خرید اینترنتی کتاب

جستجو در تک بوک با گوگل!

تابعيت پايگاه تك بوك از قوانين جمهوري اسلامي ايران

فرادرس!



چطور!




تبلیغات!


غلبه بر کم رویی

کاربرد علم آمار

کاربرد علم آمار
4.5 (90%) 2 votes

2,457 views

بازدید

آمار علم و عمل توسعه دانش انسانی از طریق استفاده از داده‌های تجربی است. آمار بر نظریه‌ی آمار مبتنی است که شاخه‌ای از ریاضیات کاربردی است. در نظریه‌ی آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریه احتمال مدل می‌شوند. عمل آماری، شامل برنامه‌ریزی، جمع‌بندی، و تفسیر مشاهدات غیر قطعی است. از آنجا که هدف آمار این است که از داده‌های موجود «بهترین» اطلاعات را تولید کند، بعضی مؤلفین آمار را شاخه‌ای از نظریه‌ی تصمیم‌گیری به شمار می‌آورند.
تاریخچه
سرآغاز اولیه آمار را باید در شمارش های آماری حوالی آغاز قرن اول میلادی یافت. اما ،تنها در قرن هجدهم بود که این علم ، با به کار رفتن در توصیف جنبه هایی که شرایط یک وضعیت را مشخص میکردند ، به عنوان رشته ای علمی و مستقل شروع به مطرح شدن کرد.
مفهوم از کلمه لاتینی ،به معنی شرط ، استخراج شده است. مدت های مدید ، این علم ، محدود به کار در این حوزه بود ، و تنها در دهه های اخیر از این انحصاری جدا شدو ، و به کمک نظریه احتمال ،شروع به بررسی روش های تحلیل داده های آماری و اثبات فرض های آماری کرد.
روش های این آمار ریاضی با آشکار کردن قوانین جدید ، به ابزاری موثر در علوم طبیعی و تکنولوژی تبدیل شد.
جامعه و نمونه
جامعه یک بررسی آماری دارای مشاهده ها یا آزمایش هایی تحت شرایطی یکسان ، به عنوان عنصرهای خود است. هر یک از این عنصرها را میتوان نسبت به مشخصه های متفاوتی بررسی کرد ، که می توانند به عنوان متغیرهای تصادفی XوY …. در نظر گرفته شوند.
اگر مشخصه تحت بررسی X ، دارای تابع توزیع F در جامعه مربوط باشد ، آنگاه گفته می شود که جامعه مورد بحث دارای توزیع F نسبت به مشخصه X است. در بررسی های آماری همواره زیر مجموعه ای متناهی از عناصر جامعه مورد تحقیق قرار می گیرد.این زیر مجموعه به نمونه موسوم است ، و n، تعداد عناصر موجود در آن ، اندازه نمونه نامیده می شود.
مثال
اگر وزن پسر بچه های ده ساله متغیر تصادفی x باشد ، در این صورت تمام پسر بچه های به این سن یک جامعه تشکیل می دهند . اندازه های وزن پسربچه های در شماری از مکان ها یک نمونه می سازند ، و هر پسر بچه عنصری از جامعه مزبور است . وزن مورد بحث مشخصه ای از عنصر های مزبور به شمار می رود ، و سایر مشخصه ها ، به عنوان مثال ، بلندی قد و اندازه سینه اند.
طرح آزمایش
در بررسی یک مسئله با روش های آماری ، باید نقشه آزمایش کشیده شود که شامل روش جمع آوری داده ها،اندازه نمونه مورد نظر و روش حل آن مسئله است. در این مورد هر چه نقشه آزمایش دقیق تر باشد ، نتایج به دست آمده از روش های آماری بهتر خواهند بود . بخصوص ، باید اطمینان حاصل شود که هیچ یک از اندازه گیری هایی که برای نتایج مورد نظر دارای اهمیت اند از قلم نیفتند یا ناقص نباشند . اما در این مورد همچنین می توان ، تنها به همان اندازه که می شود با بخش ناچیزی از هزینه ها به دست آورد قناعت و از دستاوردی با یک رشته آزمون بسیار پرخرج اجتناب کرد.
در این رابطه ، نکات زیر از اهمیت برخوردارند:
•    مواد یا اطلاعات بررسی شده باید همگن باشند ؛ یعنی ،روش آزمون ،در دوره بررسی ، باید یکسان باقی بماند. در وسایل یا شرایط تولید نباید تغییری داده شود ، و ابزارهای اندازه گیری با دقت های متفاوت نباید به کار روند.
•    بایدتا آنجا که امکان دارد خطاهای منظم یا عوامل موثر کنار گذاشته شوند . به عنوان مثال ، اگر مایل باشیم دو ماده را با هم مقایسه کنیم ، باید هر دو را در یک دستگاه تهیه کرده باشیم ، چه در غیر این صورت تفاوت دستگاه ها در نتایج بررسی وارد می شود ، و در کشاورزی ، در آزمون کودهای متفاوت ، باید زمین را ،به خاطر یکسان کردن تاثیر نوع خاک و موقعیت آن ، به باریکه های موازی تقسیم کرد.

