خرید اینترنتی کتاب

جستجو در تک بوک با گوگل!

تابعيت پايگاه تك بوك از قوانين جمهوري اسلامي ايران

فرادرس!



چطور!




تبلیغات!


معجزه ریاضی

امتیاز به این مطلب!

570 views

بازدید

یک معجزه عددی از عدد ۱۹:
عدد ۲۴۴۳۴ مضربی از عدد ۱۹ است که رقم های آن یعنی ۲ ، ۴ ، ۴ ، ۳ و ۴ تعداد رکعت های نمازهای پنجگانه یومیه هستند.
چرا شما نماز صبح را به عنوان اولین نماز یومیه (روزانه) می شناسید؟ دو زمان دیگر هم برای شروع ممکن است وجود داشته باشد. (فکر نکنید که یک نفر چنین ادعایی کند) .
اولین زمان فرض کنید که ظهر باشد بخاطر اینکه قرآن می فرماید:
«نماز را از زوال خورشید تا تاریکی شب بجای آرید و قرآن را هنگام طلوع بخوانید. (۷۸:۱۷) . طبق این فرض که شروع زوال آفتاب از ظهر است ترتیب نمازهای بومیه اینطور می شود: ظهر، عصر، مغرب، عشا و نهایتاً صبح که طبق قاعده عدد ۴۴۳۴۲ بدست می آید و حاصل تقسیم ۴۴۳۴۲ بر ۱۹ می شود:
۲۳۳۳٫۷۸ که البته مغرب ۱۹ نمی باشد.
طبق فرض دیگر که مغرب را آغاز نماز اول در نظر می گیرند که در آن روز ۲۴ ساعته اسلامی آغاز می شود، عدد ۳۴۲۴۴ بدست می آید که حاصل تقسیم آن بر ۱۹ عدد ۱۸۰۲٫۳۱۵ می شود که مضربی از ۱۹ نیست .
به هر حال با کدام ترتیب دیگر شما می توانید رقم ها را بچینید تا عدد دیگری درست کنند، چنین کاری هیچ معنای خاصی نخواهد داشت. کار دیگر که معقول تر به نظر می رسد جمع کردن رکعت ها با یکدیگر است که عدد ۱۷ بدست می آید که با ۱۹ ارتباطی ندارد.
فرض کنید که بخواهیم به هر ترتیبی ۱۷ را به ۱۹ ربط دهیم. فرض کنید که چون نماز صبح مهمتر است x رکعت را باید x بار اهمیت، به ۱۷ اضافه کنیم تا ۱۹ بدست آید. خلاف این نظر چه ادعایی می تواند باشد؟ ۱۷ رکعت یعنی ۱۷ رکعت در ۷ روز که می شود:
۱۱۹= ۱۷× 7 که حداقل عدد ۱۹ در این عدد هست. اما جمعه چطور؟ بنابراین چون نماز ظهر جمعه ۲ رکعت کمتر دارد مجموع نمازهای هفته می شود: ۱۱۷ رکعت که مضربی از ۱۹ نیست. همواره می توانیم ترکیبی پیدا کنیم که کار کند.
Zahid  Aziz @ Vme . CCC . Nottingham . Ac . Uk
                                                                      2003 ، ۱۰ ، May
بنابراین ریاضیات بطور  نمادین رونوشتی از جهان است. ریاضیات علم کمیت و فضا ، مدل و ساختار است. ریاضیات روش شناسی است که با آن فرضیه ها به سوی نتیجه هدایت می شوند. ریاضیات برای موضوع تحت بحث، اثبات انکار ناپذیر را فراهم می سازد و ساختار جهان را که شامل حقایق ابدی هستند ، تشریح می کند. ریاضیات آنان شکل مشخصی از علم را تشکیل می دهد همانند پزشکی، فیزیک و مهندسی یا جامعه شناسی و روانشناسی .
ریاضیات علمی بی کران است. هدف آن درک نمادین یک بی نهایت توسط انسان است که خودش محدود است. ریاضیات با خداشناسی که درباره وجود خداوند و ارتباط او با انسان بحث می کند، همکاری می کند. عصر جدید، عصر علم و دلیل است. برای یک فرد باهوش ممکن است که وجود خداوند یا منشاء خدایی ادیان را با اعتقاد کور بپذیرد. ما نیازمند اثباتی از جانب خداوند و اگر او همان است که خودش می فرماید. یعنی دانای کل و قادر مطلق ، پس می تواند به ما نشانه هایی را از وجود خویش بدهد.
تنها کتاب آسمانی که تمامیت آن تا کنون محفوظ مانده و دارای زبان اولیه خود است، قرآن مجید است. این یک حقیقت است که اصل کتاب تورات حضرت موسی (ع) گم شده است و ما اصل کتاب انجیل عیسی (ع) را نداریم و فقط روایات پیروانش را داریم. همچنین اصل کتاب هندی بودا را هم نداریم. آنچه که ما داریم دست رشته های انسانهایی است که تغایر خود را از اصل این کتب آسمانی نوشتند .
قرآن مجید در دهه ۱۹۷۰ وارد کامپیوتر شد. حقیقتی یکتا که در مورد هیچ کتاب دیگری کشف نشد. دورک غیرقابل انکار از زمانی بروز یافت که زبان اصلی وحی به طریقی نوشته شده که با یک مدل پیچیده ریاضی مطابق است. همانطور که تحقیق ادامه می یافت، آشکار شد که هر جزء از این کتاب بصورت ریاضی انشاء شده است؛ سوره، آیه، کلمه و تعداد حروف معین، تعداد و گوناگونی اسامی خداوند، تلفظ منحصر بفرد حروف خاص و بسیاری عناصر دیگر. بخاطر این رمز نگاری جامع ریاضی، کوچکترین بی نظمی در متن قرآن یا ترتیب فیزیکی آن، بلافاصله آشکار می شود. انشاء ریاضی هیچگونه شکی را در مورد منشاء الهی قرآن باقی نگذاشته است. اعداد دروغ نمی گویند. پارامترهای جدیدی در مورد نرخ دم و بازدم در حال کشف هستند.
کسی که از ابتدا رمز (کد) را در دفعه ۱۹۷۰ کشف کرد، دکتر راشد خلیفه بود. دکتر راشد خلیفه برای تحقیقات علمی خویش برای کشف این رمزها از پشتوانه ای قوی یعنی مدرک دکترای بیوشیمی برخوردار بود. بررسی های او در کنار سایرین منتج به نتایج حیرت انگیز گردید. پس ریاضیات ، علم بی نهایت، از یکی از بزرگترین معجزاتی را که نوع بشر می شناسد ، پرده برداشت. برای اولین بار در تاریخ ما کتابی آسمانی داریم که حفاظت شده و فرموده خداوند است، آخرین کلام خداوند، قرآن، هدیه خداوند و آخرین پیام او به تمامی بشریت.

