namely,
TestNthRootService. Visual Studio also creates a second folder with
the same name in it s default locat ion for saving Visual Studio .NET
projects. This folder contains the .sln file for start ing the project for
the Web service from within Visual Studio .NET. When you click OK
in the New Project dialog box, you conclude the first step.

Figure 1 3 - 2 . The New Project dialog box for start ing a W eb service
nam ed TestNthRoot Service.

Before opening your project , Visual Studio .NET may display the
Enter Network Password dialog box, in which you ver ify your
network credent ials to confirm your abilit y to author content on the
Web server. Therefore, when you’re author ing a Web serv ice, it ’s
important to select a Windows login account with proper perm ission
for authoring a Web site. Windows logins that belong to the VS
Developers group can author Web sites on a com puter. Assigning
the lowest level of perm ission to perform a task that a login account
requires helps to maintain the security on a Web server. Therefore,
assigning a login to the VS Developers group is preferable to

assigning a login to the Administ rators group when a user only
needs to author Web sites. Complet ing the Enter Network Password
dialog box concludes the second step for star t ing a new Web
serv ice.

Note

Windows 2000 offers a GUI (graphical user interface) for
assigning Windows login accounts to Windows groups. From
the Windows Start menu, choose Programs, then
Administ rat ive Tools, and then Computer Management . In
the left pane of the Com puter Management window, expand
the sect ion for Local Users And Groups and select the Users
folder to view indiv idual Windows login accounts. Then click
the Help icon on the m enu bar. I t includes detailed
inst ruct ions for typical tasks, such as m odify ing the groups to
which an exist ing login account belongs and adding a new
login account .
The third step is to open the Code Editor for your Web service. The
project opens to the Serv ice1.asm x.vb[Design] window. In general,
your Web serv ices won’t have a user design because they are
meant for a programm ing interface as opposed to a user inter face.
Therefore, you can leave the Design window blank. Right -click
anywhere in the Design window, and choose View Code to open the
Code Editor.
You need to edit the template-supplied star ter design in the Code
Editor and add your code so that the serv ice does what you want it
to do. Figure 13-3 shows the Code Editor before any edit ing. The
star ter design includes some commented code for building a Hello
World sample. The Im ports statement at the top of the Code Editor
allows the code in the window to use item s from the
System.Web.Serv ices namespace without including the namespace
name as a prefix before each item. Not ice that the project is a class
whose name is Service1 . After we edit the design and add code,
users can invoke the service by referencing from a browser
Serv ice1.asmx in the TestNthRootServ ice folder on the localhost
Web server. From the Window’s t it le bar in Figure 13-3, you can tell
that the name of the project is TestNthRootServ ice. I n Solut ion
Explorer, you can assign a new name to the Service1.asm x file that
reflects the specific task your service perform s. You can achieve this
by r ight -clicking the Service1.asmx item in Solut ion Explorer and
choosing Rename.

Figure 1 3 -3 . The starter design in the Code Editor for a new W eb service.
Edit this design to configure and code your W eb service.

Configuring and Coding Your W eb Service Applicat ion

The following code list ing shows an adaptat ion of the Visual Studio
.NET star ter design for a Web services applicat ion. The configurat ion
of the starter design includes two at t r ibutes— one named
WebService and another named WebMethod. The WebServ ice
at t r ibute m arks the Service1 class as a Web service. Not ice the use
of the cont inuat ion line marker at the end of the at t r ibute. This t ies
the at t r ibute to the Service1 class declarat ion. The at t r ibute
performs two funct ions through its property set t ings. First the
Nam espace set t ing designates a nam espace for the serv ice. Recall
that you need to make the nam espace for each Web serv ice unique.
That ’s why you change the default nam espace set t ing
(ht tp: / / tem puri.org) that appears in Figure 13-3. Second the
Descript ion set t ing assigns an inform al name for the Web serv ice
when you are running it in its test inter face. This name appears just
below Service1 in Figure 13-1. The WebMethod at t r ibute applies to
the NthRoot funct ion procedure, which implements the NthRoot
method for the class. This second at t r ibute has a single property
set t ing that assigns an informal descr ipt ion to the method. This
descript ion appears as well (just below the method name) in the
test interface for the Web service.
The Web service in the following sample computes the nth root for a
number. For example, the square root of 9 is 3, and the sixth root
of 64 is 2. The NthRoot funct ion takes two arguments: one for the
number, such as 9 or 64, and a second for the root , such as 2 for

the square root or 6 for the sixth root . The computat ion involves
taking the log of a number to base 10 and then dividing the log
value by the root . The quot ient of the div ision serves as the
exponent for 10, which evaluates to the nth root for a num ber. The
NthRoot procedure passes this value back to the client for the Web
serv ice with a Return statement .
Imports System.Web.Services
’Mark a class with the WebService element to
’declare a Web service; Service1 is default name.
<WebService(Namespace:="http://MyService/XmlWebServices/"
, _
 Description:="An Nth Root Computer Service.")> _
 Public Class Service1
 Inherits System.Web.Services.WebService

’Web Services Designer Generated Code

 ’Mark the function as a Web method.
 <WebMethod(Description:="Computes Nth Root")> _
 Public Function NthRoot(ByVal anumber As Double, _
 ByVal aroot As Double) As Double

 ’Compute and return nth root of a number as the
 ’antilog of the log of the number (anumber)
 ’divided by the root (aroot).
 Dim logvalue As Double = (Math.Log10(anumber))
 Return (10 ^ (logvalue / aroot))

 End Function

End Class

Test ing a W eb Service

When you build a Web serv ice with Visual Studio .NET, you can test
it even before you build a client for the Web service. This is
advantageous because it allows you to refine the logic of your
applicat ion and enables you to make sure that your applicat ion
works as expected.
To test a Web serv ice applicat ion from Visual Studio .NET, r ight-
click the page for the Web service in Solut ion Explorer and choose
Build And Browse. This opens a window like the one in Figure 13-1.
To test a specific m ethod, click the link for the m ethod, such as
NthRoot . This opens a new window on the tab labeled Browse -
Serv ice1 Web Service for the sample applicat ion (as shown at the
top of Figure 13-4) . Two text boxes allow you to specify the
arguments for the NthRoot funct ion procedure. Clicking Invoke
launches the Web serv ice and collects a return value from the

funct ion. The return value appears as a tagged value in an XML
document , as shown at the bot tom of Figure 13-4. When you build
a client applicat ion for a Web serv ice, the client applicat ion must
pass the arguments programmat ically and ext ract the return value
from the XML document that the Web serv ice sends back to the
client .

Figure 1 3 - 4 . The test interface for the NthRoot W eb m ethod of the
Service1 W eb service appears at the top. The XML docum ent w ith the

result for a test appears at the bot tom .

Building a Client Applicat ion for a W eb Service

After you refine your Web service, you will want to develop a client
applicat ion for it . Although the Web service is a Web applicat ion, its
clients can be a Windows applicat ion or an ASP.NET Web applicat ion
or even a mobile applicat ion, such as one that runs on a personal
digital assistant . All the clients in this chapter are part of a Windows
applicat ion project named XMLWebServiceClients, which is included
in this book’s sample files. Each form in this applicat ion will
demonstrate different client applicat ion features.
Before you can use a client applicat ion with a Web service, the
client applicat ion m ust include a Web reference point ing to the Web
serv ice. Then the code for your client applicat ion can create a proxy

var iable for the Web reference. The variable exposes the Web
methods from the Web service for use in the client applicat ion.
You can add a Web reference to a project through the Project menu
in Visual Studio .NET. Choose Project , and then choose Add Web
Reference to open the dual-paned Add Web Reference dialog box.
With this dialog, you can use any of several different techniques for
denot ing a reference to a Web server. I f you are building a client for
a Web serv ice on your local Web server, click the Web References
On Local Web Server link at the bot tom of the left pane. This
populates the r ight pane with a list of potent ial links from which you
can pick to add a Web reference. The links appear in alphabet ical
order. For those of you who completed the steps as described to
this point , you should discover the following link:
ht tp: / / localhost / TestNthRootService/ TestNthRootServ ice.vsdisco
Visual Studio autom at ically creates the .vdisco file for your Web
serv ice. This file facilitates dynamic discovery of a Web service on a
Web server. This style of discovery is appropriate for test ing and
evaluat ion purposes on a development computer. However, when
you deploy a Web serv ice for product ion purposes, you will want to
use stat ionary discovery techniques for a Web service based on a
.disco file. I ’ ll discuss stat ionary discovery and .disco files in the
next sect ion.
Clicking the preceding link point ing to the .vdisco file changes the
display in the Add Web Reference dialog box. (See Figure 13-5,
which shows the dialog box after a select ion descr ibed on the next
page.) The r ight pane shows the URL for the Web reference above
links for get t ing more inform at ion about the Web service. Not ice
that the URL points to the Web serv ice
(ht tp: / / localhost / TestNthRootService/ Service1.asmx) with the
t railing parameter wsdl after a quest ion mark (?) . Recall t hat wsdl
denotes the Web Serv ice Descript ion Language. Click ing the View
Cont ract link in the r ight pane displays the XML in the .wsdl file for
the Web service in the left pane. This file denotes the namespace
for the Web service along with the inputs and outputs from the Web
methods for the Web serv ice. Clicking the View Documentat ion link
shows the test inter face in the left pane. (This is the view of the
Add Web Reference dialog box that appears in Figure 13-5.) Clicking
Add Reference at the bot tom of the dialog box adds a Web
reference for the Web service to the client applicat ion project . This
Web reference appears in Solut ion Explorer under a Web References
heading. A client applicat ion can have mult iple Web references to
different Web serv ices. Within any Web reference are files, such as
the .wsdl file for the Web service. You can use the .wsdl f ile to
rem ind yourself or learn init ially to which Web service a Web
reference points.
A client applicat ion can reasonably offer a user inter face, such as a
form for users to m anipulate. For example, the client for the

TestNthRootService is Form1 in the XMLWebServ iceClients project
(see Figure 13-6) . The form includes three text boxes and a but ton
(But ton1) ; a label control helps ident ify the role of each text box,
and the Text property set t ing for But ton1 denotes its purpose. The
names for the text boxes from top to bot tom on the form are
TextBox1, TextBox2, and TextBox3.

