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Chapter 15  Transformer Design

Some more advanced design issues, not considered in previous

chapter:

• Inclusion of core loss

• Selection of operating flux

density to optimize total loss

• Multiple winding design: as in

the coupled-inductor case,

allocate the available window

area among several windings

• A transformer design

procedure

• How switching frequency

affects transformer size
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Chapter 15  Transformer Design

15.1 Transformer design: Basic constraints

15.2 A step-by-step transformer design procedure

15.3 Examples

15.4 AC inductor design

15.5 Summary
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15.1 Transformer Design:
Basic Constraints

Core loss

Typical value of  for ferrite materials: 2.6 or 2.7

B is the peak value of the ac component of B(t), i.e., the peak ac flux

density

So increasing B causes core loss to increase rapidly

This is the first constraint

Pfe = K fe(∆B)β Ac lm
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Flux density
Constraint #2

Flux density B(t) is related to the

applied winding voltage according

to Faraday’s Law. Denote the volt-

seconds applied to the primary

winding during the positive portion
of v1(t) as 1:

λ1 = v1(t)dt
t1

t2

This causes the flux to change from

its negative peak to its positive peak.

From Faraday’s law, the peak value

of the ac component of flux density is

To attain a given flux density,

the primary turns should be

chosen according to

area λ1

v1(t)

t1 t2 t

∆B =
λ1

2n1Ac
n1 =

λ1

2∆BAc



Fundamentals of Power Electronics Chapter 15: Transformer design5

Copper loss
Constraint #3

• Allocate window area between windings in optimum manner, as

described in previous section

• Total copper loss is then equal to

Pcu =
ρ(MLT)n1

2I tot
2

WAKu
Itot =

n j

n1
I jΣ

j = 1

k

with

Eliminate n1, using result of previous slide:

Note that copper loss decreases rapidly as B is increased

Pcu =
ρλ1

2 I tot
2

4Ku

(MLT )
WAAc

2
1
∆B

2
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Total power loss
4.  Ptot = Pcu + Pfe

Ptot = Pfe + Pcu

There is a value of B

that minimizes the total

power loss

Pcu =
ρλ1

2 I tot
2

4Ku

(MLT )
WAAc

2
1
∆B

2

Pfe = K fe(∆B)β Ac lm
∆B

Power
loss

Ptot

C
opper loss P

cu

C
or

e 
lo

ss
 P

fe

Optimum ∆B
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5. Find optimum flux density B

Ptot = Pfe + Pcu

Given that

Then, at the B that minimizes Ptot, we can write

Note: optimum does not necessarily occur where Pfe = Pcu. Rather, it
occurs where

dPtot

d(∆B)
=

dPfe

d(∆B)
+

dPcu

d(∆B)
= 0

dPfe

d(∆B)
= –

dPcu

d(∆B)
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Take derivatives of core and copper loss

Now, substitute into and solve for B:

Optimum B for a

given core and

application

Pcu =
ρλ1

2 I tot
2

4Ku

(MLT )
WAAc

2
1
∆B

2Pfe = K fe(∆B)β Ac lm

dPfe

d(∆B)
= βK fe(∆B) β – 1 Aclm dPcu

d(∆B)
= – 2

ρλ1
2I tot

2

4Ku

(MLT)
WAAc

2 (∆B)– 3

dPfe

d(∆B)
= –

dPcu

d(∆B)

∆B =
ρλ1

2I tot
2

2Ku

(MLT )
WAAc

3lm

1
βK fe

1
β + 2
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Total loss

Substitute optimum B into expressions for Pcu and Pfe. The total loss is:

Rearrange as follows:

Left side: terms depend on core

geometry

Right side: terms depend on

specifications of the application

Ptot = AclmK fe

2
β + 2

ρλ1
2I tot

2

4Ku

(MLT )
WAAc

2

β
β + 2 β

2

–
β

β + 2
+

β
2

2
β + 2

WA Ac
2(β – 1)/β

(MLT )lm
2/β

β
2

–
β

β + 2
+

β
2

2
β + 2

–
β + 2
β

=
ρλ1

2I tot
2 K

fe

2/β

4Ku Ptot
β + 2 /β
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The core geometrical constant Kgfe

Define

Design procedure: select a core that satisfies

Appendix D lists the values of Kgfe for common ferrite cores

Kgfe is similar to the Kg geometrical constant used in Chapter 14:

• Kg is used when Bmax is specified

• Kgfe is used when B is to be chosen to minimize total loss

Kgfe =
WA Ac

2(β – 1)/β

(MLT)lm
2/β

β
2

–
β

β + 2
+

β
2

2
β + 2

–
β + 2
β

Kgfe ≥
ρλ1

2I tot
2 K

fe

2/β

4Ku Ptot
β + 2 /β
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15.2 Step-by-step
transformer design procedure

The following quantities are specified, using the units noted:
Wire effective resistivity ( -cm)

Total rms winding current, ref to pri Itot (A)

Desired turns ratios n2/n1, n3/n1, etc.