باید نظارتی در نظر گرفته شود. در این مورد، یا برای مشخصه تحت بررسی مقادیر استانداردی موجودند ،که می توانند با نتایج آزمون مقایسه شوند ، یا آزمونهای نظارتی باید انجام گیرند . به عنوان مثال ، در آزمایش مربوط به کودها ، باید تاثیر یک کود از تفاوت بین گیاهانی که که با آن یا بدون آن ،تحت شرایط محیطی یکسان ،رشد کرده اند ، ارزیابی شود.
انتخاب نمونه باید تصادفی یا نماینده ای باشد . انتخاب تصادفی انتخابی است که در آن هر عنصر برای اینکه عضو آن نمونه باشد یا نباشد ، از احتمال یکسان برخوردار است. به عنوان مثال ، در یک محموله پیچ ، نمونه مورد آزمون نباید تماماَ از یک مکان انتخاب شود ،بلکه باید روی کل محموله توزیع شده باشد ، و در اندازه گیری ضخامت سیم ها نقاط اندازه گیری شده باید به طور تصادفی روی تمام طول سیم توزیع شده باشد.
انتخاب تصادفی عناصر را می توان به کمک جداول اعداد تصادفی انجام داد ، و انتخاب نماینده ای نمونه را می توان زمانی انجام داد که ماده تحت بررسی را بتوان به گونه ای یکتا به اجزایی تقسیم کرد . به عنوان مثال ، امکان پذیر است که یک محموله پیچ را به چنان طریقی تقسیم کنیم که هر جزء مزبور ، به تصادف انتخاب کرد ، ودر این صورت کل آنها نمونه مورد نظر را تشکیل می دهند. به این طریق تصویری از محموله ، بر مبنای مقیاسی کاهش یافته به دست می آید.
با توجه به اندازه نمونه مورد آزمون ، البته باید به بررسی مورد بزرگ تر و استنتاج بهتر ، درباره جامعه ای که از آن می توان ساخت ، پرداخت ،اما از طرف دیگر ، اندازه مزبور ، به دلایل زمانی و تلاش به کار رفته ، معمولاَ کوچک در نظر گرفته می شود، بنابر این باید انحرافی تصادفی از نتایج را نیز به حساب بیاوریم. هنگامی که ، با روش های آماری ، استنتاجاتی درباره جامعه ای به دست می آوریم باید اندازه نمونه مورد آزمون را نیز در نظر بگیریم.
از این گفته ها میتوان به اهمیت تحصیل در رشته آمار و نیاز جامعه به فارغ التحصیلان این رشته پی برد.
گستره علم آمار
آمار مجموعه‌ای از مفاهیم و روشهاست که در هر زمینه پژوهشی ، برای گرد آوری و تعبیر اطلاعات مربوط به آن و انجام نتیجه گوییها در شرایطی که عدم حتمیت و تغییر وجود دارد، بکار می‌رود.

دید کلی
بیشتر مردم با کلمه آمار ، به مفهومی که برای ثبت و نمایش اطلاعات عددی بکار می‌رود، آشنا هستند: تعداد بیکاران ، قیمت روزانه بعضی از سهام در بازار بورس ، کارمزد تحمل کالا بوسیله کشتی در ۱۵ سال گذشته مثالهایی از این مفهوم‌اند. ولی این مفهوم با موضوع منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتا با وضعیتهای سروکار دارد که در آنها وقوع یک پیشامد بطور حتمی قابل پیش بینی نیست. استنتاجهای آماری غالبا غیر حتمی‌اند زیرا مبتنی بر اطلاعات ناکاملی هستند. معادل کلمه آمار در زبان انگلیسی statistics است که از لحاظ تاریخی از کلمه لاتین status مشتق شده است.
نقش آمار در زندگی روزمره
پی بردن به واقعیات امور از طریق گردآوری و تعبیر داده‌ها ، منحصر به پژوهشگران حرفه‌ای نیست. این امر در زندگی روزمره همه مردم که می‌کوشند آگاهانه ، ناآگاهانه مسائلی را درباره جامعه ، شرایط زندگی ، محیط زندگی خود و کل دنیا درک کنند، معمول است. برای کسب اطلاع از وضع بیکاری ، آلودگی ناشی از ضایعات صنعتی ، اثر یک مسکن در رفع بیماری و سایر مسائل مورد علاقه در زندگی روزمره ، اطلاعات و ارقام را جمع آوری و آنها را تفسیر می‌نماییم یا کوشش می‌کنیم که تفسیرهای دیگران را بفهیم. بنابراین ، هر روز از طریق تجزیه و تحلیل ضمنی اطلاعات مبتنی بر واقعیات ، عمل کسب آگاهی انجام می‌گیرد.
نقش آمار در پژوشهای علمی
موضوع آمار عبارت است از هنر علم جمع آوری ، تعبیر و تجزیه و تحلیل داده‌ها و استخراج تعمیمهای منطقی در مورد پدیده‌های تحت بررسی. با توجه به مراحل اساسی یک تحقیق علمی که عبارتند از: مشخص کردن هدف ، جمع آوری اطلاعات ، تجزیه و تحلیل داده‌ها و بیان یافته‌های آشکار است که آمار بطور وسیعی در قلمرو تمام تحقیقات علمی بکار می‌رود. بویژه ، در مرحله جمع آوری اطلاعات ، آمار راهنمای محقق در انتخاب روشها و وسایل مناسب برای جمع‌آوری داده‌های اطلاعاتی است. در مراحل بعد از گرد آوری داده‌ها ، نیاز بیشتری به روشهای آماری وجود دارد.
انواع آمار
آمار توصیفی
آن دسته از روشهای آماری که با تخلیص و توصیف ویژگیهای برجسته داده‌ها سروکار دارند، در مبحث آمار توصیفی قرار می‌گیرند. برخلاف گذشته ، امروزه آمار توصیفی فقط قسمت کوچکی از حوزه فعالیتهایی است که تحت پوشش موضوع آمار قرار می‌گیرند.
آمار استنباطی
در زمان حاضر ، قسمت عمده موضوع آمار عبارت است از کسب اطلاعات با انجام محاسباتی روی داده‌ها و ارزیابی معلومات تازه‌ای که از این اطلاعات بدست می‌آید. این قسمت از قلمرو آمار استنباطی و روشهای مربوط به آن را استنباط آماری می‌نامند. استفاده از این روشها پایه‌ای برای استدلال بدست می‌دهد تا بتوانیم واقعیات مشاهده شده را بطور منطقی تعبیر نماییم، تعیین کنیم که این واقعیات تا چه حدی مدل مفروضی را تایید ، یا آن را نقض می‌کنند و پیشنهادهایی برای اصلاح نظریه موجود ، و یا شاید طرح‌ریزی تحقیقات دیگری ارائه دهیم.
جامعه و نمونه
جامعه آماری
عبارت است از مجموعه کامل اندازه‌های ممکن یا اطلاعات ثبت شده از یک صفت کیفی ، در مورد گردآوردن کامل واحدها ، که می‌خواهیم استنباطهایی راجع به آن انجام دهیم. جامعه ، آماج تحقیق است، و منظور از عمل گردآوری داده‌ها استخراج نتایج درباره جامعه می‌باشد.
نمونه
نمونه‌ای از یک جامعه آماری ، مجموعه اندازه‌هایی است که عملا در جریان یک تحقیق گردآوری می‌شود.
تفاوت جامعه و نمونه
برخلاف معنای معمولی کلمه جامعه ، این اصطلاح در آمار به معنای مجموعه‌ای از موجودات زنده نیست. جامعه آماری گردآورده‌ای از اعداد است که اعداد مزبور عبارت‌اند از اندازه‌های مربوط به یک صفت مشخصه برای تمام واحدهایی که آماج تحقیقی را تشکیل می‌دهند. این صفت ممکن است به جامعه انسانی مربوط باشد یا نباشد. نمونه نیز جزئی از این جامعه نامتناهی است. در حالی که جامعه آماری (حتی اگر وجود خارجی نداشته باشد) به عنوان مجموعه ثابتی از اعداد در نظر گرفته می شود.
هدفهای اصلی آمار
•    انجام استنباط درباره جامعه ، از طریق تجزیه و تحلیل اطلاعات موجود در داده‌های نمونه‌ای.
•    سنجش میزان عدم حتمیتی که در این استنباطها وجود دارد. عملی که برای رسیدن به هدفهای فوق اهمیت دارد. عبارت است از طرح ریزی فرایند و دامنه نمونه گیری بطوری که مشاهدات مبنایی برای استخراج استنباطهای معتبر تشکیل می‌دهند.
ارتباط متقابل آمار با سایر علوم
وظیفه اولیه آمار که صرفا از جمع آوری و نمایش داده‌ها بود، کاملا تغییر کرده است و نقش جدید آن ، فراهم آوردن ابزارهایی تحلیلی است که با استفاده از آنها بتوان داده‌ها را بطور موثر جمع آوری کرد و از آنها معانی لازم را بیرون کشیده و تفسیر نمود با استفاده از مفاهیم و روشهای آماری می‌توان از روی نمونه ، نتیجه‌گیریهای معتبری در مورد جامعه بدست آورد و علم آمار در تمام آن دسته از فعالیتهای بشری که در آنها اثبات ادعاها و طبقه بندی اطلاعات مبتنی بر شواهد تجربی است، حضور دارد.
کاربرد آمار
کاربرد روشهای آماری در قلمروهای گوناگون از علوم انسانی ، علوم مهندسی ، رشته‌های علمی جدیدی پدید آورده است که در ارتباط متقابل با آمار هستند. نظیر آمار زیستی ، روان‌سنجی ، آمار مهندسی ، آمار بازرگانی ، اقتصاد سنجی و جمعیت شناسی. به علاوه علم آمار در رشته‌های بسیار دیگری که هنوز از ترکیب آنها با آمار شاخه‌هایی با اسامی خاص پدید نیامده، از قبیل علوم سیاسی ، هواشناسی و محیط شناسی نقش عمده‌ای ایفا می‌کند

