
A Graphical Interface to Multi-tasking Programming
Problems

Nitin Mehra1

UNO P.O. Box 1403
New Orleans, LA 70148

and

Ghasem S. Alijani2

Graduate Studies Program in CIS
Southern University at New Orleans

6400 Press Drive
New Orleans, LA 70126

Abstract

The foundation of this project lies on the basis of the multi-tasking environment, at the operating system level. An
important consideration taken into account is the ability to run platform-independent programs using a common
graphical user interface. The application (named ‘RunApp’) is developed using Microsoft Visual Basic. It is based on
the concept of linear programming in a multi-development environment. Currently, this application incorporates the
Visual C++ and Visual Basic programming environment by providing editing, compiling, and execution capabilities.
RunApp possesses the capability of searching web-oriented resources, which will aid developers to find information
about different environments through the Internet. This tool will also help the developer in downloading and updating
the latest controls, modules, DLLs, etc. directly into their respective environments such as Visual Basic or Visual C++.
This application provides all the editing features of any basic word processor. RunApp shares the personality of a
development environment, debugging tool, information access, and application execution module. It is a standalone
interface that couples multiple programming environments into one entity with capability of multi-tasking.

Keywords: Multi-tasking, shared memory, error detection, fault tolerance, dynamic link library

1 nitinmehra@bigfoot.com
2 dallijani@ix.netcom.com

1. INTRODUCTION

Microcomputers have become remarkably faster over a
short period of time and large networks of
microcomputers are cheaper than mainframe computers.
Today’s computer systems are extremely complex when
viewed in all their detail (Brookshear 1997). The
increase in the number of computers accompanied by
the increase in the number of users has led to the need to
have simple and standard user interfaces. The graphical
and visual representation of an environment enhances
productivity and speeds up development time.
Moreover, many administrative tasks are made easier by

using graphics instead of plain text to display
information (Whitehead and Maran 1997).

An environment is the actual “feel” (available resources,
memory variable values, data values, etc.) of the
situation that describes a particular process at any given
point in time. An environment encompasses tools,
database or files, people, hardware, a network, operating
systems, standards, and myriad other components.
Concurrency is the simultaneous execution of several
processes within a system. In a centralized system,
interleaving the execution of each process simulates
concurrency. The shared-memory architecture provides
a very efficient medium for processes to exchange data

(Geist, Beguelin, Dongarra, Manchek, and Sunderam
1996).

Most physical user interfaces to electronic systems are
tailored to the greatest common denominator of human
experience rather than a multiplicity of human
experience. A few interfaces, on the other hand, are
dynamically tailored to an individual person's needs
(Eustice, Lehman, Morales, Munson, Edlund, and
Guillen 1999). Most typical development environments
work within a uni-tasking mode limiting the users to one
programming language.

Intelligent Graphical User Interfaces can simplify a lot
of complex processes and reduce the actions that one
needs to perform to execute tedious tasks. The objective
of this project was to develop a graphical user interface
(GUI) that addresses the multi-tasking problems. In
many cases, overcoming the hurdles requires the
determination of conflicting processes between events in
the system. Since perfect implementation and
functionality is impossible, several debugging options
need to be included.

2. METHODOLOGY

There are many challenges to be resolved with the
implementation of an application developer system. The
first challenge is the selection of an operating system
that allows the user to be ignorant of the multiple
resources involved. The application, named RunApp,
should be able to handle multi-tasking and intelligent
resource management that is supported by Microsoft's
Windows operating systems. Some of the other hurdles
include implementation of the following.

 Error detection and error handling
 Proper resource allocation
 Assurance of data consistency and
 Providing a fault tolerant system

One of the key characteristics and challenges in the
design of this system is the multi-tasking operating
system. The RunApp system is the software layer on
the operating system that simplifies the task of
programming. This system appears as a standard
application program, but it runs at the kernel level
supporting multiple environments.

Two of the other major concerns in the design of the
current system are error detection and error handling. In
a multi-environment system, when one or more
components (such as memory, client, processes, kernel,
etc.) crashes, the failure is fatal. Usually this failure is
instantly detected and can be handled appropriately. In
single environment system as in the case of current
system, error detection and error handling are much
more complex.

Figure 1. Splash screen

The splash screen as shown in figure 1 is the first screen
that introduces the application and provides the user
with the version information. This screen stays up until
the entire application is loaded in the background. Once
RunApp is loaded into memory, the splash screen
disappears from the screen and unloads from memory.
The next screen that is loaded is the user menu within
the application module. As can be seen in figure 2, this
is a more of a startup screen that enables the user to pick
an option/task that he/she would desire to perform. A
convenience advantage of RunApp is that once the user
selects a task, it would directly perform that task without
having to navigate through all other menus and options.
The ‘Exit’ button on this screen only exits the menu and
not the application. If the user exits, he/she would be
brought to the main screen as shown in figure 3. This
would also directly load Visual Basic or Visual C++ if
the user desires that option and the corresponding
application have been pre-loaded on the computer. The
‘Run a program’ option allows the user to directly
execute a pre-compiled executable file that has been
created by him/her. The ‘new’ file option opens a new
source file in which the user can write code for C, C++,
or Visual Basic.