Applied pri volt-sec 1 (V-sec)

Allowed total power dissipation Ptot (W)

Winding fill factor Ku

Core loss exponent

Core loss coefficient  Kfe (W/cm3T )

Other quantities and their dimensions:
Core cross-sectional area Ac (cm2)

Core window area WA (cm2)

Mean length per turn MLT (cm)

Magnetic path length  le (cm)

Wire areas  Aw1, … (cm2)

Peak ac flux density  B (T)
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Procedure
1. Determine core size

Select a core from Appendix D that satisfies this inequality.

It may be possible to reduce the core size by choosing a core material
that has lower loss, i.e., lower Kfe.

Kgfe ≥
ρλ1

2I tot
2 K

fe

2/β

4Ku Ptot
β + 2 /β

108
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2. Evaluate peak ac flux density

At this point, one should check whether the saturation flux density is
exceeded. If the core operates with a flux dc bias Bdc, then B + Bdc
should be less than the saturation flux density Bsat.

If the core will saturate, then there are two choices:

• Specify B using the Kg method of Chapter 14, or

• Choose a core material having greater core loss, then repeat

steps 1 and 2

∆B = 108 ρλ1
2I tot

2

2Ku

(MLT )
WAAc

3lm

1
βK fe

1
β + 2
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3. and 4. Evaluate turns

Primary turns:

Choose secondary turns according to

desired turns ratios:

n2 = n1

n2

n1

n3 = n1

n3

n1

n1 =
λ1

2∆BAc

104
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5. and 6. Choose wire sizes

α1 =
n1I1

n1I tot

α2 =
n2I2

n1I tot

αk =
nkIk

n1I tot

Fraction of window area

assigned to each winding:
Choose wire sizes according

to:

Aw1 ≤
α1KuWA

n1

Aw2 ≤
α2KuWA

n2



Fundamentals of Power Electronics Chapter 15: Transformer design16

Check: computed transformer model

iM , pk =
λ1

2LM

R1 =
ρn1(MLT)

Aw1

R2 =
ρn2(MLT)

Aw2

Predicted magnetizing

inductance, referred to primary:

Peak magnetizing current:

Predicted winding resistances:

n1  :  n2

:  nk

R1 R2

Rk

i1(t) i2(t)

ik(t)

LM

iM(t)

L M =
µn1

2Ac

lm
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15.4.1 Example 1: Single-output isolated
Cuk converter

100 W  fs = 200 kHz

D = 0.5 n = 5

Ku = 0.5 Allow Ptot = 0.25 W

Use a ferrite pot core, with Magnetics Inc. P material. Loss

parameters at 200 kHz are

Kfe = 24.7  = 2.6

+
–

+

V
5 V

–

Vg

25 V

n : 1

I
20 A

Ig

4 A

+

v2(t)

–

–

v1(t)

+

i1(t) i2(t)

–  vC2(t)  ++  vC1(t)  –
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Waveforms

v1(t)

i1(t)

i2(t)

DTs

Area λ1VC1

– nVC2

D'Ts

I/n

– Ig

I

– nIg

Applied primary volt-

seconds:

λ1 = DTsVc1 = (0.5) (5 µsec ) (25 V)
= 62.5 V–µsec

Applied primary rms

current:

I1 = D I
n

2

+ D' Ig
2 = 4 A

Applied secondary rms

current:
I2 = nI1 = 20 A

Total rms winding

current:

I tot = I1 + 1
n I2 = 8 A
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Choose core size

Kgfe ≥
(1.724⋅10– 6)(62.5⋅10– 6)2(8)2(24.7) 2/2.6

4 (0.5) (0.25) 4.6/2.6
108

= 0.00295

Pot core data of Appendix D lists 2213 pot core with

Kgfe = 0.0049

Next smaller pot core is not large enough.
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Evaluate peak ac flux density

This is much less than the saturation flux density of approximately
0.35 T. Values of B in the vicinity of 0.1 T are typical for ferrite

designs that operate at frequencies in the vicinity of 100 kHz.