توزیعهای آماری

برای تعیین توزیعهای آماری لازم است دو نوع فضای احتمال تعریف شود:
۱- فضای نمونه‌ای را که تعداد عنالصر آن متناهی یا بطور شمارش پذیر نامتناهی باشد، فضای نمونه گسسته گوییم.

۲- وقتی فضای نمونه شامل تمام اعداد متعلق به یک فاصله باشد، آن را فضای نمونه پیوسته گوییم.

انواع توزیعهای احتمال
۱-    توزیع احتمال یک متغیر تصادفی گسته ، یا بطور خلاصه ، توزیع یک متغر تصادفی عبارت است از فهرست مقادیر Xi از متغیر تصادفی X همراه با احتمال منسوب به هر یک از این مقادیر ، (f(xi) = P(X=Xi. اغلب می توان به جای استفاده از یک فهرست مفصل، از یک فرمول استفاده کرد.
۲- تابع چگالی احتمال (f(x ، توزیع احتمال یک متغیر تصادفی پیوسته را توصیف می‌کند و دارای خواص زیر است.
الف) مساحت کل زیر منحنی چگالی برابر با یک است.
ب) مساحت زیر منحنی چگالی بین b,a مساوی است با (P(a≤x≤b
ج) (f)x مثبت یا صفر است.
انواع توزیعهای احتمال گسسته
امتحان برنولی (موفقیت شکست)
در اینجا تکرارهای متوالی یک آزمایش یا مشاهده را مورد بررسی قرار می‌دهیم و هر تکرار را یک امتحان می‌نامیم.
به علاوه فرض می‌کنیم که برای هر امتحان فقط دو برآمد ممکن وجود دارد. که یکی از آنها را موفقیت و دیگری را شکست می‌نامند بر این تاکید شده باشد که آنها تنها برآمدهای ممکن‌اند.
ویژگیهای امتحان برنولی
الف) هر امتحان به یکی از دو برآمد ممکن می‌انجامد که در اصطلاح فنی موقعیت و شکسیت نامیده می‌شوند.
ب) برای تمام امتحانها ، احتمال موفقیت p ، یکی است. بنابراین احتمال شکست برای هر امتحان q=1-p است که آن را با q نشان می‌دهید، بطوری که p+q=1
ج) امتحانها مستقل از یکدیگرند. احتمال موفقیت در یک احتمال با داشتن هر مقدار اطلاعات از برآمدهای سایر احتمالها ، تغییر نمی‌کند.
د) احتمالهای برنولی به صورت P(X=x) = pxq1-x تعریف می شود. دارای میانگین p (احتمال موفقیت) و واریانس pq (احتمال موفقیت در احتمال شکست) می‌باشد.
توزیع دو جمله‌ای
در حالتی که n امتحان مرکدر برنولی (n عدد ثابت) انجام می‌شوند و احتمال موفقیت در هر امتحان p است. توزیع دو جمله‌ای عبارت است از تعداد موفقیتهای در n امتحان.
توزیع دو جمله‌ای را به صورت
px(1-p)1-x (ترکیب x شیء از n شیء) = (P(X=x) = b(x;n;p برای تمایز n,…,2,1,0 تعریف می‌شود. اصطلاح توزیع دو جمله‌ای از قضیه مهمی در جبر به نام قضیه بسط دو جمله‌ای ، که مربوط است به فرمول بسط a+b) n) گرفته شده است توزیع دو جمله‌ای دارای میانگین np (تعداد موفقیتهای در n امتحان) و واریانس npq)تعداد موفقیتها در n امتحان ضرب در احتمال شکستها) می‌باشد.