Figure 1 3 -5 . The Add W eb Reference dialog box after the select ion of the
View Docum entat ion link for the Service1 W eb service in the

TestNthRootService project . Clicking Add Reference adds a W eb
reference to the project for the Service1 W eb service.

Figure 1 3 - 6 . The form for the client applicat ion of the Service1 W eb
service in the TestNt hRootService folder show s the cube root for 2 7 is 3 .

After designing the form for a client applicat ion that offers user
interact ion, you can design the code behind the form . The following
code list ing shows the Click event procedure for Button1 in Form 1.
The Dim statement above the procedure creates a variable (xws1)
for a proxy that points to the Serv ice1 Web service for comput ing
the nth root of a number. Visual Studio lets you specify the Web
reference with I ntelliSense so that you don’t actually have to type
the specificat ion for it . The proxy var iable lets you refer to the
rem ote Web serv ice. For example, typing xws1 followed by a period
lets you select NthRoot . I nsert ing the open parentheses sign (
prompts for the anumber and aroot arguments for the Web serv ice.

Note

Remem ber that it isn’t necessary for a client applicat ion to
offer user interact ion. For exam ple, a Web service for
perform ing currency conversions can accept input from a
database and return values for insert ion in a database; users
need not interact in the process except perhaps to launch a
series of conversions. You can even base the launch on a
t imer, completely elim inat ing the need for user interact ion.
The var iable for the Web reference makes it appear as if the
procedure were in the current applicat ion instead of another one—
namely, the Serv ice1.asmx file in the TestNthRootServ ice folder of
the wwwroot subdirectory of the I netpub folder. Because the
NthRoot funct ion expects arguments with a double data type for
anum ber and aroot , the procedure converts the values in TextBox1
and TextBox2 with the CDbl funct ion before subm it t ing them as
arguments for the NthRoot Web method. The return value from the
NthRoot Web method is a double. Therefore, the procedure converts
the value to a st r ing data type before assigning it to TextBox3.

’Use the Service1 Web service in the TestNthRootService f
older.
Dim xws1 As New XMLWebServiceClients.localhost.Service1()

Private Sub Button1_Click(ByVal sender As System.Object,
_
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim anumber As Double = CDbl(TextBox1.Text)
 Dim aroot As Double = CDbl(TextBox2.Text)
 Dim myroot As Double = xws1.NthRoot(anumber, aroot)

 TextBox3.Text = myroot.ToString

End Sub

Deploying and Discovering a W eb Service

There are a couple of ways to deploy a Web serv ice to a Web
server. The scenario that I describe assumes that you build and test
a Web serv ice on the localhost and deploy on a Web server running
FrontPage. You m ight want to deploy the Web service on another
Web server to which the comm unity of users has bet ter access;
make sure the Web server to which you deploy a Web serv ice has
the .NET Framework installed. The deployment m odel copies a
subset of the files from one Web server to another. I n part icular,
deployment copies a .dll f ile that includes a compiled version of the
serv ice— for example, Service1.asmx.vb— and any related modules
that your applicat ion m ight use in the project for the Web serv ice.
When you specify a target Web server and v ir tual directory on the
Web server, Visual Studio .NET will automat ically copy files to the
target Web server. However, you will also have to add a .disco file
so that you can create a Web reference for the deployed solut ion.
This sect ion holds your hand through both of these processes.
Before copying your files for a Web service to another server, you
should compile your solut ion and make sure it contains no compile
bugs. You can use the Build Solut ion m enu item on the Build menu
to accomplish this. With your Web service project open in Visual
Studio, choose Copy Project from the Project m enu. Change the
name of the dest inat ion folder as you see fit . For example, if the
path init ially reads
ht tp: / / localhost / TestNthRootService
you can change it t o
ht tp: / / myproduct ionserver/ DeployedNthRootServ ice
I n the Copy Project dialog box, select FrontPage in the Web Access
Method group. I n the Copy group, select Only Files Needed To Run
This Applicat ion. Then click OK. This copies all the f iles you need to

the FrontPage Web site except for one— the .disco file that allows
the easy discovery of the Web service.
Recall that the TestNthRootServ ice folder doesn’t contain a
Serv ice1.disco file, but it contains a Serv ice1.vdisco file. Both files
facilitate discovery, but the .vdisco file format is meant only for
test ing. Other folders will have bet ter secur ity if you use .disco files
instead of .vdisco files to mark a folder as containing a product ion
Web service ready for discovery. Happily, you can automat ically
write to a browser window the .disco file that you need. I f you’re
work ing with the deployment folder descr ibed above, enter the
following st r ing in the address box of your browser:
ht tp: / / localhost / DeployedNthRootService/ Service1.asmx?disco
The preceding sample shows the Web service solut ion deployed to
the same local Web server as the original, but it does specify a new
folder. This new folder can have perm issions for access by more
users than the init ial folder. In any event , the Web server to which
you deploy the solut ion m ust have the .NET Framework installed.
Not ice that after the URL for the deployed Web service solut ion
there is a quest ion mark (?) followed by the word disco. These two
items following the URL cause the Web server to return the text for
the Serv ice1.disco file in a browser window. (See Figure 13-7.)

Figure 1 3 - 7 . This brow ser w indow show s an autom at ically w rit ten .disco
file for the Service1 W eb service in the DeployedNthRootService virtual

directory on the local W eb server .

After the .NET Fram ework has wr it ten the .disco file to the browser,
copy the contents from the browser’s window to your favorite text
editor. Remove the leading dash (-) from the < discovery> tag.
Then save the file in the folder for the deployed Web service, which
is c: \ inetpub\ wwwroot \ DeployedNthRootServ ice in the

demonstrat ion sam ple. Use a filename that matches the name of
the .asmx file— nam ely, Service1.disco in our sample.
Now that you have a .disco file, you need to add a Web reference
that points to the deployed solut ion and edit your client solut ion (or
just dist r ibute a new one) so that it uses a proxy for the deployed
solut ion as opposed to the original test solut ion. With the
XMLWebServiceClients project open in Visual Studio .NET, you can
create a Web reference for the deployed solut ion by choosing Add
Web Reference from the Project menu. This opens the Add Web
Reference dialog box. Then, if your deployed solut ion is on the local
server, click the Web References On Local Web Server link in the
left pane. Next scroll down through the Available References list in
the r ight pane unt il you find the .disco file that you saved for the
deployed solut ion. Figure 13-8 shows the Add Web Reference dialog
box with the cursor rest ing on the saved .disco file. You actually
create the reference by select ing the .disco file and then click ing
Add Reference at the bot tom of the dialog box. By the way, you can
also see the discovery file for the test solut ion toward the bot tom of
Figure 13-8; not ice that this discovery file has the .vdisco
extension.

Figure 1 3 - 8 . The Add W eb Reference dialog box just before the select ion
of the .disco file for the deployed solut ion.

Note

I f your solut ion isn’t on the local server, you can type the URL for

the deployed Web service’s .disco file, such as
ht tp: / / myproduct ionserver/ DeployedNthRootServ ice/ Service1.disco,
in the Address box of the Add Web Reference dialog. Through
UDDI , you’ll be able to navigate graphically to publicly available
Web services.
Finally you can com plete the deployed solut ion by changing the
proxy var iable, xws1, in the client applicat ion so that the variable
points to the newly added Web reference to the client solut ion. The
sample client applicat ion, XMLWebServiceClients, has the code
behind Form 1 modified to accomplish this. All you have to do is
comment out the Dim statement instant iat ing a Web reference for
the test solut ion (XMLWebServiceClients.localhost .Serv ice1) and
uncomm ent the Dim statement for the Web reference point ing to
the deployed solut ion (XMLWebServiceClients.localhost1.Service1) .
The following lines show how the module- level Dim statem ents
should look in the Form1 module for the deployed solut ion. This
adjustment to the module behind Form1 in the client applicat ion
completes the process of deploying the solut ion so that the client
applicat ion can access the deployed solut ion.
’Use the Service1 Web service in the TestNthRootService f
older.
’Dim xws1 As New XMLWebServiceClients.localhost.Service1(
)

’New proxy variable pointing at deployed Web service.
Dim xws1 As New XMLWebServiceClients.localhost1.Service1(
)

A W eb Service to Return Values from Tables

This sect ion dem onst rates how to return values from a table in a
database. The sample Web serv ice in this sect ion performs a row
count and returns the column values for the first column in any
database table on the local SQL Server instance. The client
applicat ion can specify both the database and table names to
determ ine the return values from Web methods. I n addit ion, the
sample client applicat ion allows users to select a specific row for
which to show a column value. This second level of select ion occurs
within the client applicat ion instead of forcing another call t o the
Web service. This sect ion doesn’t address deployment explicit ly
because the process is ident ical to that covered in the preceding
sect ion.