معجزه ریاضی قرآن  « The Mathemntical Miracle of the Qoran»
این مبحث سودی نخواهد داشت اگر که مارا به سوی شکرگذاری از خود خالق ما هدایت نکند و به سوی علم عظیم ناظم خلقت، که در ابتدا، جهان را از هیچ آفرید و هر چیزی را بر اساس عدد، اندازه و وزن قرار داد و سپس در زمان انسان، علم را به شکل قاعده مند در آورد که هرچقدر ما در آن مطالعه می کنیم، عجایب بیشتری بر ما آشکار می شوند».
(۹۸۰  AD) «Hrovisto  of  Grandershim»
هرکسی یکبار یا بیشتر، مجبور به تفکر درباره خلقت شده است. سئوالاتی مانند هدف از زندگی یا وجود خداوند متعال مورد اندیشه قرار می گیرند. همواره کسی بوده که هماهنگی و نظم کهکشانها را به عنوان سنگر نگه دارنده طبیعت طرح کرده، ولی نگاه نزدیکتر به این طرح، دید آشکارتری را درباره این طرح و طراح به ما میدهد. اکتشافات جدید، هر روز تصویر روشن تری در این زمینه به ما میدهد. اکثر دانشمندان معاصر زمانه ما از جمله ریاضیدانان ، منکران وجود خداوند هستند. اگر آنها اعتقادی مذهبی داشته باشند، علم و دین خود را هموار جدا از هم نگه میدارند. دیدگاه کلی علمی، ریاضیات را به عنوان رشته ای که دلیل در آن در درجه اول اهمیت قرار دارد، می شناسد، جایی که خیالات در آن راهی ندارد، جایی که ما با اطمینان می دانیم و میدانیم که میدانیم و حقیقت امروز حقیقت همیشه است. از این دیدگاه، مذهب : برعکس ریاضیات، مبحثی اعتقادی و نامهربان با دلیل است. بنابراین از دیدگاه دانشمندان: تمام مذهبیون مساوی هستند. چرا که همه آنها ناتوان از اثبات یا قضاوت هستند. برای اینکه مطلبی تبدیل به حقیقتی ثابت شود، اعم از یک قانون فیزیکی یا ده فرمان نور است، اثبات آن نیازمند ارائه شده است.
اثبات اساساً بیانی است که فراتر از سایه یک تردید باشد. اثبات، اجازه و گواهی است و توان ریاضی و ولتاژ الکتریکی است که یک اظهار معمولی را در مورد هر مطلبی زندگی می بخشد و به تحرک وا می دارد. بنابراین اثبات، اوج قدرت دلیل مخص است.
اثبات  روندی است که طی آن یک نظریه در مورد یک حقیقت نادیده می تواند از طریق بحث و مناظره به بنایی دائمی تبدیل شود و توسط همه قابل قبول گردد. از آنجا که یک سئوال ریاضی فقط یک پاسخ مشخص خواهد داشت، بنابراین ریاضیدانان مختلف، با روشهای مختلف در مکانها و کشورهای مختلف به همان پاسخ می رسند. بنابراین اثبات ریاضی با زمان و مکان میانه ای ندارد. گالیله می گوید که ریاضیات زبانی است که با آن خداوند جهان را نوشته است. اکنون این یک حقیقت آشکار است. جهان خود را به طور طبیعی به زبان ریاضی توصیف می کند. نیروهای جاذبه با کاهش فاصله، کم می شود، سیارات طبق مدارهایی بیضی شکل به دور خورشید می چرخند و غیره.