توزیع فوق هندسی
فرض کنید می‌خواهیم نمونه گیری را از یک جامعه N عنصری انجام دهیم که خود می‌تواند به دو گروه تقسیم شود، گروهی که مشخصه معینی دارند و بقیه که دارای چنین مشخصه‌ای نیستند. این دو گروه می‌توانند مثلا ، نر به ماده ، شاغل- بیکار ، سالم- معیوب و نظایر اینها باشند. با پذیرش اصطلاحات سالم و معیوب برای توصیف این دو گروه ، تعداد معیوبها در جامعه را با D نشان می‌دهیم، بنابراین تعداد عناصر سالم N-D خواهد بود. سپس فرض می‌کنیم X ، نشاندهنده تعداد معیوبها در نمونه تصادفی n عنصری باشد. توزیع فوق هندسی به صورت x=0,1,…,n و
(ترکیبn از N شی)/(ترکیب n-x از N-D شی) (ترکیب x از D شی) = (P(X=x تعریف می‌شود. دارای میانگین np ، که در آن P=D/N (نسبت معیوبهای جامعه) ، و واریانس (ndq(N-n)/N-1 می‌باشد.
توزیع هندسی یا زمان انتظار
توزیع هندسی ، توزیع گسسته دیگری است که در مبحث امتحانهای برنولی پیش می‌آید. وقتی تعداد امتحانها معین باشد، تعداد موفقیتها متغیری با توزیع دو جمله‌ای (b(n,p است. اگر به جای اینکه تعداد امتحانها از قبل معین باشد، بخواهیم امتحانهای برنولی را تا به دست آوردن اولین موفقیت تکرار کنیم، تعداد موفقیتهای عدد معین ۱ است ولی تعداد احتمالها متغیر تصادفی است. X عبارت است از تعداد امتحان های برنولی تا به دست آوردن اولین موفقیت. توزیع هندسی به صورت
p(X=x)=q1-xp , X=0,1,…,n تعریف می‌شود. دارای میانگین p-1 و واریانس q/p2 می‌باشد.

توزیع هندسی را گاهی توزیع زمان انتظار گسسته می‌گویند. این امر ناشی از این واقعیت است که اگر انجام یک امتحان برنولی یک واحد زمان طول بکشد، زمان انتظار برای به دست آوردن اولین موفقیت ، دقیقا عبارت است از متغیر تصادفی x که دارای توزیع هندسی است. توزیع هندسی اغلب برای مطالعه یک مشخصه کمیاب جامعه ، نظیر وجود نوعی بیماری خونی کمیاب ، مفید است.
پیامدهای کمیاب و توزیع پواسن
توزیع پواسن برای ساختن مدل بسیاری از پدیده‌های شانسی مفید است. همچنین تقریبی از احتمالهای دو جمله‌ای را به دست می‌دهد. توزیع پواسن علاوه بر نقشی که به عنوان یک توزیع تقریب کننده دارد، مدل احتمال مفیدی است برای پیشامدهایی که بطور تصادفی در زمان یا مکان رخ می‌دهند، هنگامی که دانسته‌ها منحصر به متوسط تعداد رخدادهای آنها در واحد زمان یک مکان باشد. برای پیشامدی که در زمان اتفاق می‌افتد، هر لحظه از زمان را می‌توان احتمال بالقوه‌ای دانست که در آن ، پیشامد ممکن است رخ بدهد یا رخ ندهد. در یک واحد زمان، بطور بالقوه تعداد متناهی احتمال وجود دارد، ولی معمولا پیشامدها به دفعات اندکی اتفاق می‌افتد.
توزیع پواسن به صورت x=0,1,…,n و !P(X=x) = e-mmx/x تعریف می‌شود که e عدد نمایی و برابر ۷۱۸۲۸/۲ است.
توزیعهای احتمال پیوسته
توزیع نرمال یا توزیع گوس
توزیع نرمال ، که ممکن است بعضی از خوانندگان نمودار آن را به عنوان منحنی زنگدیس بشناسند، گاهی با نامهای پیر لاپلا س و کارل گاوس که در تاریخ پیدایش آن نقش چشمگیری داشته‌اند، همراه است. گاوس توزیع نرمال را با روش ریاضی به عنوان توزیع احتمال خطای اندازه‌گیریها به دست آورد و آن را “قانون نرمال خطاها” نامید. توزیع نرمال نقشی اساسی در آمار بازی می‌کند، و روشهای استنباطی که از آن به دست می‌آیند، دارای قلمرو کاربرد وسیعی هستند و ستون فقرات روشهای جاری تجزیه و تحلیل آماری را تشکیل می‌دهند.
توزیع نرمال دارای چگالی e-(x-µ)2/2σ2/σ√2π می‌باشد. که در آن µ میانگین و σ انحراف معیار است به صورت (N(µ,σ2 نشان داده می‌شود.
•    اگر انحراف معیار با میانگین ۰ و انحراف معیار ۱ باشد آن را توزیع نرمال استاندارد می‌گویند و به صورت (N(0,1 نشان می‌دهند، دارای توزیع Z = (x-µ)/σ می‌باشد.
•    قضیه حد مرکزی: برای توزیع میانگین نمونه مبتنی بر نمونه‌ای تصادفی به حجم n ، میانگین (X) برابر µ ، واریانس (X) برای σ2/n یا (n/ واریانس جامعه) ، انحراف معیار (X) برابر σ/√n یا (n√/انحراف معیار جامعه) می‌باشد. طبق قضیه حد مرکزی توزیع نرمال به صورت Z = (X- µ) / σ/√n تقریبا (N(0,1 است.