Count ing and Returning Row s from Any Table in Any
Database

The Web service for this sect ion sample works for any table in any
database on a database server. You need to specify two input
parameters to the Web serv ice. One is the database name. The
other is the nam e of a table within the database. The Web service
offers two Web methods. One method returns a count of the
number of rows in a table. The other method returns all the values
for the first column in the table.
The following list ing shows the module for the Web service; I
inserted a comment to indicate where the Web Serv ices Designer
Generated Code goes. The applicat ion exists in the TableProcessor
Web services project . I tested the applicat ion from Service1.asmx in
the TableProcessor folder of the wwwroot subdirectory within the
Inetpub directory on my local Web server. As with the preceding
sample, a second folder is available in the same place that my
system saves Visual Studio projects. This folder also has the name
TableProcessor, and it contains the TableProcessor.sln file for Visual
Studio to open the project . As you test this applicat ion, you will
need sim ilar project folders on your system.
The WebService at t r ibute for the class specifies
ht tp: / / MyService/ XmlWebServices/ as the namespace for the Web
serv ice. I f you have another Web service with the same namespace
that you are using concurrent ly , you need to rename the
namespace for one of these Web services. The informal descript ion
for the Web service is “A Table Processing Service.” Recall t hat this
name appears on the test inter face for the service. As a
consequence, the informal descript ion also appears in the .wsdl file
defining the Web service.
After the Service1 class declarat ion, the list ing declares a pair of
module- level var iables. The applicat ion uses module- level
declarat ions because these variables appear in two or more
procedures.
In one sense, the heart of the applicat ion is the set of the next two
funct ion procedures. Each of these procedures— RowCount and
ColumnValues—implements a Web m ethod named after the funct ion
procedure. A slight ly longer summary of each method’s purpose
appears in the Descript ion property for the WebMethod at t r ibute
associated with each funct ion procedure. As with the informal Web
serv ice, you can find the funct ion nam es and their informal
descript ions in the .wsdl file for the Web serv ice. The RowCount
procedure returns a single value just like the preceding sam ple,
except this one is based on a database. The ColumnValues
procedure returns a collect ion of values. This represents an
opportunity to parse the collect ion of values if you want to display
them individually or select a specific value from the collect ion. The
client applicat ion for this Web serv ice demonstrates one approach to
this task.

Both funct ion procedures implement ing Web methods are just shells
for the ReadRows sub procedure. The ReadRows procedure takes as
st r ing argum ents the database name and table name that it m ust
process. Then the procedure makes a connect ion to the database,
points a SqlDataReader object at the table, and passes through the
table’s rows to ext ract values from the first colum n and count the
number of rows. After going through all rows and storing the
colum n values in a local st r ing variable, the procedure inserts (to
clar ify the m eaning of the following data) a short st r ing constant at
the beginning of the st r ing variable containing column values. The
procedure concludes by closing both the SqlDataReader and
Connect ion objects.
Option Strict On
Imports System.Web.Services

<WebService(Namespace:="http://MyService/XmlWebServices/"
, _
 Description:="A Table Processing Service.")> _
 Public Class Service1
 Inherits System.Web.Services.WebService

’Web Services Designer Generated Code

’Declare module-level variables.
Dim strValues As String
Dim intCount As Integer

’Mark the function as a Web method.
<WebMethod(Description:="Return row count.")> _
Public Function RowCount(ByVal adbname As String, _
 ByVal atablename As String) As Integer

 ’Pass database and table names to ReadRows procedure.
 ReadRows(adbname, atablename)

 ’Return count of rows in table.
 Return intCount

End Function

’Mark the function as a Web method.
<WebMethod(Description:="Return column values.")> _
Public Function ColumnValues(ByVal adbname As String, _
 ByVal atablename As String) As String

 ’Pass database and table names to ReadRows procedure.
 ReadRows(adbname, atablename).

 ’Return values from first column in the table.
 Return strValues

End Function

Sub ReadRows(ByVal adbname As String, _
 ByVal atablename As String)

 ’Open a connection to the database named as
 ’an argument.
 Dim strSQL As String = "Data Source=(local);" & _
 "Integrated Security=SSPI;" & _
 "Initial Catalog=" & adbname
 Dim cnn1 As System.Data.SqlClient.SqlConnection = New
 _
 System.Data.SqlClient.SqlConnection(strSQL)
 cnn1.Open()

 ’Declare a command and assign a SQL string to it.
 Dim cmd1 As System.Data.SqlClient.SqlCommand = _
 cnn1.CreateCommand()
 cmd1.CommandText = _
 "SELECT * FROM " & atablename

 ’Declare a datareader and copy result set
 ’from cmd1 to drd1.
 Dim drd1 As System.Data.SqlClient.SqlDataReader = _
 cmd1.ExecuteReader()

 ’Copy and count values in first column.
 Do While drd1.Read()
 strValues = strValues & CStr(drd1.GetValue(0)) &
", "
 intCount += 1
 Loop
 strValues = "Values in column 1 are: " & strValues

 ’Close datareader and connection objects.
 drd1.Close()
 cnn1.Close()

End Sub

End Class

Test ing the W eb Service in the TableProcessor Folder

After building a Web service applicat ion, you can test it to make
sure it responds as ant icipated. To do this, compile your code and
perform prelim inary test ing with the .NET Framework built - in
test ing inter face. I n Solut ion Explorer , r ight -click Serv ice1.asmx.

Select Build And Browse. This presents a Web page within Visual
Studio with links to the Web methods within the Web serv ice.
Click the RowCount link on the Serv ice1 test screen. This opens
another dialog box with a pair of text boxes and a but ton. Enter
pubs as the database nam e in the adbname text box. Type stores in
the atablename text box. Then click I nvoke. This creates a new
page with XML returned by the Web serv ice. (I t is, after all, an XML
Web service.) I f you have pubs installed on your database server
and you didn’t edit the num ber of stores in the database, it will
return the integer value 6. (See Figure 13-9.) You can tell it ’s an
integer by the int tags around the num ber 6. This data type follows
from the code for the RowCount return value in the preceding
sect ion. I ts significance is that you must recognize the return value
as an integer in any client applicat ion that processes values
returned by the RowCount Web method.

Figure 1 3 - 9 . The XML returned by the Row Count W eb m ethod for the
W eb service in the TableProcessor folder w ith pubs as the database

nam e and stores as the table nam e.

I f you select the test screen for the RowCount Web method, you’ll
not ice that it st ill has pubs and stores for the database and table
name ent r ies. You can change either or both of these to return the
count of rows in another table. There are no special steps for
returning the row count for a table in another database. For
example, change the database and table names to Northwind and
Custom ers. Then click Invoke. Unless you added or deleted rows in
the Customers table for the Northwind database, the RowCount
Web method returns 91 as an integer value.
After verify ing the return value for the RowCount Web method for
the Customers table in the Northwind database, you can exam ine
the output for the colum n values from the Customers table. To do
this, first close the window returning the RowCount ; this displays
the form for the RowCount method. Second go back one screen (for
example, using the Web Navigate Back control on the Visual Studio
.NET Web toolbar) . Then click the Colum nValues link to display the
ent ry form for test ing the ColumnValues Web method. Type
Northwind and Customers in the blank adbname and atablename
text boxes. Then click I nvoke. This presents a comma-separated list
of CustomerI D values from the first column in the Custom ers table.
(See Figure 13-10.) The st r ing of CustomerID values star ts with the
st r ing ("Values in column 1 are: ") specified in the ReadRows
funct ion within the Service1.asmx file for the Web service.

Figure 1 3 -1 0 . The XML returned by the Colum nValues W eb m ethod for
the W eb service in the TableProcessor folder w ith Northw ind as the

database nam e and Custom ers as the table nam e.

Building a Client Applicat ion

Any one Web serv ice can work with mult iple different client
applicat ions. For example, just because the ColumnValues method
for Service1 in the TableProcessor folder returns all the values in
the first column of a table doesn’t mean that a client value has to
display all the returned values. The sample client applicat ion in this
sect ion prompts a user for which row they want from the column
and then returns that part icular row from the first colum n. On the
other hand, the client applicat ion does report the count of rows
within a table and returns it as an integer value— exact ly as
specified by the RowCount Web method.
Figure 13-11 shows the form for the client applicat ion. I n order to
run this applicat ion by start ing the XMLWebServiceClients project ,
make Form2 the star tup object . Recall from Chapter 9 that you can
do this in three steps. First r ight -click the project nam e in Solut ion
Explorer. Second select General from Common Propert ies in the
Property Pages dialog box. Third use the Startup object drop-down
box to select Form2 .
The client applicat ion displaying its inter face through Form2 has
four text boxes with corresponding labels and two but tons. Not all
text boxes appear at the same t ime. When the form init ially opens,
just the top two of the four text boxes are visible. After valid
database and table nam es are entered, a click of the Row Count
but ton returns the form with three text boxes. These are the init ial
two text boxes plus a new one showing the count of rows in the
table. Clicking the but ton labeled Get Column Value displays a
prompt asking the user which row to return from the table’s first
colum n values. The I nputBox funct ion that produces the prompt
returns the default value 1 if the user doesn’t specify a row. When

Form2 reappears after the user replies to the prompt , the form
shows the first two text boxes with their pr ior values as well as the
fourth text box for display ing a colum n value. The specific value in
the bot tom text box is the one matching row specified by the user’s
reply to the prompt.