∆B = 108 (1.724⋅10– 6)(62.5⋅10– 6)2(8)2

2 (0.5)
(4.42)

(0.297)(0.635)3(3.15)
1

(2.6)(24.7)

1/4.6

= 0.0858 Tesla
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Evaluate turns

n1 = 104 (62.5⋅10– 6)
2(0.0858)(0.635)

= 5.74 turns

n2 =
n1

n = 1.15 turns

In practice, we might select

n1 = 5 and  n2 = 1

This would lead to a slightly higher flux density and slightly higher

loss.
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Determine wire sizes

Fraction of window area allocated to each winding:

α1 =
4 A

8 A
= 0.5

α2 =
1
5 20 A

8 A
= 0.5

(Since, in this example, the ratio of

winding rms currents is equal to the

turns ratio, equal areas are

allocated to each winding)

Wire areas:

Aw1 =
(0.5)(0.5)(0.297)

(5)
= 14.8⋅10– 3 cm2

Aw2 =
(0.5)(0.5)(0.297)

(1)
= 74.2⋅10– 3 cm2

From wire table,

Appendix D:

AWG #16

AWG #9
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Wire sizes: discussion

Primary

5 turns #16 AWG

Secondary

1 turn #9 AWG

• Very large conductors!

• One turn of #9 AWG is not a practical solution

Some alternatives

• Use foil windings

• Use Litz wire or parallel strands of wire
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Effect of switching frequency on transformer size
for this P-material Cuk converter example

0
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or
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2213
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2616

25 kHz 50 kHz 100 kHz 200 kHz 250 kHz 400 kHz 500 kHz 1000 kHz

• As switching frequency is

increased from 25 kHz to

250 kHz, core size is

dramatically reduced

• As switching frequency is

increased from 400 kHz to

1 MHz, core size

increases
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15.3.2 Example 2
Multiple-Output Full-Bridge Buck Converter

Switching frequency 150 kHz

Transformer frequency 75 kHz

Turns ratio 110:5:15

Optimize transformer at D = 0.75

:  n2

+

v1(t)

–

+
–

D1

Q1

D2Q2

D3

Q3

D4Q4

i1(t)

+

5 V

–

D5

D6

I5V

100 Ai2a(t)

+

15 V

–

D7

D8

i3a(t)

n1 :

:  n2

:  n3

:  n3

i2b(t)

i2b(t)

I15V

15 A

T1

Vg

160 V
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Other transformer design details

Use Magnetics, Inc. ferrite P material. Loss parameters at 75 kHz:

Kfe = 7.6 W/T cm3

 = 2.6

Use E-E core shape

Assume fill factor of

Ku = 0.25 (reduced fill factor accounts for added insulation required

in multiple-output off-line application)

Allow transformer total power loss of

Ptot = 4 W (approximately 0.5% of total output power)

Use copper wire, with

 = 1.724·10–6 -cm
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Applied transformer waveforms

t

i2a(t)

0

i3a(t)

0 DTs Ts 2TsTs+DTs

i1(t)

0

v1(t)

0 0

Vg

– Vg

Area λ1

= Vg DTs

n2

n1

I5V +
n3

n1

I15V

–
n2

n1

I5V +
n3

n1

I15V

I5V
0.5I5V

I15V
0.5I15V

0

:  n2

+

v1(t)

–

D3

D4

i1(t)

D5

D6

i2a(t)

D7

D8

i3a(t)

n1 :

:  n2

:  n3

:  n3

i2b(t)

i2b(t)

T1
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Applied primary volt-seconds

v1(t)

0 0

Vg

– Vg

Area λ1

= Vg DTs

λ1 = DTsVg = (0.75) (6.67 µsec ) (160 V) = 800 V–µsec
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Applied primary rms current

i1(t)

0

n2

n1

I5V +
n3

n1

I15V

–
n2

n1

I5V +
n3

n1

I15V

I1 =
n2
n1

I5V +
n3
n1

I15V D = 5.7 A
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Applied rms current, secondary windings

t

i2a(t)

0

i3a(t)

0 DTs Ts 2TsTs+DTs

I5V
0.5I5V

I15V
0.5I15V

0

I3 = 1
2 I15V 1 + D = 9.9 A

I2 = 1
2 I5V 1 + D = 66.1 A
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Itot

RMS currents, summed over all windings and referred to primary

I tot =
n j

n1
I jΣ

all 5
windings

= I1 + 2
n2
n1

I2 + 2
n3
n1

I3

= 5.7 A + 5
110

66.1 A + 15
110

9.9 A

= 14.4 A
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Select core size

Kgfe ≥
(1.724⋅10– 6)(800⋅10– 6)2(14.4)2(7.6) 2/2.6

4 (0.25) (4) 4.6/2.6
108

= 0.00937

A

From Appendix D
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Evaluate ac flux density B