آمار توصیفی
هنگامی که توده‌ای از اطلاعات کمی ‌برای تحقیق گرد آوری می‌شود، ابتدا سازمان بندی و خلاصه کردن آنها به طریقی که به صورت معنی داری قابل درک و ارتباط باشند، ضروری است. روشهای آمار توصیفی (Descriptive Statistics) به همین منظور بکار برده می‌شوند. غالبا مفیدترین و در عین حال اولین قدم در سازمان داده‌ها مرتب کردن داده‌ها بر اساس یک ملاک منطقی است و سپس استخراج شاخص‌های مرکزی و پراکندگی و در صورت لزوم محاسبه همبستگی میان دو دسته اطلاعات و استفاده از تحلیل‌های پیشرفته تر نظیر رگراسیون (Regression) و پیش بینی (Prediction) می‌باشد.
در یک جمعبندی با استفاده مناسب از روشهای آمار توصیفی می‌توان دقیقا ویژگیهای یک دسته از اطلاعات را بیان کرد. آمار توصیفی همیشه برای تعیین و بیان ویژگیهای اطلاعات پژوهش‌ها بکار برده می‌شوند.
روشهای آمار توصیفی
تشکیل جدول توزیع فراوانی
توزیع فراوانی عبارت است از سازمان دادن داده‌ها یا مشاهدات به صورت طبقات همراه با فراوانی هر طبقه. برای تشکیل یک جدول توزیع فراوانی باید دامنه تغییرات ، تعداد طبقات و حجم طبقات توسط فرمولهای مربوطه محاسبه شده و سپس اقدام به نوشتن جدول توزیع در دو ستون X (ستون طبقات) و F (فراوانی طبقات) شود. پس از این مرحله در صورت تمایل یا لزوم پژوهشگر می‌تواند شاخص‌های دیگری نظیر فراوانی تراکمی‌ ، فراوانی تراکمی‌ درصدی را محاسبه نماید. تشکیل جدول توزیع فراوانی یک روش اقتصادی و در عین حال آسان برای نمایش انبوهی از داده‌های نامنظم است. اما در طبقه بندی کردن ، برخی از اطلاعات به علت خطای گروه بندی از دست می‌روند که در محاسبه شاخصهای آماری نیز منعکس می‌شود. ولی مقدار آن ناچیز بوده و اشکال عمده‌ای ایفا نمی‌کند.
ترسیم نمودار
یکی از نقاط ضعف نمایش داده‌ها به صورت جدول فراوانی عدم درک سریع اطلاعات جدول است. نمودارها ابزار مناسبی برای نمایش تصویری اطلاعات هستند. انواع مختلفی از نمودار وجود دارد که از جمله می‌توان به نمودار هیستوگرام ، نمودار ستونی ، نمودار چند ضلعی تراکمی ‌، نمودار دایره‌ای ، نمودار سریهای زمانی و …اشاره کرد.
محاسبه شاخصهای مرکزی
در محاسبات آماری لازم است که ویژگیها و موقعیت کلی داده‌ها تعیین شود. برای این منظور شاخصهای مرکزی محاسبه می‌شوند. شاخصهای مرکزی در سه نوع نما (Mode) ، میانه (Median) و میانگین (Mean) هستند که هر یک کاربرد خاص خود را دارا می‌باشند. در تحقیقاتی که مقیاس اندازه گیری داده‌ها حداقل فاصله‌ای است میانگین بهترین شاخص است. ولی در تحقیقاتی که مقیاس اندازه گیری داده‌ها رتبه‌ای یا اسمی‌ است، میانه یا نما مورد استفاده قرار می‌گیرند.
محاسبه شاخصهای پراکندگی
شاخصهای پراکندگی برخلاف شاخصهای مرکزی هستند. آنها میزان پراکندگی یا تغییراتی را که در بین داده‌های یک توزیع (نتایج تحقیق) وجود دارد، نشان می‌دهند. دامنه تغییرات ، انحراف چارکی (Quartile Deviation) ، واریانس (Variance) و انحراف استاندارد (Standard Deviation) شاخصهایی هستند که به همین منظور در تحقیقات مورد استفاده قرار می‌گیرند. پس از محاسبه شاخصهای مرکزی و پراکندگی می‌توان نمره‌های استاندارد را محاسبه و منحنی طبیعی (Z) را ترسیم کرد.
محاسبه همبستگی
تحقیقاتی وجود دارد که پژوهشگر می‌خواهد رابطه بین دو متغیر را تعیین کند و به همین منظور از روشهای همبستگی (Correlation) استفاده می‌کند. در محاسبه همبستگی ، نوع مقیاس اندازه گیری دخالت دارد و بطور کلی به دو دسته پارامتری و ناپارامتری تقسیم می‌شوند.
•    محاسبه همبستگی برای تحقیقات پارامتری : چنانچه دو متغیر در مقیاسهای فاصله یا نسبی اندازه گیری شده باشند، می‌توان برای تعیین رابطه بین آنها از ضریب همبستگی گشتاوری پیرسون استفاده کرد. ولی اگر در تمام مفروضات ضریب همبستگی پیرسون صادق نباشد، نمی‌توان از آنها استفاده کرد و به جای آن می‌توان از روشهای دیگری مانند ضریب همبستگی دو رشته‌ای ( ) ، دورشته‌ای ( ) و یا ضریب تتراکوریک ( ) استفاده کرد.
•    محاسبه همبستگی برای تحقیقات ناپارامتری : در تحقیقاتی که در سطح مقیاس‌های اسمی ‌و رتبه‌ای انجام می‌گیرد، باید از روش‌های دیگری برای محاسبه همبستگی بین دو متغیر استفاده کرد. برخی از این روشها عبارتند از : ضریب همبستگی فی (φ) ضریب کریمر (C) ، ضریب کپا (K) و ضریب لامبدا ، در تحقیقات اسمی ‌و ضریب همبستگی اسپرمن ( ) ، ضریب کندال و آماده گاما (G) برای تحقیقات ترتیبی.
رگراسیون و پیش بینی
رگراسیون (Regression) روشی برای مطالعه سهم یک یا چند متغیر مستقل در پیش بینی متغیر وابسته است. از تحلیل رگراسیون هم در تحقیقات توصیفی )غیر آزمایشی) و هم در تحقیقات آزمایشی می‌توان استفاده کرد. با توجه به نوع تحقیق و متغیرهای آن روش متنوعی برای تحلیل رگراسیون وجود دارد که برخی از آنها عبارتند از : رگراسیون خطی (با سه راهبرد همزمان ، گام به گام ، سلسله مراتبی) ، رگراسیون انحنایی ، رگراسیون لوجیستیک و تحلیل کواریانس.
تحلیل داده‌های ماتریس کواریانس
از جمله تحلیل‌های همبستگی ، تحلیل ماتریس کواریانس یا ماتریس همبستگی است. دو نوع از معروفترین این تحلیل‌ها عبارتند از : مدل تحلیل عاملی برای پی بردن به متغیرهای زیر بنایی یک پدیده در دو دسته اکتشافی و تاییدی و مدل معادلات ساختاری برای بررسی روابط علی بین متغیرها.
آمار استنباطی

آمار استنباطی به شیوه‌هایی اطلاق می‌شود که از طریق آنها ویژگیهای گروههای بزرگ بر اساس اندازه گیری همان ویژگیها و گروههای کوچک استنباط می‌شود.