Figure 1 3 - 1 1 . The client applicat ion form for the Service1 W eb service in
the TableProcessor folder .

The processing of the return values from the ColumnValues Web
method illust rates a typical scenar io. A developer engineers an
applicat ion so that it can accom modate any of several scenarios. For
example, a client applicat ion makes a select ion from the total set of
colum n values to show the colum n value for just one row instead of
the whole set of column values as in Figure 13-10. Figure 13-12
t racks the process from designat ing database and table names to
capturing the reply to the I nputBox prom pt to showing the specific
colum n value that a user wants to v iew. I n the top window, the user
designates that they want results from the Customers table in the
Northwind database before click ing the but ton labeled Get Column
Value. The m iddle window shows the user indicated that the
applicat ion should show the colum n value for the fift h row. By the
way, the prompt adjusts automat ically to show the m axim um
number of rows. The applicat ion does this by running the RowCount
Web method when processing a request to show a specific row
value from the first column. The bot tom window in the f igure
reveals BERGS as the column value for the fif th row in the first
colum n. You can easily confirm this outcome for yourself by
exam ining the output in Figure 13-10, which shows all the column
values for the first column in the Custom ers table from the
Northwind database.

Figure 1 3 - 1 2 . The client applicat ion for the Service1 W eb service in the
TableProcessor folder dem onst rat ing how it handles a request to show a
part icular colum n value from the first colum n of the Custom ers table in

the Northw ind database.

The following list ing shows the code behind Form2 that manages
the behavior of the client applicat ion for the Web service in the
TableProcessor folder. The list ing star ts with the instant iat ion of a

module- level var iable, xws1, for the proxy Web serv ice. Not ice how
Visual Basic .NET systemat ically names the second- level reference
in the proxy object . The proxy for the first Web service uses
localhost as its second name. The proxy for the deployed version
used localhost1 as its second name. This proxy variable, which is
the third one in the chapter, has localhost2 as it s second name. I n
all three cases, the first name for a proxy denotes the client
applicat ion’s project— namely, XMLWebServiceClients. Also, the
name for the proxy object in each case refers to the .asmx file in
the Web service, which has the name Service1 in all three
instances.
The body of the list ing includes three event procedures. One is a
form Load event procedure. This event procedure m erely readies
the init ial look of the form . I n part icular , it makes the third and
fourth text boxes, along with their matching labels, invisible. The
applicat ion also includes a Click event procedure for each but ton on
the form . These event procedures invoke the RowCount and
ColumnValues Web methods as well as processing their return
values. As you can see, the xws1 proxy variable appears in both
Click event procedures, which is why the list ing starts by
instant iat ing the variable at the module level.
The But ton1_Click event procedure invokes the RowCount Web
method and displays its result in TextBox3 . This procedure actually
star ts by making sure TextBox4 and its m atching label are invisible.
These two cont rols are for displaying a column value and labeling
the return value, but a click of the Row Count but ton (Button1)
doesn’t show any column values. Next the procedure copies the
Text property values of TextBox1 and TextBox2 to mem ory
var iables in the client applicat ion. These variables store the name of
the database and the table for the Web serv ice to exam ine. After
saving the local m emory variables, the procedure uses them as
arguments while invoking the RowCount Web method. The
arguments specify for which table in which database to return a row
count . The final group of lines in the event procedure makes the
text box and label (TextBox3 and Label3) for the row count value
visible on the form . The procedure’s final line passes the converted
value type of the return value from the RowCount Web method to
the Text property of TextBox3.
The Click event procedure for But ton2 is slight ly more sophist icated
than the one for But ton1 . There are three reasons for this. First , the
But ton2_Click event procedure invokes two Web methods instead of
one. Second, the Click event procedure for But ton2 presents a
prompt to gather user feedback. Third, the event procedure stores
the return value from the ColumnValues Web method as an array
and then uses the reply to the prompt to pick a value from the
array and display it on the form .

Like the event procedure for Button1, the But ton2_Click event
procedure starts by m aking a text box and label inv isible. I n this
case, the text box and label are for the RowCount Web method’s
return value, which a click to But ton2 doesn’t show. Just because
the procedure doesn’t direct ly show the return value from the
RowCount Web method doesn’t m ean the Web method is unused in
the procedure. On the cont rary, the RowCount Web method’s return
value is used early and often throughout the procedure. I n fact , the
next three lines save arguments for the Web method, invoke it , and
save the return value in a m emory variable, myRowCount . Next the
procedure prompts the user for which row in the first colum n to
show a column value. The procedure uses an I nputBox funct ion for
this with the default value 1.
After obtaining a reply to the I nputBox funct ion prompt , the
procedure concludes its data input phase from the user. All the data
it needs is in memory or available via a Web method call. Next the
procedure invokes the ColumnValues Web method and saves its
result as a st r ing. Then the procedure st r ips off the leading st r ing (
"Values in column 1 are: ") from the return value and saves
the result ing st r ing (st r1) . This leaves str1 with j ust the colum n
values from the table named in TextBox2.
Perhaps the most interest ing aspect of the procedure is the parsing
of str1 to ext ract indiv idual column values that go into cells in the
myVector array. The array is dimensioned based on the row count
from the table nam ed in TextBox2. This value is available v ia a
memory var iable (myRowCount) from the invocat ion of the
RowCount Web method. The procedure then opens a loop that
iterates through the column values in st r1. On each pass through
the loop, the code reads the first colum n value in st r1 , which is a
substr ing up to but not including the f irst comm a. I t then saves this
value in the f irst em pty cell in the myVector array and removes the
value, its t railing comma, and the blank space after the comma
from the st r1 var iable. Therefore, successive passes always have a
fresh value as the first column value in st r1. The procedure
concludes by m aking TextBox4 with it s matching label v isible and
by select ing a cell from the myVector array to show based on the
user’s response to the I nputBox funct ion prom pt.
’Use cabinc_NthRoot Web Service.
Dim xws1 As New XMLWebServiceClients.localhost2.Service1(
)

Private Sub Form2_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Hide RowCount text box and label.
 TextBox3.Visible = False
 Label3.Visible = False

 ’Hide ColumnValue text box and label.
 TextBox4.Visible = False
 Label4.Visible = False

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
_
 ByVal e As System.EventArgs) Handles Button1.Click

 ’Hide ColumnValue text box and label.
 Label4.Visible = False
 TextBox4.Visible = False

 ’Pass database name and table name from text boxes on
 ’the form to the RowCount Web method.
 Dim adbname As String = TextBox1.Text
 Dim atablename As String = TextBox2.Text
 Dim myRowCount As Integer = _
 xws1.RowCount(adbname, atablename)

 ’Make the RowCount label and text box visible
 ’before populating the text box with a value
 ’from the RowCount Web method.
 Label3.Visible = True
 TextBox3.Visible = True
 TextBox3.Text = myRowCount.ToString

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
_
 ByVal e As System.EventArgs) Handles Button2.Click

 ’Hide RowCount text box and label.
 Label3.Visible = False
 TextBox3.Visible = False

 ’Pass database name and table name from text boxes on
 ’the form to the RowCount Web method.
 Dim adbname As String = TextBox1.Text
 Dim atablename As String = TextBox2.Text
 Dim myRowCount As Integer = _
 xws1.RowCount(adbname, atablename)

 ’Print out the maximum number of rows as part of a pr
ompt
 ’for a selected row from a user.
 Dim strInputMsg = _
 "What row to max. of " & myRowCount.ToString & "?
"

 Dim intReturnedRow As Integer = _
 CInt(InputBox(strInputMsg, "", "1"))

 ’Pass database name and table name memory values to t
he
 ’ColumnValues Web method and strip off leading string
 ’for column values.
 Dim myColumnValues As String = _
 xws1.ColumnValues(adbname, atablename)
 Dim intToColon = InStr(myColumnValues, ":")
 Dim str1 = Mid(myColumnValues, intToColon + 2, _
 Len(myColumnValues))

 ’Dimension array and integer variable for loop.
 Dim myVector(myRowCount - 1) As String
 Dim intRow As Integer

 ’Pass string of column values to an array.
 For intRow = 0 To myRowCount - 1
 myVector(intRow) = _
 str1.substring(0, InStr(str1, ",") - 1)
 str1 = Mid(str1, InStr(str1, ",") + 2, Len(str1))
 Next

 ’Make ColumnValue label and text box visible before
 ’passing array value corresponding to user selection
in
 ’the text box.
 Label4.Visible = True
 TextBox4.Visible = True
 TextBox4.Text = myVector(intReturnedRow - 1)

End Sub

The SQL Server 2 0 0 0 W eb Services Toolk it

The Web Services Toolkit simplif ies the creat ion of Web serv ices
based on SQL Server 2000 database objects and templates in I IS
vir tual directories. Microsoft built on an ear lier approach for
delivering XML funct ionality from SQL Server with the Web Serv ices
Toolkit— namely, by extending the capabilit y of the I IS v ir tual
directory so that it can host a Web serv ice. The Web serv ice from
an I IS vir tual directory exposes indiv idual database objects and
templates as Web m ethods.
After the creat ion of a Web serv ice based on an I IS vir tual
directory, you st ill use the same basic approach demonst rated in
the preceding two sect ions for developing a client applicat ion for
your Web serv ice. This sect ion star ts by revealing how to design an

I IS v ir tual directory to offer a Web service. The design of the vir tual
directory specifies the Web serv ice based on a stored procedure.
The rev iew of a core client applicat ion and a simple extension of it
equip you with the skills to build your own solut ions for captur ing
XML fragments returned from Web methods based on database
objects and templates.