Figure 2. User menu

Figure 3 depicts the main screen of the application. The
entire RunApp environment/application is contained
within a single process. A process is a program in
execution (Silberschatz, Abraham, and Galvin 1998).
All processes in the development environment belong to
the parent process, which is ‘RunApp.’ Every sub-
process (thread) will show as a standard task in the
window’s environment (under windows task manager)
and will be assigned with a unique task id by the
operating system, since it is a new parent process
initiated by the RunApp. A process encompasses the
current status of the activity, called Process State
(Microsoft Corporation 1999a). Multiple processes of
RunApp can be initiated at the operating system level
(since Windows ‘95 supports multitasking) and each
process will have its own environment, allocated
memory and be completed independent of any other
task. This is accomplished by the way that the RunApp
id is developed under a Single Document Interface
(SDI) environment.

Figure 3. Main screen

The main screen contains the menu bar, toolbar, and
status bar that follow all the rules and aspects of a
standard window’s application. All the rich-text editing
features designed within this application are contained in
the toolbar along with other file and print functions. All
documents opened for editing are displayed within this
main window. The option to view and edit them in rich-
text format is left to the user but the source files will
only be saved in text format. Any new application or
development environment is spawned as a new
process/task at the operating system level and can
continue to execute independent of RunApp, if desired.

RunApp lets the user open any source file (figure 4)
from a local or network drive and load it into a rich-text
editing environment. These functions can be performed
from within RunApp. Multiple files can be edited and
compiled simultaneously. The current file versions
supported are: C source files, C++ source files, Visual
Basic modules, Visual Basic projects and Visual C++
files. Using a file pointer, which points to a structure
that contains information about that file (Kernighan and
Ritchie 1996), accesses C files. A similar method has

been adopted to access the other types of files. Other file
formats can be added to this application dynamically or
by adding the filters to the Visual Basic code of this
module. One can also cut and paste text and data from
one file to another in the same manner as it is done in
any other word processor. Similar functionality was
developed to save information, set the font, view help
topics as well as to print source code or program output.
All modules have been developed using Microsoft's
Windows Application Programmer's Interface
(Windows API) and have been modified to suit this
application by adding and customizing its features to
comply with the file formats for RunApp.

Figure 4. Open file window

The Edit menu provides the user with the functionality
to copy, cut, and paste text between source files or to the
windows clipboard. Users can also cut and paste text
between environments as Visual Basic and Visual C++.
This menu also contains the font option, which has been
described earlier. All the functions contained in this
menu are identical to the ones in any other window's
application. In this manner, the interface can be kept
simple to the user by avoiding complexity.

The available ‘Environments’ are shown under the
'Tools' menu (currently – Visual Basic and Visual C++).
The menu, when activated, will load the appropriate
development environment if and only if it has been pre-
loaded on the machine being used. The installed
development environments (i.e., Visual Basic or Visual
C ++) can be used to compile and create executable files
of any source code written via RunApp. All the memory
management, context switching, and environment
variables are loaded in the background. The user will be
provided with the option of directly loading the source
file in the selected environment. The executable file can
be initiated/run by selecting the ‘Run Program’ menu.
This menu also contains shortcut keys used to initiate
the environments directly without having to navigate.
The menu provides the user with the list of all the
programs that are available and executable. The user-
created executable file must have a postfix indicating as
an executable file to be run via RunApp. Time-sharing
used in a multi-user system is known as multitasking, in
reference to the illusion of more than one task being

performed simultaneously (Brookshear 1997). This will
execute every program in an independent multitasking
environment and multiple programs can be executed
simultaneously. Each program will have its own
instance, and hence, multiple copies of the same
program can be executed at the same time and compared
for outputs. The source files can be debugged by going
back to the appropriate environment and recompiled.
An example has been described later in this paper for
running Visual Basic and Visual C++ simultaneously.

RunApp invokes either the Visual Basic or Visual C++
environment when the corresponding selection is made
from the Tools menu. Visual Basic will provide the user
to start up any new type of application project as
desired. This option will only be provided if the user
initiates the VB environment without supplying an
existing source file, VB form, or module. The same
kind of process is followed if the Visual C++
environment is invoked.

Figure 5 depicts an example where RunApp supports a
cross environment execution. Here the interface shows
how the user can develop and execute two source files in
different environments simultaneously. This application
allows the user to edit the program files without ever
having to actually go into Visual Basic or Visual C++
itself. The right editor has a section of a C++ program
source code loaded in it while the one on the left has a
Visual Basic program.