موسیقی و سری های فیبوناچی:
کلیدهای موسیقی بر پایه اعداد فیبوناچی بنا شده اند:
سری های فیبوناچی در اساس مفهوم هنر، زیبائی و زندگی آشکارند. حتی موسیقی دارای پایه ای در سریهای فیبوناچی است. بدینترتیب:
۱۳ نت، هر اکتا و را از دیگری جدا می کند که هر اکتا و ۸ نت دارد که نت پنجم و سوم، اساس هر سیم را می سازند و بر تمام یک دانگ آهنگ صدا بنا شده اند که دو گام از هر دانگ آهنگ اصلی هستند که اولین نت هر کلید است. همچنین توجه کنید که صفحه کلید ۱۳ کلیدی پیانو که شامل ۸ کلید سفید و ۵ کلید سیاه است، به گروههای ۳ و۲ تقسیم شده است.
فرکانس های موسیقی بر مبنای نسبت های فیبوناچی هستند. بدینترتیب که فرکانس های نت های موسیقیائی دارای ارتباطی طبق اعداد فیبوناچی می باشند :
ارتباط موسیقیائی    نت در کلید    فرکانس متوسط    فرکانس محاسبه شده    نسبت فیبوناچی
ریشه
اکتاد
چهارم
پنجم
پنجم
سوم کوچک
پنجم
سوم
ششم
سوم
چهارم
پنجم    A
A
D
F
E
C
E
C#
F#
C#
D
f    440.00
۸۸۰٫۰۰
۲۹۳٫۶۶
۱۷۴٫۶۲
۶۵۹٫۲۶
۲۶۱٫۶۳
۱۶۴٫۸۲
۱۰۸٫۷۲,۱
۷۴۰٫۰۰
۲۷۷٫۱۸
۱/۱۷۴٫۶۴
۶۹۸٫۴۶    440
۸۸۰
۲۹۳٫۳۳
۱۷۶
۶۶۰
۲۶۴
۱۶۵
۱/۱۰۰٫۰۰۰
۷۳۳٫۳۳
۲۷۵
۱/۱۷۳٫۳۳
۷۰۴    1/1
۲/۱
۲/۳
۲/۵
۳/۲
۳/۵
۳/۸
۵/۲
۵/۳
۵/۸
۸/۳
۸/۵