Script ing a SQL Server User for a Vir tual Directory

Although it isn’t essent ial to designate a SQL Server user when
specify ing an I IS vir tual directory, it can be useful— especially when
the vir tual directory hosts a Web service. Any Web service
emanat ing from an I I S v ir tual directory can have a potent ially large
number of users. By using a special SQL Server user, you can set
the perm issions for the special SQL Server user and be sure that
anyone who connects to the Web service will have perm ission to
perform the tasks enabled through the exposed Web methods. You
can also lim it the abilit y to perform tasks through the Web service
by lim it ing the permission for its special SQL Server user.

Note

The .NET Framework contains standard security convent ions,
including techniques for m anaging the use of encrypt ion that
your applicat ions m ay require for protect ing a user ’s ident ity,
managing data during t ransm ission, and authent icat ing data
from designated clients. See the “Cryptography Overv iew”
topic in the Visual Studio .NET docum entat ion for m ore detail
on this topic. This topic is a major sect ion within the
“Secur ity Applicat ions” topic, which you m ight also want to
rev iew.
The following T-SQL script is meant for you to run from Query
Analyzer for the SQL Server 2000 instance that you use for the
rem aining samples throughout this chapter. The scr ipt is available
among the book’s sample files as ScriptsFor13.sql. The sample is
built around the not ion that this is the local SQL Server 2000
instance. I f this isn’t the case, you’ll need to adjust the sample
accordingly. The script drops any pr ior SQL Server login for the
connected SQL Server instance and a prior user for the Northwind
database named vbdotnet1. I f you incur error messages because
the user doesn’t exist , simply ignore them because the purpose of
the scr ipt is to remove a login or user only if it does exist . After
making sure vbdotnet1 is free for assignment , the scr ipt adds a new
user named vbdotnet1 and grants access to the Northwind
database. Recall that the Northwind database is one of the SQL
Server sample databases. The database’s public role grants any
user access to m ost database objects that ship as part of the
database. For exam ple, vbdotnet1 has automat ic perm ission to run

all stored procedures, such as the Ten Most Expensive Products
stored procedure, which is one of the built - in user-defined stored
procedures for the database.
Not ice that this scr ipt uses “/ * ” to mark the beginning of the code
comment that st retches over mult iple lines, and “* / ” to end it .
/*Run from member of sysadmin fixed server role.
Ignore errors if user does not already exist.
*/

USE Northwind

EXEC sp_revokedbaccess ’vbdotnet1’
EXEC sp_droplogin @loginame = ’vbdotnet1’
GO

--Add vbdotnet1 user with known permissions.

EXEC sp_addlogin
 @loginame = ’vbdotnet1’,
 @passwd = ’passvbdotnet1’,
 @defdb = ’Northwind’
EXEC sp_grantdbaccess ’vbdotnet1’
GO

Building a W eb Service in an I I S Vir tual Directory

Now that we have a SQL Server user, we can proceed through the
steps for creat ing an I IS vir tual directory. This directory will contain
the cont ract for a Web serv ice. You can create a new I IS vir tual
directory by choosing Programs from the Windows Start menu, then
SQLXML 3.0, and then Configure I IS Support . This opens the I IS
Virtual Directory Management ut ilit y for SQLXML 3.0. I n order to
open the ut ility , you m ust , of course, have already installed Web
Release 3 (SQLXML 3.0) . See the “Web Serv ices from the Web
Serv ices Toolkit ” sect ion for a URL to download Web Release 3
along with the Web Services Toolkit .
With the I IS Virtual Directory Management ut ilit y open, expand the
folder for the local Web server. Then r ight- click Default Web Site
within the local Web server, choose New, and then choose Vir tual
Directory. This opens a mult i- tabbed dialog box that lets you set the
propert ies of a new virtual directory. You can use the New Vir tual
Directory Propert ies dialog box to create the v ir tual directory by
following these instruct ions:

1. On the General tab, name the directory Chapter13, and give
the vir tual directory the path c: \ inetpub\ wwwroot \ Chapter13.
You can type the path or use the Browse but ton to navigate to
the folder. Although the ut ilit y allows you to create a new

folder from within the ut ility , some may find it easier to create
the folder before opening the ut ilit y.

2. On the Security tab, select the SQL Server radio but ton. Then
enter vbdotnet1 in the User Name text box and
passvbdotnet1 in the Password text box. Confirm the
password before moving off the tab.

3. On the Data Source tab, accept the default set t ings of the
local SQL Server and default database for the current login.

4. On the Set t ings tab, leave Allow Template Queries selected
and also select Allow POST.

5. On the Vir tual Nam es tab, you set up the vir tual directory
through which you can deliver Web services. With < New
vir tual name> highlighted in the Defined Virtual Nam es list
box, enter SoapFor13 in the Nam e text box. Then select soap
from the Type list . Next , in the Path text box, enter the path
for your v ir tual directory, namely
c: \ inetput \ wwwroot \ Chapter13. Finally click Save to enable
the configurat ion of your Web service associated with the
SoapFor13 v ir tual name.

Once you’ve clicked Save, the Configure but ton is enabled.

6. While st ill in the Vir tual Names tab, click Configure (see Figure
13-13) to select SQL Server stored procedures and user-
defined funct ions to expose as Web methods. You can also
expose templates through the Web service. Although your
database objects and templates must ex ist before you can
expose them , the Web Services Toolk it doesn’t expose them
unt il you explicit ly configure it to make the Web service offer
Web methods based on a stored procedure, user-defined
funct ion, or template.

Figure 1 3 - 1 3 . The Virtual Nam e tab for the New Virtual Directory
Propert ies dialog box for the SoapFor1 3 W eb service in the

Chapter1 3 virtual directory.

7. After you click Configure, the Soap Vir tual Name Configurat ion
dialog box opens so that you can specify items to expose as
Web methods. I f you are going to expose a stored procedure
or a user-defined funct ion, designate SP as the Type;
otherwise, select Template to designate a template as the
source for a Web method. You can designate an item by using
the Browse but ton (…) to browse sources for a Web method in
the Web service hosted by the v ir tual directory. By clicking
the Browse but ton with SP selected as the Type, I was able to
pick Ten Most Expensive Products as the source for a Web
method. I accepted the default select ion to return the result
set from the stored procedure as XML objects. With this
select ion, you can retr ieve m ult iple results (or just one) from
a stored procedure. Figure 13-14 shows the dialog box just
before I click Save to expose the stored procedure as a Web
method.

8. Click OK to save the configurat ion of the Web Serv ice and
close the Soap Virtual Nam e Configurat ion dialog box.

Figure 1 3 - 1 4 . The Soap Vir tual Nam e Configurat ion dialog box
displaying the set t ings for the Ten_ Most_ Expensive_ Products W eb

m ethod just before saving them .

You can improve your debugging process by disabling var ious
caching opt ions.

9. Click the Advanced tab in the New Vir tual Directory Propert ies
dialog box. Consider select ing all three opt ions for disabling
different types of caching. These select ions improve the
operat ion of your Web service, but the caching can be
dist ract ing in som e debugging and code updat ing operat ions.

10. Click OK to save the set t ings you’ve chosen and close
the New Virtual Directory Propert ies dialog box.

Now you’re ready to test the Web serv ice. After you finish
debugging and refining your Web serv ice, restore the caching
features because they speed up the operat ion of a Web
serv ice in normal operat ion.

Note

The book’s sample files include the Chapter13 v ir tual
directory folder for reference’s sake. I n order to create the
vir tual directory so that you can manage it and use it , you’ll
need to follow the instruct ions for its creat ion in this sect ion.
When a subsequent sect ion edits the SoapFor13 Web service
hosted by the Chapter13 v ir tual directory, you’ll need to
follow the steps for that as well.