دیدکلی
•    چه روش آموزشی برای گروه سنی از دانش آموزان مناسب است؟
•    توزیع بهره هوشی در یک جامعه چگونه است؟
در پژوهش‌های روان شناسی و سایر علوم رفتاری کسب اطلاعات در باره گروههای کوچک غالبا هدف پژوهشگر نیست، بلکه او علاقمند است که از طریق یافته‌های این گروه کوچک ، اطلاعات لازم را در باره جامعه‌ای که این گروه کوچک را از آن انتخاب کرده است، کسب کند. به عبارت دیگر در این پژوهش‌ها هدف پژوهشگر تعمیم نتایج بدست آمده از یک گروه کوچک به یک جامعه بزرگتر می‌باشد. این تعمیم مستلزم آن است که پژوهشگر از روش‌های آماری پیشرفته تری تحت عنوان آمار استنباطی (Inferential Statistics) استفاده نماید.
روش آمار استنباطی
برآورد
روش‌های آمار استنباطی به منظور برآورد پارامترهای جامعه (میانگین جامعه) از طریق نمونه گیری علمی ‌از جامعه مورد نظر بکار می‌رود. برای مثال اگر از جامعه‌ای نمونه انتخاب ‌کنیم و میانگین این نمونه را به منظور برآورد میانگین جامعه محاسبه ‌کنیم، در واقع یک برآورد یا پیش بینی در باره میانگین جامعه از طریق نمونه انتخابی انجام داده‌ایم. آمار برآوردی دارای ارزش است که بدون سوگیری (Unbiased) ، با ثبات (Consistent) ، کارا (Efficient) و مکفی (Sufficent) باشد.
آزمون فرض
فرضیه آماری نقطه آغاز آزمون فرض است. فرضیه آماری یک بیان مقداری در باره پارامترهای جامعه است و اصولا بدون داشتن فرضیه آماری امکان انجام یک آزمون دشوار است. فرضیه آماری به دو دسته فرض صفر (H0) و فرض خلاف (HA) بیان می‌شود.
آزمون‌های آمار استنباطی
آزمون‌های آماری مورد استفاده جهت تجزیه و تحلیل اطلاعات بدست آمده از یک گروه کوچک (نمونه) و تعمیم آن به جامعه مورد نظر با توجه به مقیاس اندازه گیری متغیرها به دو گروه پارامتری و ناپارامتری تقسیم می‌شوند. آزمون‌های پارامتری به تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین (Mean) و واریانس (Variance) است. در حالیکه آزمون‌های نا پارامتری به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی ‌و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه (Median) و نما (Mode) است.
آزمون‌های پارامتری آمار استنباطی
آزمون t
آزمون t ، توزیع یا در حقیقت خانواده‌ای از توزیعها است که با استفاده از آنها فرضیه‌هایی را در باره نمونه در شرایط جامعه ناشناخته است، آزمون می‌کنیم. اهمیت این آزمون (توزیع) در آن است که پژوهشگر را قادر می‌سازد با نمونه‌های کوچکتر (حداقل ۲ نفر) اطلاعاتی در باره جامعه بدست آورد. آزمون t شامل خانواده‌ای از توزیعها است (برخلاف آزمون z) و اینگونه فرض می‌کند، که هر نمونه‌ای دارای توزیع مخصوص به خود است، که شکل این توزیع از طریق محاسبه درجات آزادی (Degrees of Freedom) مشخص می‌شود. به عبارت دیگر توزیع t تابع درجات آزادی است و هر چه درجات آزادی (d.F) افزایش پیدا کند به توزیع طبیعی نزدیکتر می‌شود. هرچه درجات آزادی کاهش یابد، پراکندگی بیشتر می‌شود. خود درجات آزادی نیز تابعی از اندازه نمونه انتخابی هستند. هر چه تعداد نمونه بیشتر باشد بهتر است. از آزمون t می‌توان برای تجزیه و تحلیل میانگین در پژوهش‌های تک متغیری یک گروهی و دو گروهی و چند متغیری دو گروهی استفاده کرد.
آزمون تحلیل واریانس
مواقعی که پژوهشگری بخواهد بیش از دو میانگین (بیش از دو نمونه) را مقایسه کند، باید از تحلیل واریانس استفاده کند. تحلیل واریانس یک روش فراگیرنده تر از آزمون t است و برخی پژوهشگران حتی وقتی مقایسه میانگین‌های دو نمونه مورد نظر است از این روش استفاه می‌کنند. طرح‌های متنوعی برای تحلیل واریانس وجود دارد و هر یک تحلیل آماری خاص خودش را طلب می‌کند. از جمله این طرح‌ها می‌توان به تحلیل یک عاملی واریانس(تحلیل یک طرفه) و تحلیل عاملی متقاطع واریانس ، تحلیل واریانس چند متغیری ، تحلیل کوواریانس یک متغیری و چند متغیری و …. اشاره کرد.

آزمون‌های ناپارامتری آمار استنباطی
در پژوهشهایی که در سطح مقیاسهای اسمی ‌و رتبه‌ای اجرا می‌شوند، باید از آزمون‌های ناپارامتریک برای تجزیه و تحلیل اطلاعات استفاده شود. آزمون‌های زیادی برای این امر وجود دارد که براساس نوع تحلیل (نیکویی برازش ، همسویی دو نمونه مستقل ، همسویی دو نمونه وابسته ، همسویی K نمونه مستقل و همسویی K نمونه وابسته) و مقیاس اندازه گیری می‌توان دست به انتخاب زد. از آزمون‌های مورد استفاده برای پژوهشها در سطح اسمی‌ می‌توان به آزمون X2 ، آزمون تغییر مک نمار ، آزمون دقیق فیشر و آزمون کاکرن اشاره کرد. از آزمونهای مورد استفاده برای پژوهشها در سطح رتبه‌ای می‌توان به دو آزمون کولموگروف – اسمیرونف ، آزمون تقارن توزیع ، آزمون علامت ، آزمون میانه ، آزمون uمان – ویتنی ، آزمون تحلیل واریانس دو عاملی فریدمن و … اشاره کرد.