فرکانس محاسبه شده در جدول فوق ، با A440 شروع می شود و ارتباط فیبوناچی در آن برقرار است. در عمل پیانو ها با فرکانس متوسط کار می کنند تا بتوانند آهنگهای متنوع را ایجاد نمایند.
ترکیبات موسیقی اغلب به اعداد فیبوناچی و عدد ۰  (فی) بر می گردند. ارتباط فیبوناچی و فی ( ۰ ) اغلب در گام های زمانی موسیقی دیده می شود. به عنوان مثال، به اوج رسیدن آوازها اغلب در مقدار تقریبی % ۶۱٫۸ = ۰ است که در وسط یا آخر آواز صورت می گیرد. در یک آواز با ۳۲ گام، این امر در گام بیستم اتفاق می افتد.
دستگاههای موسیقی اغلب بر عدد ۰  بنا شده اند. فیبوناچی و ۰ در طراحی ویولون و حتی در طراحی سیم بلندگوهای با کیفیت بالا مورد استفاده قرار می گیرند.
 
مرکز ملی ناتوانیهای یادگیری
نیروی امید داشتن، آموختن و موفق شدن
ناتوانی محاسبه (ناتوانیهای یادگیری در ریاضی)
ناتوانی محاسبه چیست؟
اصطلاحی است که به محدوده وسیعی از ناتوانی های یادگیری شامل ریاضی در طول زندگی بر می گردد. شکل واحدی از ناتوانی در یادگیری ریاضی وجود ندارد و مشکلات از شخصی به شخص دیگر متفاوت می باشد و در طول زندگی و مدرسه تاثیر متفاوتی روی افراد دارد.
اثرات ناتوانی محاسبه چیست؟
با توجه به اینکه ناتوانی های ریاضی می تواند این قدر متفاوت باشد در نتیجه اثراتی که روی پیشرفت اشخاص دارد می تواند مختلف باشد. بعنوان نمونه شخصی که مشکل در زبان دارد با درگیری متفاوتی نسبت به شخصی که مشکل بینایی در ارتباط با فاصله دارد روبرو است. سایر اشخاص دارای مشکل در یاد آمدن حقایق و حفظ توالی مراحل دستور است ریاضی شکل متفاوتی از درگیری مرتبط با ریاضی برای مغلوب ساختن آن خواهند داشت.
در اوایل کودکی:
ایجاد پایه قوی در ریاضی شامل مهارتهای مختلف زیادی است. بچه های کوچکتر دارای ناتوانی یادگیری ممکن است دچار مشکل در فهم شماره ها، سختی در انجام تکالیف مثل دسته بندی موضوعات در شکل، اندازه، رنگ، تشخیص گروهها و الگوها شوند.
بچه های سنین مدرسه:
در یادگیری مداوم ریاضی بچه های سن مدرسه با ناتوانی در زبان ممکن است که مشکل در حل مسائل پایه ای ریاضی مثل کاربرد جمع، تفریق، ضرب، تقسیم داشته باشند. آنها برای بیادآوردن و بخاطر سپردن مفاهیم پایه ای ریاضی دچار کشمکش می باشند، و دارای زحمت در باحساب درآوردن و چگونگی بکارگیری مهارتها و دانش برای حل مسائل ریاضی می باشند.
مشکلات ممکن است بعلت ضعف در مهارتهای بینایی- فاصله ای بیشتر شود. یک فرد ممکن است نیاز به حقایق ریاضی را درک کند ولی در پیاده کردن آن روی کاغذ در یک راه منطقی مشکل دارد. مشکلات بینایی- فاصله ای می تواند همچنین فهم آنچه را روی تخته یا داخل دفترچه نوشته می شود دشوار می سازد.
نوجوانی و بزرگسالی:
اگر بر مسائل پایه ای ریاضی تسلط نداشته باشند، بسیاری از نوجوانان و بزرگسالان دارای ناتوانی محاسبه ممکن است در کاربردهای ریاضی پیشرفته دچار مشکل شوند. ناتوانی در فرایند زبان ممکن است آن را برای فردی که می خواهد واژگان ریاضی را درک کند دشوار سازد. بدون واژگان صحیح و توضیح شفاف آنچه کلمات نشان می دهند، بدست آوردن دانش ریاضی مشکل می باشد.
موفقیت بیشتر در روشهای پیشرفته ریاضی نیازمند این است که فرد توانایی دنبال کردن روشهای دارای مراحل متعدد را داشته باشد. در شخصیتهای دارای ناتوانی یادگیری ممکن است دیدن نمونه ها و بخشهای مختلف مسائل ریاضی یا شناخت سریع اطلاعات برای حل معادله و مسائل پیچیده تر مشکل باشد.
علائم هشدار دهنده چیست؟
از آنجاییکه ناتوانیهای ریاضی گوناگون است علائم شخصی که ممکن است مشکل در این سطوح داشته باشد متفاوت است. به هرحال داشتن مشکل در یادگیری مهارتهای ریاضی لزوماً به این معنی نیست که شخص ناتوانی در یادگیری دارد.
تمام دانش آموزان این مراحل را بطور متفاوت می آموزند و بویژه در بین افراد جوان که این امر وقت و تمرین برای روشهای رسمی ریاضی و درک تمرینات می برد. اگر شخصی مشکل در هر یک از سطوح زیر داشته باشد کمک بیشتر ممکن است مفید باشد:
    در صحبت کردن، خواندن، نوشتن خوب می باشند ولی در پیشرفت شمارش و مهارتهای حل مسائل ریاضی کند می باشند.
    در بخاطر سپردن کلمات خوب می باشند ولی در خواندن شماره ها یا در بیادآوردن شماره ها و توالی آنها مشکل دارند.
   مفاهیم عمومی ریاضی مناسب می باشد ولی محاسبات ویژه بی نتیجه است و مهارتهای سازمان یافته برای استفاده مورد نیاز است.
    مشکل در مفاهیم قبلی و بیادآوردن جدول ها دارند
    درک ضعیف از راهنمایی ها دارند و بطرز ساده ای با تغییر در شیوه های معمول مسائل گیج می شوند.
    ضعف تواناییهای ذهنی ریاضی در تخمین هزینه های خوار بار فروشی یا شمارش روزهای که تا کنون تعطیل بوده است
    مشکل در اجرای بازیهای مثل شطرنج، ورق بازی یا بازیهای معمولی ویدئویی دارند.
    هنگام بازی با کارتهای بازی مشکل در حفظ نشانه ها دارند.
چگونه ناتوانی محاسبه مشخص می شود؟
زمانی که معلم یا مربی حرفه ای دانش آموز را در حیطه ناتوانیهای ریاضی مورد ارزیابی قرار می دهد، دانش آموز در ارتباط با محدوده کامل مهارتها و رفتارهای مرتبط با ریاضی محاسبه می شوند. اغلب مداد و برگه در امتحانات استفاده می شود اما در یک آزمون نیاز به مهارتهای بیشتری می باشد یعنی اینکه مشخص شود که چگونه شخص می فهمد و از اعداد و شماره ها و مفاهیم ریاضی برای حل مسائل پیچیده تر استفاده می کنند.
یک آزمون سطح واقعی و مورد انتظار مهارتها و فهم شخص را ارزیابی می کند در حالیکه ضعف و قدرت ویژه افراد را در نظر می گیرد.
در پایین تعدادی از سطوح که ممکن است مورد مخاطب باشد آمده است :
    توانایی در مهارتهای پایه ای ریاضی مثل شمردن، جمع کردن، تفریق کردن، ضرب کردن، تقسیم کردن .
    توانایی پیش بینی کردن شیوه های اختصاصی بر پایه فهم دانش و الگوهای ریاضی زمانی که جمع، تفریق، ضرب و تقسیم یا سایر محاسبات پیشرفته را انجام می دهد.
    توانایی مرتب کردن موضوعات با یک راه منطقی
    توانایی اندازه گیری زمان گفتگو و استفاده از پول
    توانایی تخمین زدن مقدار اعداد
   توانایی انجام خودآزمایی دریافتن راه حل های متغیر برای حل کردن مسائل
در همان ناتوانی محاسبه:
کمک به دانش آموز در شناخت نقاط قوت و ضعف وی اولین گام در کمک کردن است. به دنبال شناخت والدین، معلمان و سایر مربیان می توانند با یکدیگر برنامه هایی بکار گیرند که به یادگیری موثر تر دانش آموز در ریاضیات کمک کند.
کمک خارج کلاسی و بکارگیری معلم خصوصی به دانش آموز اجازه می دهد تا بتواند مخصوصاً روی مشکلاتی که دارد متمرکز شود. تا فشار برداشته شده و روی مسائل جدید با سرعت بیشتر کار کند. تقویت مکرر دانش آموز انجام شود و تمرینات ویژه مسائل قابل فهم می تواند یادگیری را آسانتر کند.
سایر برنامه های داخل و بیرون کلاس شامل موارد زیر می باشد:
    از کاغذهای نمایش هندسی برای دانش آموزانی که مشکل در پیاده کردن مسائل روی کاغذ دارند استفاده شود.
    روی یافتن راه های مختلف نزدیک حقایق ریاضی کار شود. مثلاً در بیاد آوردن جدول ضرب توضیح داده شود که اگر ۱۶=۲×8 می باشد بنابراین دو برابر آن یعنی ۴×8 باید ۳۲ باشد.
    تمرین تخمین زدن بعنوان یک راه برای شروع حل کردن مسائل ریاضی
    آشنا کردن با مهارتهای جدید که با مثالهای ساده و واقعی شروع می شود و بعد به مرور روی تمرینات انتزاعی تر کار شود.
    برای مشکلات زبان، مسائل و نظریات بطور واضح توضیح داده شود و دانش آموزان برای پرسیدن سئوالات از کسانی که کار می کنند تشویق شوند.
    فراهم کردن مکانی که در آن با آشفتگی کمتر کار کنند و لوازم التحریر (مداد، پاکن، سایر وسائل، در دسترس باشند.
    به دانش آموزان کمک کنید تا به ضعف و تواناییهای خودشان آگاهی یابند. فهمیدن اینکه شخص چگونه به بهترین نحو یاد می گیرد گام بزرگی در رسیدن به موفقیتهای دانشگاهی است و قابل اطمینان می باشد.