Building a Client Applicat ion to Show an XML Fragm ent

Web services created with the SQL Server 2000 Web Serv ices
Toolkit don’t have a built - in test inter face. I n addit ion, you connect
them to a client applicat ion slight ly different ly than Web serv ices,
which you build direct ly with Visual Studio .NET. Nevertheless, the
broad out line of the test ing process with a client applicat ion is
sim ilar. I n both cases, a .wsdl file form ally defines the Web service
and specifies any input and outputs associated with individual Web
methods. I n addit ion, you must create a Web reference in the client
applicat ion that points at the Web service.
Create a new form named Form3 in the XMLWebServiceClients
project . Add two label controls. Size the form and cont rols about as
they appear in Figure 13-15 later in this sect ion. (The form is also
available in the XMLWebServ iceClients project among the book ’s
sample files.) The arrangement and sizing of the form and its
cont rols are intended to accommodate the display of the ent ire XML
fragm ent returned by the Ten_Most_Expensive_Products Web
method. Make Form3 the startup object for the
XMLWebServiceClients project so that the form opens when you
star t the project .
In the module behind Form3, add a Web reference to the
SoapFor13 Web serv ice by choosing Add Web Reference from the
Project m enu. I n the address box of the Add Web Reference dialog
box, type the following URL with its t railing param eter:
ht tp: / / localhost / Chapter13/ SoapFor13?wsdl
Then press Enter. This populates the left pane of the Add Web
Reference dialog box with a representat ion of the .wsdl f ile for the
SoapFor13 Web serv ice. The r ight pane includes a single link with
the text View Contract . Click the Add Reference but ton to create a
Web reference for use with a proxy variable. I f you have been
creat ing the sam ples throughout the chapter, the name for this Web
reference in the Web References folder of Solut ion Explorer is
localhost3. No mat ter what its name, the reference should include
an item named SoapFor13.wsdl. This .wsdl file contains the formal
descript ion for the Web service. Any proxy var iable based on this
Web reference will enable you to run the

Ten_Most_Expensive_Products Web method and display the result
set returned as an XML fragment . The result set from the stored
procedure is available as an XML document fragment because the
example selected this output format in Figure 13-14.
The next list ing shows the code behind the form in Figure 13-15. As
you can see, it consists of a single form Load event procedure.
When the form opens, the procedure connects to the SoapFor13
Web service and invokes the Ten_Most_Expensive_Products Web
method. I t collects the XML fragm ent returned by the m ethod in an
array of Response objects. The Response object is the most basic
kind of object in Visual Studio .NET; this type of object can
accommodate any other k ind of object or type. Since the Web
serv ice can present either an XML document or a SqlMessage
object , the applicat ion needs Response objects to accommodate
either outcom e. The SqlMessage object can return SQL Server error
messages and warnings to an applicat ion.
Using an array of objects accommodates the possibilit y of mult iple
result sets from a single stored procedure or template file. Although
this sample has a single result set , the sample’s design illust rates
the For loop syntax for iterat ing through the members of a
Response object array. A Select…Case statement sends the
Response object to the appropriate code for processing. Because
this is a very simple applicat ion, the code just processes an object
containing an XML fragment . The processing consists of a pair of
statements that copy the XML fragment in the Response object to
the Text property of the second label on Form3 . Whenever you
choose to output the result set or sets from a Web m ethod as XML
objects, you’ll have to process the output in this sty le— that is, with
a Select…Case statement nested within a For loop that iterates
through the objects returned from the Web method.
Private Sub Form3_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Declare Web service xws1 as type named soap in
 ’localhost4 Web reference.
 Dim xws1 As New XMLWebServiceClients.localhost3.SoapF
or13()

 ’Declare object for return from Web service method.
 Dim response As New Object()
 Dim result As System.Xml.XmlElement

 ’Declare integer for iterating through multiple
 ’result sets that the Web service method can return.
 Dim int1 As Integer

 ’Save return from Web service method as an object.
 response = xws1.Ten_Most_Expensive_Products

 ’Iterate through result sets.
 For int1 = 0 To UBound(response)

 Select Case response(int1).GetType().ToString()
 Case "System.Xml.XmlElement"
 ’Pass int1 result set to result and displ
ay
 ’in list box and Output window.
 result = response(int1)
 Label2.Text = result.OuterXml
 Case Else
 ’Handles end of result sets and other
 ’special returns.
 End Select

 Next

End Sub

Figure 13-15 shows Form3 open from the XMLWebServ iceClient
project . The form contains two labels. The top label has a fixed Text
property assignment . I t always shows “XML fragment : ”. The
contents of the bot tom text box can change if the ten m ost
expensive products change because of a pr ice rev ision, the addit ion
of new products, or the dropping of exist ing products. The product
name and unit pr ice values are delim ited by opening and closing
tags. Although this format may be convenient for com puters to
process and is readable by humans, it is verbose. That ’s because
every value has a pair of tags, and there are addit ional tags to mark
the beginning and ending of each row (< row> and < / row>) as well
as the beginning and ending of the XML fragment (< SQLXML> and
< / SQLXML >) .

Figure 1 3 -1 5 . Form 3 from the XMLW ebServiceClients project show ing the
output from the Ten_ Most_ Expensive_ Products W eb m ethod in the

SoapFor1 3 W eb service.

Populat ing a ListBox Cont rol w ith an XML Service

Figure 13-15 is interest ing, but it ’s unlikely that you’ll want to show
many clients of your Web services an XML fragment. I t ’s m ore likely
that they will want to view the tag values in a cont rol than a
verbose XML fragment including tags. I n the case of the display in
Figure 13-15, they m ight prefer to see a ListBox control with 10
items, showing product nam e and price in descending order. The
sample in this sect ion extends the preceding one to achieve this
goal.
You can implement this sample by creat ing a new form , Form4, in
the XMLWebServiceClients project . Add a list box cont rol and the
code list ing in this sect ion. Make Form4 the startup object for the
project . I f you have the Web reference defined as in the preceding
sample, pressing F5 will cause the form to open and show the ten
most expensive products in a list box. (See Figure 13-16.) By
adding custom code, such as we will show later in this chapter , you
can enable interact iv ity with data returned by a Web service from
within a Windows form control.
Once you understand that your applicat ions can capture the result
set from a stored procedure as a Response object containing an
XML fragment, it ’s easy to craft a solut ion like the one in Figure 13-
16. All your applicat ion has to do is parse the XML fragment to
ext ract the tag values, combine the product name and price in a
form suitable for the ListBox cont rol, and then add the combined
item to the control.

Figure 1 3 - 1 6 . A ListBox cont rol on Form 4 show ing the processed output
from the Ten_ Most_ Expensive_ Products W eb m ethod in the SoapFor1 3

W eb service.

The following list ing illust rates how you can achieve this. The
solut ion relies on two procedures. The first is an extension of the
form Load event procedure from the preceding sample. The second
procedure is new to this chapter (but you may recall it from Chapter
12) . The new code for this procedure as well as the new procedure
in this chapter appear in bold type. The pr imary feature of the
extension is the insert ion of a Do…While loop within the For loop
that ext racts the XML fragm ent as a response object .
The Do…While loop uses two st r ing var iables, st r1 and st r2, to
manipulate the XML returned from the response object returned by
the Ten_Most_Expensive_Products Web method. For example, st r1
stores the current work ing version of the return value from the Web
method. I n successive passes through the Do…While loop, the
procedure ext racts the first values for product name and price from
the XML fragment . The form Load event procedure uses the
MyTagValue funct ion procedure to ext ract the product nam e and
price values. The form Load event procedure then combines the two
values as a new com ma-delim ited st r ing in str2, which the
procedure adds as an item to ListBox1. Before iterat ing through the
loop again, the code uses the Right funct ion to remove from st r1
the XML associated with the added item. When there are no
rem aining tags in st r1 with pr ice inform at ion, the Do…While loop
releases cont rol to the outer For loop, which leads, in turn, to the
opening of Form4 with the populated list box.
As indicated earlier , the MyTagValue funct ion procedure init ially
appeared in Chapter 12. This procedure uses fam iliar st r ing
manipulat ion techniques to ext ract tag values from an XML
fragm ent . The calling procedure simply passes the tag name and

the XML fragment . The funct ion returns the first tag value in the
st r ing with star t ing and ending tags within the fragm ent m atching
the tag name passed to it . The reuse of such a sim ple procedure
from Chapter 12 without any modificat ion illust rates the power of
thinking of XML fragments as st r ings.
Private Sub Form3_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

’Declare Web service xws1 as type named soap in
’localhost4 Web reference.
Dim xws1 As New XMLWebServiceClients.localhost3.SoapFor13
()

’Declare object for return from Web service method.
Dim response As New Object()
Dim result As System.Xml.XmlElement

’Declare integer for iterating through multiple
’result sets that the Web service method can return.
Dim int1 As Integer

’Save return from Web service method as an object.
response = xws1.Ten_Most_Expensive_Products

’Declare variables for processing XML fragment.
Dim str1 As String
Dim str2 As String

’Iterate through result sets.
For int1 = 0 To UBound(response)

 Select Case response(int1).GetType().ToString()
 Case "System.Xml.XmlElement"
 ’Pass int1 result set to result and display
 ’in list box and Output window.
 result = response(int1)
 str1 = result.OuterXml

 ’Iterate through column values in XML string
 ’within Web service method output.
 Do While InStr(str1, "</UnitPrice>") > 0
 str2 = MyTagValue("TenMostExpensiveProduc
ts", str1)
 str2 = str2 & ", " & MyTagValue("UnitPric
e", str1)
 ListBox1.Items.Add(str2)
 str1 = Microsoft.VisualBasic.Right(str1,
_
 Len(str1) -
 (InStr(str1, "</UnitPrice>")) - _

 Len("</UnitPrice></row>") + 1)
 Loop
 Case Else
 ’Handles end of result sets and other
 ’special returns.
 End Select

Next

End Sub

Function MyTagValue(ByVal TagName As String, _
 ByVal strXML As String)

 ’Declare and compute constants for this tag.
 Dim str1 = "<" & TagName & ">"
 Dim str2 = "</" & TagName & ">"
 Dim int1, int2 As Integer
 int1 = InStr(strXML, str1) + Len(str1)
 int2 = InStr(strXML, str2)

 ’Compute tag value and return it.
 ’strXML is string with XML to parse.
 ’int1 is start position.
 ’int2 - int1 calculates number of characters.
 Dim TagValue As String = Mid(strXML, _
 int1, int2 - int1)
 Return TagValue

End Function

More on Populat ing Controls w ith W eb Services

This sect ion drills deeper into building Web serv ices with the SQL
Server 2000 Web Services Toolkit and client applicat ions with Visual
Studio .NET. I n part icular , the emphasis is on populat ing cont rols on
Windows Forms. Client applicat ions created with Windows Forms
can interoperate freely with Web serv ices over the Web just as if
the client were available locally. In addit ion to showing how to
populate controls, this sect ion also illust rates how to provide
interact iv ity with Web serv ices through Windows Forms. These
client features work equally well whether you create your Web
serv ice applicat ion with the Web Serv ices Toolkit or Visual Studio
.NET.