نقش آمار در پژوهشهای علمی
دید کلی
موضوع آمار عبارت است از هنر و علم جمع آوری ، تعبیر و تجزیه و تحلیل داده‌ها و استخراج تعمیمهای منطقی در مورد پدیده‌های تحت بررسی و با توجه به مراحل اساسی یک تحقیق علمی ، آشکار است که آمار بطور وسیعی در قلمرو تمام تحقیقات علمی بکار می‌رود.
نقش آمار در مراحل اساسی پژوهش علمی
در مرحله جمع آوری اطلاعات ، آمار راهنمای محقق در انتخاب روشها و وسایل مناسب برای جمع آوری داده‌های اطلاعاتی است. این راهنمایی ، مشتمل است بر تعیین نوع و میزان داده‌ها. بطوری که نتیجه‌های حاصل از تجزیه و تحلیل داده‌ها را بتوان با درجه دقت مورد نظر بیان کرد. در زمینه‌هایی از مطالعات که انجام آزمایشها پرخرج است، نوع و مقدار داده‌های لازم برای بدست آوردن نتیجه‌هایی که از میزان اعتبار مطلوب برخوردار باشند، باید به دقت از قبل تعیین شود. در زمینه‌های دیگر نیز ، این امر از لحاظ اعتبار نهایی و موثر بودن نتایج حاصل از تحلیل داده‌ها ، اهمیت دارد. شاخه‌ای از آمار که با طرح ریزی آزمایشها و گردآوری داده‌ها سروکار دارد، طرح آزمایش یا طرح نمونه گیری نامیده می‌شود.

در مراحل بعد از گردآوری داده‌ها ، نیاز بیشتری به روشهای آماری وجود دارد. دسته‌ای از این روشها برای خلاصه کردن اطلاعات موجود در داده‌ها طرح ریزی می‌شوند تا توجه ما روی ویژگیهای مهم داده‌ها متمرکز گردد و جزئیات غیر ضروری کنار گذاشته شوند. دسته مهمتری از روشها ، در تجزیه و تحلیل داده‌ها ، برای استخراج نکات کلی و استنباطهایی درباره پدیده تحت مطالعه بکار می‌روند. آن دسته از روشهای آماری که با تلخیص و توصیف ویژگیهای برجسته داده‌ها سروکار دارند، در مبحث آمار توصیفی قرار می‌گیرند. برخلاف گذشته ، امروزه آمار توصیفی فقط قسمت کوچکی از حوزه فعالیتهایی است که تحت پوشش موضوع آمار قرار می‌گیرند.
در زمان حاضر ، قسمت عمده موضوع آمار عبارت است از کسب اطلاعات با انجام محاسباتی روی داده‌ها ، و ارزیابی معلومات تازه‌ای که از این اطلاعات بدست می‌آید. این قسمت از قلمرو آمار را آمار استنباطی و روشهای مربوط به آن را استنباط آماری می‌نامند. استفاده از این روشها پایه‌ای برای استدلال بدست می‌دهد تا بتوانیم واقعیات مشاهده شده را بطور منطقی تعبیر نماییم، تعیین کنیم که این واقعیات تا چه حدی مدل مفروضی را تایید یا آن را نقض می‌کنند. و پیشنهادهایی برای اصلاح نظریه موجود ، و یا شاهد طرح ریزی تحقیقات دیگری ارائه دهیم.

نقش آمار در تحقیقات اجتماعی- اقتصادی
در بسیاری از قلمروهای جامعه شناسی ، اقتصاد ، علوم سیاسی ، مطالعاتی در زمینه‌های مربوط به رفاه اقتصادی گروههای قومی گوناگون ، هزینه‌های مصرف کنندگان در سطوح مختلف درآمد و نظرات گوناگون در هنگام وضع یک قانون ، در زمینه‌هایی نظیر اینها انجام می‌گیرد. این مطالعات نوعا بر مبنای داده‌هایی انجام می‌گیرد که از راه مصاحبه یا تماس با نمونه‌ای از افراد بدست می‌آید، که این نمونه بوسیله روشهای آماری از کل جامعه‌ای که قلمرو مطالعه را تشکیل می‌دهد، انتخاب می‌شوند. سپس این داده‌ها مورد تجزیه و تحلیل قرار می‌گیرند و تعبیراتی از موضوع مورد نظر به عمل می‌آید.
نقش آمار در برنامه‌های تربیتی و آموزشی
برنامه‌های تربیتی و آموزشی که برای انواع متقاضیان (از قبیل دانشجویان دانشگاه ، کارگران کارخانه ، گروههای اقلیت ، افراد ناقص‌العضو ، کودکان عقب افتاده) در بسیاری از زمینه‌ها طرح می‌شوند، دائما مورد بررسی ، ارزیابی و اصلاح قرار می‌گیرند تا سودمندی آنها برای جامعه افزایش یابد. برای کسب اطلاع از کارایی برنامه‌های مختلف در مقایسه با یکدیگر ، ضرورت دارد که داده‌هایی درباره موفقیتها یا رشد مهارت افرادی که برنامه در مورد آنها اجرا می‌گردد، گردآوری شود.
نتیجه گیری
قسمتهای مختلف آمار مباحث کاملا مجزایی نیستند که هر یک از آنها برای استفاده در یکی از مراحل تحقیق در نظر گرفته شده باشند، بلکه مجموعه به هم پیوسته‌ای از فعالیتها را تشکیل می‌دهند، بطوری که روشهایی که در یک قسمت بکار می‌روند، ارتباط زیادی با روشهای مورد استفاده در قسمتهای دیگر دارند. برای تصمیم گیری راجع به چگونگی فرآیند و میزان جمع آوری داده‌ها ، باید درکی از روشهای استنباطی که در نظر داریم بکار ببریم. و نیز توانایی استنباط مطلوب ، داشته باشیم.

از طرف دیگر ، روشهای تجزیه و تحلیل داده‌ها و استخراج نتایج ، به شدت به فرآیند مولد داده‌ها بستگی دارند. می‌توان گفت که آمار مجموعه‌ای از مفاهیم و روشهاست که در هر زمینه پژوهش ، برای گردآوری و تعبیر اطلاعات مربوط به آن و انجام نتیجه گیریها ، در شرایطی که عدم حتمیت و تغییر وجود دارد، بکار می‌رود.
میانگین گیری
شاید مهمترین نکته در مطالعه توزیع یک نمونه از اندازه‌ها ، تعیین یک مقدار مرکزی باشد، یعنی ، یک مقدار نماینده که اندازه‌ها در اطراف آن توزیع شده‌اند. هر معیار عددی را که معرف مرکز مجموعه داده‌ها باشد، معیار گرایش به مرکز می‌نامند. دو تا از متداولترین معیارهای گرایش به مرکز عبارتند از : میانگین و میانه.
تعریف میانگین
میانگین یا متوسط نمونه ای مرکب از n اندازه x1، x2 ، … ، xn ، عبارت است از خارج قسمت مجموع این اندازه ها بر n، میانگین را با نشان می دهند که در عملیات، به صورت زیر نوشته می شود:
x´ = ∑ xi/n (به ازای i=0 تا n)

همان طوریکه از مفهوم “متوسط” بر می‌آید، میانگین ، مرکز مجموعه داده‌ها را نمایش می‌دهد. اگر نمودار نقطه‌ای مجموعه داده‌ها را این طور تجسم کنیم که روی میلاه افقی نازکی ، گویهای هم اندازه‌ای در محل داده‌ها قرار دارند، آنگاه ، میانگین نشان دهنده نقطه‌ای است که این میله در آن نقطه به حال تعادل در می‌آید.