دانلود کتاب






مطالب مشابه با این مطلب

    علم احتمالات

    پیدایش رسمی احتمال از قرن هفدهم به عنوان روشی برای محاسبه شانس در بازی های شانسی بوده است. اگرچه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازی های شانسی و حتی در تقسیم […]

    سوالات سرشماری عمومی

    از این اطلاع برای مطالعه درباره ی ساختار خانوار  (هسته ای، گسترده، تک والد / والده و ….) که عامل مهمی در مطالعات جمعیتی است، استفاده می شود.    آیا مادر فرد، عضو همین خانوار است؟ (شماره ی ردیف مادر) …..

    درباره ی رشته ی ریاضیات
    مختصری درباره هندسه

    هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آن‌ها است. این دانش همراه با حساب یکی از دو شاخه‌ قدیمی ریاضیات است. واژه هندسه عربی شده واژه «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن […]

    دانستنیهای شیرین ریاضی

    در طی بیش از دو هزار سال، قدری آشنایی با ریاضیات، از معلومات ضروری هر شخص با فرهنگی به شمار می آمده است. امروز موقعیت سنتی ریاضیات نیز در این امر مسئول اند تدریس ریاضی گاهی به سطح آموزشی بی محتوا برای حل مسأله […]

    کاربرد علم آمار

    آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده‌های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، […]




هو الکاتب


پایگاه اینترنتی دانلود رايگان كتاب تك بوك در ستاد ساماندهي سايتهاي ايراني به ثبت رسيده است و  بر طبق قوانین جمهوری اسلامی ایران فعالیت میکند و به هیچ ارگان یا سازمانی وابسته نیست و هر گونه فعالیت غیر اخلاقی و سیاسی در آن ممنوع میباشد.
این پایگاه اینترنتی هیچ مسئولیتی در قبال محتویات کتاب ها و مطالب موجود در سایت نمی پذیرد و محتویات آنها مستقیما به نویسنده آنها مربوط میشود.
در صورت مشاهده کتابی خارج از قوانین در اینجا اعلام کنید تا حذف شود(حتما نام کامل کتاب و دلیل حذف قید شود) ،  درخواستهای سلیقه ای رسیدگی نخواهد شد.
در صورتیکه شما نویسنده یا ناشر یکی از کتاب هایی هستید که به اشتباه در این پایگاه اینترنتی قرار داده شده از اینجا تقاضای حذف کتاب کنید تا بسرعت حذف شود.
كتابخانه رايگان تك كتاب
دانلود كتاب هنر نيست ، خواندن كتاب هنر است.

دانلود کتاب , دانلود کتاب اندروید , کتاب , pdf , دانلود , کتاب آموزش , دانلود رایگان کتاب


تمامی حقوق و مطالب سایت برای تک بوک محفوظ است و هرگونه کپی برداری بدون ذکر منبع ممنوع می باشد.


فید نقشه سایت

تمامی حقوق برای سایت تک بوک محفوظ میباشد