Adding Custom Database Objects as W eb Methods

The samples in the preceding sect ion created Web services for an
exist ing stored procedure in the Northwind database. Somet imes
our applicat ions benefit from , or even require, the creat ion of
custom database objects. When this is the case for a Web services
solut ion, you need to add the custom database objects to the
database. Then, in a separate step, you must expose your new
objects through the Web service. Typically, this will require edit ing a
previously exist ing Web serv ice. The steps descr ibed in this sect ion
illust rate how to perform these act ions.

T- SQL for Creat ing Sam ple Database Objects

The next two code samples for client applicat ions will work with
result sets returned by two custom database objects for the
Northwind database. One of these objects is a stored procedure,
and the other is a user-defined funct ion. The stored procedure
returns all the CategoryI D and CategoryName column values from
the Categories table. The user-defined funct ion returns
ProductName colum n values from the Products table. A WHERE
clause in the user-defined funct ion causes the funct ion to return
just product names that are from a specified category as designated
by a CategoryI D param eter. Therefore, one of the benefits of this
database object is that it illust rates the syntax and procedures for
using parameters with Web serv ices.
The following T-SQL list ing is to be run from Query Analyzer. The
list ing is available among the book ’s sample files as
Scr iptsFor13.sql. I f you want , you can adapt the samples for
running direct ly from Visual Studio .NET. (See Chapter 11 for
samples dem onst rat ing this approach.) However, it is m uch easier
to run the scr ipts from Query Analyzer if you’re fam iliar with it . (See
the last sect ion in Chapter 1 if you don’t already have this
background.) Use a login for Query Analyzer that belongs to the
sysadmin group.
The scr ipts for creat ing the stored procedure and the user-defined
funct ion follow parallel paths. First they drop any pr ior version of
the database object . Next they create a new version of the object .
Finally they explicit ly grant the vbdotnet1 user perm ission to use
the object . Recall t hat vbdotnet1 is the user for the Chapter13
vir tual directory. Without grant ing the user perm ission for the
object , you won’t be able to expose the objects as Web methods for
the SoapFor13 Web service originat ing from the Chapter13 vir tual
directory.
/*
Run from member of sysadmin fixed server role.
Ignore errors if user does not already exist.
*/

USE Northwind

--Drop udpListOfCategoryNames if it exists.
IF EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udpListOfCategoryNames’)
 DROP PROCEDURE udpListOfCategoryNames
GO

--Then, create udpListOfCategoryNames, and give
-- vbdotnet1 permission to execute it.
CREATE PROCEDURE udpListOfCategoryNames
AS
SELECT CategoryID, CategoryName
FROM Categories
GO

GRANT EXEC ON udpListOfCategoryNames TO vbdotnet1
GO

--Drop udfProductsInACategory if it exists.
IF EXISTS(SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_NAME = ’udfProductsInACategory’)
 DROP FUNCTION udfProductsInACategory
GO

--Then, create it, give vbdotnet1
--permission to select from it.
CREATE FUNCTION udfProductsInACategory(@MyCategoryID int)

RETURNS TABLE
AS
RETURN(
 SELECT ProductName
 FROM Products
 WHERE CategoryID = @MyCategoryID
)
GO

GRANT SELECT ON udfProductsInACategory TO vbdotnet1
GO

Updat ing a W eb Service w ith the W eb Services Toolkit

After adding custom database objects to a database, you can
expose the objects as Web m ethods through a vir tual directory
point ing to the database. The v ir tual directory must have a soap
v ir tual name, such as SoapFor13, which is the vir tual soap name for
the Chapter13 v ir tual directory. I f you have an exist ing soap name,

you can edit it according to the instruct ions in this sect ion. I f you
don’t already have a soap name for a vir tual directory, you can use
the inst ruct ions in the “Building a Web Service in an I IS Vir tual
Directory” sect ion to create a new soap v ir tual name.
Begin by exposing the two new database objects as Web methods
by double-clicking the Chapter13 v ir tual directory in the I I S Virtual
Directory Management ut ility . On the Vir tual Names tab of the
Chapter13 Propert ies dialog box, highlight SoapFor13 and click
Configure. This opens the Soap Virtual Name Configurat ion dialog
box. Click the Browse but ton (…) to select
udpListOfCategoryNames. Select Single Dataset for the output
format. Name the Web method udpListOfCategoryNamesAsDataset .
Figure 13-17 shows the Soap Vir tual Name Configurat ion dialog box
just before saving the set t ings for the udpListOfCategory-
Nam esAsDataset Web method. Click Save to save the specificat ion
for the Web method. You can follow the sam e general approach to
exposing the udfProductsI nACategory user-defined funct ion as a
Web method. Assign udfProductsI nACategoryAsDataset as its Web
method name.

Figure 1 3 -1 7 . The Soap Vir tual Nam e Configurat ion set t ings for the
udpListOfCategoryNam esAsDataset W eb m ethod.

Populat ing a DataGrid and a ListBox w ith a W eb Method

Using the revised Web serv ice gives you a chance to explore more
ways of how to tap Web serv ices from within Visual Basic .NET
applicat ions. Before you can take advantage of the rev isions, you
need to refresh the Web reference connect ing the
XMLWebServiceClients project to the Web serv ice. Cur iously, you do
this by following the same steps as for adding a new Web reference.
Start the refresh process by choosing Add Web Reference from the
Project m enu within the XMLWebServ iceClients project . I n the Add
Web Reference dialog box that opens, enter
ht tp: / / localhost / Chapter13/ SoapFor13?wsdl in the Address box.
Then press Enter and click Add Reference. This opens the dialog box
shown in Figure 13-18. Click Yes to update the Web reference.
Without these steps, your client applicat ion won’t be able to use the
Web methods for the udpListOfCategoryNames and
udfProductsI nACategory database objects added previously.

Figure 1 3 -1 8 . Dialog box for updat ing a W eb reference, displayed w hen
you start to add a new W eb reference to an updated W eb service. Click

Yes to update the exist ing W eb reference w ithout adding a new one.

Now that the XMLWebServ iceClients project has an updated Web
reference, we can put the new Web methods to use. The
udpListOfCategoryNames stored procedure is sim ilar to the Ten
Most Expensive Products stored procedure in that neither procedure
accepts a param eter. However, the Web methods for the database
objects are dist inct in ways that affect the syntax for using them.
Recall that the Ten_Most_Expensive_Products Web method formats
its output as XML objects. On the other hand, the
udpListOfCategoryNamesAsDataset Web method formats it s result
as a single data set . By specify ing its output as a single data set ,
you know precisely what the format of the return from the Web
method will be. (There’s no chance of a SqlMessage object in the
output st ream associated with the Web method.) Therefore, the
syntax for reading the output can be m ore st raight forward. When
you have only one result set from a database object , the Single
Dataset format is a great output format for simplify ing the
processing of your client applicat ion.
You can get a hands-on feel for using the
udpListOfCategoryNamesAsDataset Web method by adding a new

form with DataGrid and ListBox controls. Form5 in Figure 13-19
shows the basic design for the sample. The Design view shows two
cont rols on a Windows form . The left cont rol is an empty DataGrid
cont rol; it s Propert ies window shows the cont rol’s name as
DataGrid1. The other control on the form shows its name as
ListBox1. By making Form5 the star tup object for the
XMLWebServiceClients project , you can invoke the form ’s Load
event procedure by start ing the project . I n this event procedure,
you can load data from the SoapFor13 Web serv ice into both
cont rols.
The following list ing shows the form Load event procedure for
Form5. I t starts by instant iat ing a proxy variable, xws1, for the
SoapFor13 Web serv ice, which is denoted by the Web reference
named localhost3 in the client applicat ion. Because I updated the
Web reference as descr ibed previously, this sample in the
XMLWebServiceClients project can invoke the
udpListOfCategoryNamesAsDataset Web method. This Web
method’s definit ion returns a single data set . When returning a
result set from a stored procedure as a single data set , you must
designate an integer returnvalue argument as you invoke the Web
method. This returnvalue argument makes available the return code
for a stored procedure; syntax convent ions require the returnvalue
argument even when the stored procedure has no return code.
Chapter 4 refers to return codes from stored procedures as return
status values as it illust rates their use.

Figure 1 3 -1 9 . Form 5 contains a pair of controls that the code behind the
form w ill populate by invoking the udpListOfCategoryNam esAsDataset

W eb m ethod.