Figure 5. Cross-environment execution

RunApp can also be used to invoke the in-built web
browser from the View menu. The browser can be used
to refer to development information on the web or use
the on-line Microsoft Developer’s Network (Microsoft
Corporation 1999b, 1999c) help features. One does not
have to have a web browser installed on the computer as
the Internet Explorer browser control has been
incorporated into this application itself. The RunApp

Setup program installs all the required dynamic link
libraries and reference files. The browser contains only
the basic features for surfing.

The help module can be invoked from the help menu bar
from the main screen. This loads the help file in the
standard windows help module by using the windows
application programmer’s interface (API) function calls
to the operating system. Here the user can use the
Index, Search and Find options to locate the help topic
that he/she desires. There is also an option that will load
the help file in the find mode directly. The help process
runs independent of the application as a separate
process. It has to be terminated explicitly.

Figure 6 shows the system information tool. The
Microsoft System Information is invoked by calling an
API function. This tool reads information from the
kernel, system repository and windows registry. It is an
information tool that supplies the user with information
on system resources, tasks, threads, DLL’s (dynamic
link library), registry settings, active modules, INI
settings, etc. This information can be useful for the
programmer to monitor memory usage and task/process
distribution. This tool runs as an independent process so
it does not conflict with the RunApp application
environment. In this manner, it can display information
about RunApp too (shown). The system information is
part of the window operating system. RunApp just links
to this tool and helps display the information.

Figure 6. System information

The Setup program as shown in figure 7 is created along
with this project to install and deploy the application on
a computer. This setup program is created using Visual
Basic’s deployment kit and will install and the required
DLLs, files, programs, data, etc. required to execute
RunApp. This setup also contains an Uninstall utility
program that can remove the entire application from a
computer. All the files installed are logged by the setup
program and removed by referring to this log file. The
Setup program gives the user the choice on where to
install the files and icons.

Figure 7. Setup for RunApp 2000

3. CONCLUSIONS

This application was designed and developed using the
Windows API functions and sophisticated Visual Basic
dynamic objects and Window controls. The main
characteristic of this system is the transparency it
provides to its user about the existence of multiple
processors and environments. This application can be
distributed using a setup program developed and
provided along with this project. This setup program
will install all the necessary components required to run
RunApp such as dynamic link libraries, support files,
help file, and application executables in a user-desired
directory on any IBM compatible personal computer.
Moreover, the window registry variables, program group
icons, and system initialization files will be
added/modified in the computer as well. The
application is compiled as a 32-bit executable and
requires Windows ‘95/’98/NT or later operating systems
to run. There is an uninstall utility that comes along
with this program that will undo and delete all the
installed components, files, registry settings, etc. The
uninstall program will not remove compiled executables
or program source files that have been created by the
user. This information will be untouched and retained.
The following benefits were identified after the
development of the RunApp application.

1) RunApp creates a fault tolerant and secure

application development environment.
2) RunApp is flexible and can be molded/customized

for specific user requirements.
3) This application can be used as a sophisticated

development tool.
4) The system provides the user with high

concurrency.

This project has immense amount of scope and
opportunity for future enhancements and development.
The primary enhancement that can be made to this
system is incorporating additional programming
environments such as PowerBuilder, Delphi, FoxPro,
etc. Moreover, fourth generation languages can be
engulfed into this such as SQL, ProC, and others. The
graphical user interface can be enhanced to support
intelligent editing and file processing. A more concise
and detail on-line help system and documentation can be

added to RunApp. Advanced options such as
personalized user settings, login, and auditing options
and version control can be added to make this
application more secure. This application can be shared
over a network by adding distribution and concurrency
methods to enhance speed and share resources.

4. REFERENCES

Brookshear, J. G., 1997, Computer Science – An

Overview (5th ed.). Addison-Wesley, USA.

Eustice, Lehman, Morales, Munson, Edlund, and

Guillen, 1999, A Universal Information Appliance.

Geist, Beguelin, Dongarra, Manchek, and Sunderam,

1996, PVM: Parallel Virtual Machine. Cambridge:
The MIT Press.

Kernighan and Ritchie, 1996, The C Programming

Language (2nd ed.). AT&T Bell Labs and Prentice
Hall.

Microsoft Corporation, 1999a, Application

Programmer’s Interface (API). Microsoft
Corporation – Windows ‘98/NT.

Microsoft Corporation, 1999b, Visual Basic Technical

Support – MSDN. [Online]. Available at:
http://msdn.microsoft.com/vbasic/technical/support
.asp

Microsoft Corporation, 1999c, Visual Basic Technical

Support – MSDN. [Online]. Available at:
http://msdn.microsoft.com/vbasic/technical/support
.asp

Silberschatz, A., and P. B. Galvin, 1994, Operating
System Concepts. Addison-Wesley, USA.

Whitehead and Maran, 1997, Teach Yourself

Networking Visually. IDG Books Worldwide, Inc.

	Abstract