Bmax = 108 ρλ1
2I tot

2

2Ku

(MLT)
WAAc

3lm

1
βK fe

1
β + 2

Eq. (15.20):

Plug in values:

This is less than the saturation flux density of approximately 0.35 T

∆B = 108 (1.724⋅10– 6)(800⋅10– 6)2(14.4)2

2(0.25)
(8.5)

(1.1)(1.27)3(7.7)
1

(2.6)(7.6)

1/4.6

= 0.23 Tesla
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Evaluate turns

Choose n1 according to Eq. (15.21):

n1 = 104 (800⋅10– 6)
2(0.23)(1.27)

= 13.7 turns

Choose secondary turns

according to desired turns ratios:

n2 =
5

110
n1 = 0.62 turns

n3 =
15

110
n1 = 1.87 turns

Rounding the number of turns

To obtain desired turns ratio

of

110:5:15

we might round the actual

turns to

22:1:3

Increased n1 would lead to

• Less core loss

• More copper loss

• Increased total loss

n1 =
λ1

2∆BAc

104
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Loss calculation
with rounded turns

With n1 = 22, the flux density will be reduced to

The resulting losses will be

Pfe = (7.6)(0.143)2.6(1.27)(7.7) = 0.47 W

Pcu =
(1.724⋅10– 6)(800⋅10– 6)2(14.4)2

4 (0.25)
(8.5)

(1.1)(1.27)2
1

(0.143)2 108

= 5.4 W

Ptot = Pfe + Pcu = 5.9 W

Which exceeds design goal of 4 W by 50%. So use next larger core

size: EE50.

∆B =
(800⋅10– 6)
2(22)(1.27)

104 = 0.143 Tesla
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Calculations with EE50

Repeat previous calculations for EE50 core size. Results:

B = 0.14 T, n1 = 12, Ptot = 2.3 W

Again round n1 to 22. Then

B = 0.08 T, Pcu = 3.89 W, Pfe = 0.23 W, Ptot = 4.12 W

Which is close enough to 4 W.
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Wire sizes for EE50 design

Aw1 =
α1KuWA

n1

=
(0.396)(0.25)(1.78)

(22)
= 8.0⋅10– 3 cm2

⇒ AWG #19

Aw2 =
α2KuWA

n2

=
(0.209)(0.25)(1.78)

(1)
= 93.0⋅10– 3 cm2

⇒ AWG #8

Aw3 =
α3KuWA

n3

=
(0.094)(0.25)(1.78)

(3)
= 13.9⋅10– 3 cm2

⇒ AWG #16

α1 =
I1

I tot

= 5.7
14.4

= 0.396

α2 =
n2I2

n1I tot

= 5
110

66.1
14.4

= 0.209

α3 =
n3I3

n1I tot

= 15
110

9.9
14.4

= 0.094

Window allocations Wire gauges

Might actually use foil or Litz wire for secondary windings
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Discussion: Transformer design

• Process is iterative because of round-off of physical number of

turns and, to a lesser extent, other quantities

• Effect of proximity loss

– Not included in design process yet

– Requires additional iterations

• Can modify procedure as follows:

– After a design has been calculated, determine number of layers in

each winding and then compute proximity loss

– Alter effective resistivity of wire to compensate: define

eff =   Pcu/Pdc where Pcu is the total copper loss (including proximity

effects) and Pdc is the copper loss predicted by the dc resistance.

– Apply transformer design procedure using this effective wire

resistivity, and compute proximity loss in the resulting design.

Further iterations may be necessary if the specifications are not

met.
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15.4 AC Inductor Design

+

v(t)

–

L

i(t) Core
Window area WA

Core mean length
per turn (MLT )

Wire resistivity ρ
Fill factor Ku

Air gap
lg

n
turns

Core area
Ac

Area λ
v(t)

t1 t2 t

i(t)

Design a single-winding inductor, having

an air gap, accounting for core loss

(note that the previous design procedure of

this chapter did not employ an air gap, and
inductance was not a specification)
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Outline of key equations

L =
µ0Acn2

lg

∆B = λ
2nAc

Obtain specified inductance:

Relationship between

applied volt-seconds and

peak ac flux density:

Pcu =
ρn2(MLT )

KuWA
I 2

Copper loss (using dc

resistance):

∆B =
ρλ2I 2

2Ku

(MLT )
WAAc

3lm

1
βK fe

1
β + 2

Total loss is minimized when

Kgfe ≥
ρλ2I 2K

fe

2/β

2Ku Ptot
β + 2 /β

Must select core that satisfies

See Section 15.4.2 for step-by-step

design equations