Note

When a stored procedure has no return code or return status
value, the returnvalue argument for a Web method assumes
the value 0.
After copying the result set from the stored procedure to a data set
in the client applicat ion, the code assigns the data set to the
DataSource property of DataGrid1. I n addit ion, the procedure
passes -1 as an argum ent to the Expand m ethod for the DataGrid
cont rol. This opens the row indicator on DataGrid1 so that a user
can click it to view the data in the cont rol. Without this set t ing, a
user would need to click the Expand control on DataGrid1 to show
the row indicator. (See Figure 13-20 for a view of the row indicator
and its parent Expand/ Contract cont rol.)
The last two blocks of code handle iterat ing through the returned
data set from the Web m ethod and populat ing the items within
ListBox1 based on the colum n values for CategoryI D and
CategoryName. Because CategoryI D has a SQL Server int data
type, you gain performance by explicit ly specify ing it as a st r ing for
concatenat ion with a st r ing constant (" , ") and the CategoryName
colum n value, which is a st r ing value.
Private Sub Form5_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ’Declare Web service xws1 as SoapFor13 in the
 ’localhost3 Web reference.
 Dim xws1 As New XMLWebServiceClients.localhost3.SoapF
or13()

 ’Save return from Web service method as a data set;
 ’syntax mandates specification of a returnvalue param
eter.
 Dim das1 As System.Data.DataSet
 Dim returnvalue As Integer
 das1 = _
 xws1.udpListOfCategoryNamesAsDataset(returnvalue)

 ’Set data grid to display returned data set.
 DataGrid1.DataSource = das1
 DataGrid1.Expand(-1)

 ’Declare a row and a string.
 Dim MyRow As DataRow
 Dim str1 As String

 ’Iterate through data set rows and insert
 ’in the list box column values one row at a time.
 For Each MyRow In das1.Tables(0).Rows
 str1 = MyRow(0) & ", " & MyRow(1)
 ListBox1.Items.Add(str1)
 Next

End Sub

Figure 13-20 shows the result of opening the XMLWebServiceClients
project with Form5 as the star tup object . The top window shows the
form after opening but before the row indicator in the DataGrid
cont rol is expanded to reveal the data source behind the data grid.
Not ice that this row indicator is a child control of an
Expand/ Cont ract cont rol within the DataGrid cont rol. Even before
the row indicator in the DataGrid cont rol is clicked, the list box
shows its values. However, the list box doesn’t provide the sam e
degree of data formatt ing flex ibilit y available with a data grid. The
bot tom window shows the data gr id after a click of the row indicator
and after the default width of its second column has been expanded
slight ly. One of the advantages of the data gr id is a user ’s abilit y to
manipulate the cont rol.

Figure 1 3 -2 0 . The DataGrid cont rol on Form 5 lets the user interact w ith it
to cont rol w hen the data is displayed and to cont rol the w idth of the

colum ns.

Dynam ically Populat ing a Control w ith a W eb Method

The last sample in this chapter illust rates how to return values
dynamically from a Web serv ice based on a user select ion from a
list box. The applicat ion again draws on the SoapFor13 Web service.
This sam ple demonstrates how to pass a parameter to a user-
defined funct ion in a SQL Server database through a Web service so
that the Web method for the user-defined funct ion passes back a
result set based on the user ’s select ion from the items in a list box.
The sample uses Form6 , which you will need to make the star tup
object for the XMLWebServiceClients project . When a user init ially
opens the project , it displays an init ial list box, a text box, and a
second list box like the one in the top window of Figure 13-21. The
form automat ically selects the f irst category name in the first
ListBox cont rol, displays the CategoryI D value for the first category

name, and displays the products within the category in the second
list box. (See the top form window in Figure 13-21.) After the form
opens, a user can change the products displayed in the second list
box by select ing a new category from the first list box. The bot tom
form window in Figure 13-21 shows the form after the select ion of
the Produce category in the first list box. Not ice that the select ion in
the first list box autom at ically updates the contents of the text box
and the second list box. The code behind the form passes an
argument to a Web method based on the value showing in the text
box; the Web method, in turn, populates the second list box.

Figure 1 3 - 2 1 . Form 6 in the XMLW ebServiceClients project autom at ically
adjusts the contents of a text box and list box based on the select ion in a

list box. Each list box is populated by a separate W eb m ethod.

The following list ing displays the two short event procedures that
cont rol the operat ion of the sample depicted in Figure 13-21. The
Load event procedure for Form6 starts by instant iat ing a proxy
var iable for the SoapFor13 Web service. Next the code uses the
proxy var iable to invoke the udpListOfCategoryNamesAsDataset
Web method in the serv ice. As you have seen from the previous

sample, this Web method returns a data set containing a data table
with CategoryI D and CategoryName column values, in that order.
The last block of code explicit ly sets the source for ListBox1 based
on the data set returned by the Web method. After set t ing the
DataSource for the list box to the table in the local data set , the
Load event procedure concludes by set t ing the DisplayMember
property for the list box to the name for the first colum n in the local
table that serves as the DataSource property for the cont rol.

Note

When Form6 init ially loads, it automat ically selects the first
item in ListBox1. This, in turn, f ires the second event
procedure behind the form—
ListBox1_SelectedI ndexChanged. As a consequence, this
second procedure sets the Text property of TextBox1 to 1
and the items in ListBox2 to the names for products
belonging to the Beverages category.
The second event procedure populates TextBox1 based on the index
value for the selected item in ListBox1. Because this index starts at
0, the procedure adds 1 to the index value so that the range
extends from 1 through 8 for each of the CategoryI D values in the
Categor ies table that the udpListOfCategoryNam esAsDataset Web
method quer ies. Next the ListBox1_SelectedI ndexChanged
procedure connects to the SoapFor13 Web serv ice with the xws1
proxy var iable before invoking the
udfProductsI nACategoryAsDataset Web m ethod. The syntax for the
statement invoking the Web method illust rates how to pass a
parameter to a user-defined funct ion. The parameter is the Text
property set t ing for TextBox1 converted to an I nteger data type.
Because TextBox1 shows a CategoryI D value, the Web m ethod
returns the ProductName column values from the Products table in
the Northwind database for rows with a matching CategoryI D value.
The procedure comes to an end by using the table in the data set
stor ing the return set from the Web method as the DataSource
property for ListBox2 .
Private Sub Form6_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ’Declare Web service xws1 as SoapFor13 in the
 ’localhost3 Web reference.
 Dim xws1 As New XMLWebServiceClients.localhost3.SoapF
or13()

 ’Save return from Web service method as a data set.
 Dim das1 As System.Data.DataSet
 Dim returnvalue As Integer
 das1 = xws1.udpListOfCategoryNamesAsDataset(returnval
ue)

 ’Populate list box with category names.
 ’Automatic selection of first item in ListBox1
 ’invokes ListBox1_SelectedIndexChanged event
 ’procedure to populate TextBox1 and ListBox2.
 ListBox1.DataSource = das1.Tables(0)
 ListBox1.DisplayMember = _
 CStr(das1.Tables(0).Columns(1).ColumnName)

End Sub

Private Sub ListBox1_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ListBox1.SelectedIndexChanged

 ’Compute CategoryID for selected value.
 TextBox1.Text = ListBox1.SelectedIndex + 1

 ’Declare Web service xws1 as SoapFor13 in the
 ’localhost3 Web reference.
 Dim xws1 As New XMLWebServiceClients.localhost3.SoapF
or13()

 ’Save return from Web service method as a data set ba
sed on
 ’CategoryID value in text box; notice returnvalue par
ameter
 ’is not necessary with a SQL Server function procedur
e.
 Dim das1 As System.Data.DataSet
 das1 = _
 xws1.udfProductsInACategoryAsDataset(CInt(TextBox
1.Text))

 ’Populate second list box with product names
 ’for products in currently selected category in the
 ’first list box.
 ListBox2.DataSource = das1.Tables(0)
 ListBox2.DisplayMember = _
 das1.Tables(0).Columns(0).ColumnName

End Sub

Appendix About the Author

Rick Dobson, Ph.D., is an author and t rainer specializing in Microsoft
SQL Server, Microsoft Access, and Web technologies. He is a big fan
of programmat ic solut ions, part icular ly those that involve Visual
Basic .NET, ADO.NET, ASP.NET, XML Web services, and T-SQL—
technologies he features prom inent ly in this book. I f you look at
some of his pr ior books, you’ll discover that he also programs in
VBA, ADO, Jet SQL, and SQL-DMO.
This is Rick ’s fourth book in four years. Both this book and a form er
one t it led Professional SQL Server Development with Access 2000
(Wrox Press Inc., 2000) focus heavily on the development of SQL
Server solut ions. While his other two books are on Microsoft Access,
they demonst rate his com mitment to Microsoft database
technology. All of these books include extensive coverage of Web
technologies as they relate to database development topics.
Rick and his wife Virginia joint ly run their pract ice, CAB, I nc.
(ht tp: / / www.cabinc.net) . Rick aim s his content product ion at
intermediate and advanced SQL Server, Access, and Web
developers. Rick also writes for leading com puter resources, such as
SQL Server Magazine, MSDN Online Library, Microsoft TechNet ,
Visual Basic Programmer’s Journal, and Microsoft I nteract ive
Developer. Virginia targets Access power users and beginning
developers. She has contr ibuted ar t icles to
ht tp: / / www.smartcomput ing.com, ht tp: / / www.techrepublic.com,
and Microsoft OfficePro.
CAB runs two Web sites, ht tp: / / www.programmingmsaccess.com
and ht tp: / / www.databasedevelopersgroup.com , as well as its
developer sem inars. The Web sites feature code samples, live
demonstrat ions, tutor ials, FAQs, and links to online resources for
SQL Server and Access developers. CAB has offered nat ionwide
sem inars about Microsoft database tools annually since 1991.
Ear lier tours at t racted a broad range of database developers and
adm inist rators from large and m id-size organizat ions, such as Ford,
EDS at GM, Prudent ial, the U.S. Navy, State Farm, PACCAR, and
Panasonic.
You can get in touch with Rick at r ickd@cabinc.net .