تعریف میانه نمونه‌ای
میانه نمونه‌ای مرکب از n اندازه x1، x2 ، … ، xn ، عبارت است از اندازه وسطی ، در صورتی که اندازه‌ها را به ترتیب از کوچکترین به بزرگترین مقدار مرتب کرده باشیم. اگر n فردی باشد، یک مقدار وسطی منحصر به فرد وجود دارد که میانه است. اگر n زوج باشد در مقدار وسطی وجود دارند که متوسط آنها به عنوان میانه تعریف می‌شود. اجمالا می‌توان گفت که ، میانه مقداری است که دسته داده‌ها را به دو نیمه مساوی تقسیم می‌کند. به عبارت دیگر ، ۵۰% داده‌ها در زیر میانه و ۵۰% در بالای میانه قرار می‌گیرند.
موارد استفاده از میانه و میانگین
وجود معدودی مشاهده خیلی برزرگ یا خیلی کوچک ، در میانه تاثیر ندارد، در حالی که وجود اینگونه مقادیر فرین در میانگین اثر قابل ملاحظه‌ای دارد. به نظر می‌رسد برای توزیعهایی که خیلی نامتقارن هستند، میانه معیار معقولتری از گرایش به مرکز است تا میانگین. به این دلیل در گزارشهای دولتی راجع به توزیع درآمد، به جای میانگین ، میانه درآمدها را ذکر می‌کنند. وقتی توزیع خیلی نامتقارن نیست، میانگین به میانه ترجیح داده می‌شود و خیلی بیشتر از میانه بکار می‌رود، زیرا در روشهای استنباطی ، میانگین از لحاظ نظری دارای امتیازاتی است که میانه فاقد آنهاست.
مفهوم چارک و صدک
اگر تعداد مشاهدات خیلی زیاد باشد (مثلا بیشتر از ۲۵ یا ۳۰) ، گاهی مفید است که مفهوم میانه را تعمیم دهیم و مجموعه داده‌های مرتب شده را به چهار قسمت تقسیم کنیم. درست همان طور که نقطه تقسیم داده‌ها به دو نیمه ، میانه خوانده شده نقاط تقسیم داده‌ها ، به چهار قسمت را چارک می‌نامند. بنابراین به جای این که بحث را محدود به تقسیم چهار قسمتی کنیم، داده‌ها را به قسمتهای زیادتری تقسیم ، و صدک را تعریف می‌کنیم.
صدک
صدک (۱۰۰P) ام نمونه، مقداری است که وقتی داده ها از کوچکتذرین تا بزرگترین مقدار مرتب شدند، حداقل ۱۰۰P% از مشاهدات منطبق بر این مقدار یا در سمت چپ )زیر) آن و حداقل ۱۰۰P% از مشاهدات منطبق بر این مقدار یا در سمت راست (بالای) آن باشند.
چارکهای نمونه
•    چارک (اول) کوچکتر صدک ۲۵ ام = Q1
•    چارک (دوم) میانه صدک ۵۰ ام = Q2
•    چارک (سوم) بالایی صدک ۷۵ ام = Q3

دانلود کتاب






مطالب مشابه با این مطلب

    علم احتمالات

    پیدایش رسمی احتمال از قرن هفدهم به عنوان روشی برای محاسبه شانس در بازی های شانسی بوده است. اگرچه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازی های شانسی و حتی در تقسیم […]

    سوالات سرشماری عمومی

    از این اطلاع برای مطالعه درباره ی ساختار خانوار  (هسته ای، گسترده، تک والد / والده و ….) که عامل مهمی در مطالعات جمعیتی است، استفاده می شود.    آیا مادر فرد، عضو همین خانوار است؟ (شماره ی ردیف مادر) …..

    درباره ی رشته ی ریاضیات
    مختصری درباره هندسه

    هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آن‌ها است. این دانش همراه با حساب یکی از دو شاخه‌ قدیمی ریاضیات است. واژه هندسه عربی شده واژه «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن […]

    دانستنیهای شیرین ریاضی

    در طی بیش از دو هزار سال، قدری آشنایی با ریاضیات، از معلومات ضروری هر شخص با فرهنگی به شمار می آمده است. امروز موقعیت سنتی ریاضیات نیز در این امر مسئول اند تدریس ریاضی گاهی به سطح آموزشی بی محتوا برای حل مسأله […]

    آشنایی با ماتریسها

    مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله […]




هو الکاتب


پایگاه اینترنتی دانلود رايگان كتاب تك بوك در ستاد ساماندهي سايتهاي ايراني به ثبت رسيده است و  بر طبق قوانین جمهوری اسلامی ایران فعالیت میکند و به هیچ ارگان یا سازمانی وابسته نیست و هر گونه فعالیت غیر اخلاقی و سیاسی در آن ممنوع میباشد.
این پایگاه اینترنتی هیچ مسئولیتی در قبال محتویات کتاب ها و مطالب موجود در سایت نمی پذیرد و محتویات آنها مستقیما به نویسنده آنها مربوط میشود.
در صورت مشاهده کتابی خارج از قوانین در اینجا اعلام کنید تا حذف شود(حتما نام کامل کتاب و دلیل حذف قید شود) ،  درخواستهای سلیقه ای رسیدگی نخواهد شد.
در صورتیکه شما نویسنده یا ناشر یکی از کتاب هایی هستید که به اشتباه در این پایگاه اینترنتی قرار داده شده از اینجا تقاضای حذف کتاب کنید تا بسرعت حذف شود.
كتابخانه رايگان تك كتاب
دانلود كتاب هنر نيست ، خواندن كتاب هنر است.

دانلود کتاب , دانلود کتاب اندروید , کتاب , pdf , دانلود , کتاب آموزش , دانلود رایگان کتاب


تمامی حقوق و مطالب سایت برای تک بوک محفوظ است و هرگونه کپی برداری بدون ذکر منبع ممنوع می باشد.


فید نقشه سایت

تمامی حقوق برای سایت تک بوک محفوظ میباشد